【湘教版】八年级数学上期末考试试卷含答案)
- 格式:doc
- 大小:648.50 KB
- 文档页数:5
湘教版八年级数学上册期末试卷一、选择题(每题3分,共24分)1.点A 的位置如图所示,则点A 所表示的数可能是( ) A .-2.6 B .- 2 C .-23D .1.4 2.若x <y 成立,则下列不等式成立的是( )A .x -2<y -2B .4x >4yC .-x +2<-y +2D .-3x <-3y3.下列计算正确的是( )A .(a 2)3=a 5B .a 2·a =a 3C .a 9÷a 3=a 3D .a 0=14.若一个三角形的两边长分别是3和6,则第三边长不可能是( )A .6B .7C .8D .95.使式子3-x x有意义的实数x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠06.下列尺规作图,能判断AD 是△ABC 边上的高的是( )7.下列说法:①“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆命题;②命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;③命题“如果-a =5,那么a =-5”的逆命题为“如果-a ≠5,那么a ≠-5”,其中正确的有( )A .0个B .1个C .2个D .3个8.将一副三角板按如图所示的方式放置,则∠CAF 等于( )A .50°B .60°C .75°D .85°二、填空题(每题4分,共32分)9.实数-3,-1,0,3中,最小的数是________.10.若分式x x 2+2的值为正数,则实数x 的取值范围是________. 11.化简x 1-x +1x -1的值为________. 12.不等式3(x -1)≤x +2的正整数解是________.13.已知0<a <2,化简:a +a 2-4a +4=________.14.已知射线OM .以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =________度. 15.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.16.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(17题8分,18题9分,19题5分,20题6分, 21,22题每题8分,23,24题每题10分,共64分)17.计算:(1)16+⎝ ⎛⎭⎪⎫-12-1×(π-1)0-|7-3|+3-27;(2)(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1;(3)(3+1)(3-1)+12;(4)⎝ ⎛⎭⎪⎫2a 2-b 2-1a 2-ab ÷a a +b.18.解不等式(组)或分式方程:(1)3x +24≥2x -13-1;(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),12x -2(x -2)≤4+3x ;(3)3x -1-2x +1=6x 2-1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷,其中x =2+1.20.如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF=CE .求证:△ABE ≌△CDF .21.某商店用1 000元购进一种水果来销售,过了一段时间,又用2 800元购进这种水果,所购进的数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克;(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价的半价出售,出售完全部水果后,利润不低于3 100元,则最初每千克水果的标价至少是多少元?22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB,AC于点E,D,连接BD.(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.在△ABC中,点Q是BC边上的中点,过点A作与线段BC相交的直线l,过点B作BN⊥l于N,过点C作CM⊥l于M.(1)如图①,若直线l经过点Q,求证:QM=QN.(2)如图②,若直线l不经过点Q,连接QM,QN,那么(1)中的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)24.已知等边三角形ABC和等边三角形BDE,点D始终在射线AC上运动.(1)如图①,当点D在AC边上时,连接CE,求证:AD=CE.(2)如图②,当点D不在AC边上而在AC边的延长线上时,连接CE,(1)中的结论是否成立?并给予证明.(3)如图③,当点D不在AC边上而在AC边的延长线上时,条件中“等边三角形BDE”改为“以BD为斜边作Rt△BDE,且∠BDE=30°”,其余条件不变,连接CE并延长,与AB的延长线交于点F,求证:AD=BF.答案一、1.B 2.A 3.B 4.D 5.B 6.D 7.B 8.C二、9.-3 10.x >0 11.-112.1,2 点拨:去括号,得3x -3≤x +2,移项、合并同类项,得2x ≤5,系数化为1,得x ≤2.5,则不等式的正整数解为1,2.13.2 点拨:∵0<a <2,∴a -2<0,∴a +a 2-4a +4=a +|a -2|=a +(2-a )=2.14.6015.-12 点拨:合并同类项,得(3+m )x >-5,结合题图把系数化为1,得x >-53+m ,则有-53+m=-2,解得m =-12. 16.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.① ∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°,解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、17.解:(1)原式=4-2-3+7-3=7-4.(2)原式=4-3+1+3=5.(3)原式=3-1+2 3=2+2 3.(4)原式=⎣⎢⎡⎦⎥⎤2(a +b )(a -b )-1a (a -b )·a +b a =⎣⎢⎡⎦⎥⎤2a a (a +b )(a -b )-a +b a (a -b )(a +b )·a +b a=a -b a (a +b )(a -b )·a +b a =1a 2.18.解:(1)3x +24≥2x -13-1,去分母,得3(3x +2)≥4(2x -1)-12,去括号,得9x +6≥8x -4-12,移项,得9x -8x ≥-4-12-6,合并同类项,得x ≥-22.(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),①12x -2(x -2)≤4+3x ,② 解①,得x <2,解②,得x ≥0.故不等式组的解集为0≤x <2.(3)3x -1-2x +1=6x 2-1, 去分母、去括号,得3x +3-2x +2=6,解得x =1,经检验x =1是增根,分式方程无解.19.解:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6=x +3-4x +3·2(x +3)(x -1)2 =2x -1,当x =2+1时,原式=22+1-1= 2. 20.证明:∵AB ∥CD ,∴∠BAC =∠DCA .∵AF =CE ,∴AF +EF =EF +CE ,即AE =CF .在△ABE 和△CDF 中,⎩⎨⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF (AAS).21.解:(1)设该商店第一次购进水果x 千克,则第二次购进这种水果2x 千克.由题意得1 000x +2=2 8002x ,解得x =200.经检验,x =200是所列分式方程的解.答:该商店第一次购进水果200千克.(2)设最初每千克水果的标价是 y 元,则(200+200×2-50)·y +50×12y -1 000-2800≥3 100,解得y ≥12.答:最初每千克水果的标价至少是12元.22.解:(1)∵AB =AC ,∠A =36°,∴∠ABC =∠C =12×(180°-36°)=72°.∵DE 垂直平分AB ,∴AD =BD ,∴∠DBA =∠A =36°,∴∠DBC =∠ABC -∠ABD =36°.(2)由(1)得∠DBC =36°,∠C =72°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC ,∴BC =BD .∵AD =BD ,∴AD =BC =4.23.(1)证明:∵点Q 是BC 边上的中点,∴BQ =CQ .∵BN ⊥l ,CM ⊥l ,∴∠BNQ =∠CM Q =90°.又∵∠BQN =∠CQM ,∴△BQN ≌△CQM (AAS).∴QM =QN .(2)解:仍然成立.证明:延长NQ 交CM 于E ,∵点Q 是BC 边上的中点,∴BQ =CQ ,∵BN ⊥l ,CM ⊥l ,∴BN ∥CM ,∴∠NBQ =∠ECQ ,又∵∠BQN =∠CQE ,∴△BQN ≌△CQE (ASA).∴QN =QE .∵CM ⊥l ,∴∠NME =90°,∴QM =QN .24.(1)证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:成立.证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC +∠CBD =∠DBE +∠CBD ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(3)证明:如图,延长BE 至H 使EH =BE ,连接CH ,DH .∵BE =EH ,DE ⊥BH ,∴DB =DH ,∠BDE =∠HDE =30°,∴∠BDH =60°,∴△DBH 是等边三角形,∴BD =BH ,∠DBH =60°.∵△ABC 是等边三角形,∴∠ABC =60°,AB =CB .∴∠ABC +∠CBD =∠DBH +∠CBD ,即∠ABD =∠CBH .在△ABD 和△CBH 中,⎩⎨⎧AB =CB ,∠ABD =∠CBH ,BD =BH ,∴△ABD ≌△CBH (SAS),∴AD =CH ,∠A =∠HCB =∠ABC =60°,∴BF ∥CH ,∴∠F =∠ECH ,在△EBF 和△EHC 中,⎩⎨⎧∠BEF =∠HEC ,∠F =∠ECH ,BE =HE ,∴△EBF ≌△EHC (AAS),∴BF =CH ,∴AD =BF .湘教版八年级数学上册期末试卷2一、选择题(每题3分,共30分)1.若分式x 2-9x -3的值为0,则x 的值是( ) A .3 B .-3 C .±3 D .92.下列长度的三条线段能围成三角形的是( )A .1,2,3.5B .4,5,9C .20,15,8D .5,15,83.要使式子1+2x x -2有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x ≥12且x ≠2 D .x ≥-12且x ≠24.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +15.如图,已知∠1=∠2,AC =AD ,添加下列条件:①AB =AE ;②BC =DE ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -507.不等式x -72+1<3x -22的负整数解有( ) A .1个 B .2个 C .3个 D .4个8.已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-59.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( ) A.13 B.12 C.23 D .不能确定10.如图,E ,D 分别是△ABC 的边AC ,BC 上的点,若AB =AC ,AD =AE ,则( )A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值二、填空题(每题3分,共24分)11.计算:45-25×50=________. 12.⎝ ⎛⎭⎪⎫-120=________,⎝ ⎛⎭⎪⎫13-1=________,用科学记数法表示-0.000 005 03为__________.13.关于x 的不等式组⎩⎨⎧x >m -1,x >m +2的解集是x >-1,则m =________. 14.若317-a 与33a -1互为相反数,则3a 的值为________.15.若关于x 的分式方程3-2kx x -3=23-x-2有增根,则k =________. 16.等腰三角形的顶角大于90°,如果过它顶角的顶点作一直线能将它分成两个等腰三角形,则顶角的度数一定是________.17.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于点E ,垂足为点D .若△ABC 的周长为28,BC =8,则△BCE 的周长为________.18.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(20,21题每题6分,24,25题每题12分,其余每题10分,共66分)19.(1)计算:212+3113-513-2348;(2)已知x =2+3,y =2-3,求代数式⎝ ⎛⎭⎪⎫x +y x -y -x -y x +y ·⎝ ⎛⎭⎪⎫1x 2-1y 2的值.20.解分式方程:(1)2-x 3+x =12+1x +3; (2)2x +9x +3-1x -3=5-3x -2x .21.已知x =1是不等式组⎩⎪⎨⎪⎧3x -52≤x -2a ,3(x -a )<4(x +2)-5的解,求a 的取值范围.22.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.23.如图,AD是△ABC的角平分线.(1)若AB=AC+CD,求证:∠ACB=2∠B;(2)当∠ACB=2∠B时,AC+CD与AB的数量关系如何?说说你的理由.24.某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?25.已知△ABC和△DEF均为等边三角形,点D在△ABC的边AB上,点F在直线AC上;(1)若点C和点F重合(如图①),求证:AE∥BC;(2)若点F在AC的延长线上(如图②),(1)中的结论还能成立吗?给出你的结论并证明.答案一、1.B2.C3.D点拨:根据二次根式和分式有意义的条件,即被开方数大于或等于0,分母不等于0,可以得到⎩⎨⎧1+2x ≥0,x -2≠0,解得x ≥-12且x ≠2.故选D. 4.A 点拨:原式=a +1a (a -1)·(a -1)2(a +1)(a -1)=1a . 5.B 6.A 7.A8.A 点拨:⎝ ⎛⎭⎪⎫-33×(-221)=233×21=27=28,因为25<28<36,所以5<28<6,故选A.9.B 点拨:过P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ .又∵PF ∥CQ ,∴易得△PFD ≌△QCD .∴DF =DC .∵PE ⊥AF ,且PF =P A ,∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12.10.B 点拨:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED =∠γ=∠CDE +∠C .由∠ADC =∠ADE +∠CDE = ∠CDE +∠C +∠CDE =2∠CDE +∠C =∠B +∠BAD ,可得2∠CDE = ∠BAD =∠α,∴∠CDE =12∠α.故当∠α为定值时,∠CDE 也为定值.二、11. 512.1;3;-5.03×10-613.-3 点拨:因为m +2>m -1,所以m +2=-1,所以m =-3.14.-2 点拨:由题知317-a =-33a -1,可得17-a =-(3a -1),∴2a =-16,∴a =-8.∴3a =-2.15.56 点拨:因为原分式方程有增根,所以增根为x =3.原分式方程化为整式方程为3-2kx =-2-2(x -3),把x =3代入,解得k =56.16.108° 点拨:在△ABC 中,设∠B =∠C =α.如图①,若AC =CD ,DA =DB ,则∠DAB =α.∴∠CDA =2α=∠CAD ,∴∠BAC =3α.由α+α+3α=180°,得α=36°,∴∠BAC =3α=108°.如图②,若AD =CD ,AD =BD ,则∠BAD =∠CAD =α,∴4α=180°,∴α=45°,∴∠BAC =2α=90°,不合题意.17.18 点拨:因为△ABC 的周长为AB +AC +BC =AB +AC +8=28,AB =AC ,所以AB =AC =10.又因为DE 垂直平分AB ,所以AE =BE .所以△BCE 的周长为BE +EC +BC =AE +EC +BC =AC +BC =10+8=18. 18.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.①∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°, 解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、19.解:(1)原式=43+3×233-433-23×43=43+23-43=2 3.(2)原式=(x +y )2-(x -y )2(x +y )(x -y )·y 2-x 2x 2y 2=4xy -(x +y )(y -x )·(y +x )(y -x )x 2y 2=-4xy . 当x =2+3,y =2-3时,原式=-44-3=-4. 20.解:(1)方程两边同乘2(x +3),得2(2-x )=x +3+2.整理,得-3x =1,所以x =-13.经检验,x =-13是原分式方程的解.(2)方程两边同乘x (x +3)(x -3),得(2x +9)(x -3)x -x (x +3)=5x (x +3)(x -3)-(3x -2)(x +3)(x -3).整理,得-12x =-18,所以x =32.经检验,x =32是原分式方程的解.21.解:∵x =1是原不等式组的解,∴⎩⎪⎨⎪⎧3-52≤1-2a ,①3(1-a )<4×(1+2)-5,② 解不等式①,得a≤1,解不等式②,得a >-43.故a 的取值范围为-43<a ≤1.22.(1)证明:∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE.(2)解:BD ⊥CE .理由如下:由(1)可知△BAD ≌△CAE ,∴∠ABD =∠ACE .∵∠BAC =90°,∴∠ABD +∠AFB =90°.又∵∠AFB =∠DFC ,∴∠ACE +∠DFC =90°,∴∠BDC =90°,即BD ⊥CE .23.(1)证明:延长A C 至E ,使CE =CD ,连接DE .∵AB =AC +CD ,∴AB =AE .∵AD 平分∠BAC ,∴∠BAD =∠EAD .在△BAD 与△EAD 中,⎩⎨⎧AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△BAD ≌△EAD .∴∠B =∠E.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠ACB =2∠E =2∠B .(2)解:AB =AC +CD .理由:在AC 的延长线上取点F ,使CF =CD ,连接DF . ∴∠CDF =∠F ,又∵∠ACB =∠CDF +∠F ,∴∠ACB =2∠F .∵∠ACB =2∠B ,∴∠B =∠F .在△BAD 与△F AD 中,⎩⎨⎧∠B =∠F ,∠BAD =∠F AD (角平分线的定义),AD =AD ,∴△BAD ≌△F AD .∴AB =AF =AC +CF =AC +CD .24.解:(1)设第一批这种衬衫购进了x 件,则第二批购进了12x 件.根据题意,可得4 500x -10=2 10012x,解得x =30,经检验,x =30是原方程的根,且符合题意.∴12x =12×30=15(件).答:两次分别购进这种衬衫30件,15件.(2)设第二批衬衫每件的售价为m 元.第一批衬衫每件的进价为4 500÷30=150(元),第二批衬衫每件的进价为150-10=140(元),∴(200-150)×30+15(m -140)≥1 950,解得m ≥170.答:第二批衬衫每件至少要售170元.25.(1)证明:∵△ABC 与△CDE 均为等边三角形,∴BC =AC ,DC =EC ,∠B =∠BCA =∠DCE =60°,∴∠BCD =∠ACE .易得△BCD ≌△ACE ,∴∠B =∠EAC .又∵∠B =∠ACB ,∴∠EAC =∠ACB .∴AE ∥BC .(2)解:若点F 在AC 的延长线上,(1)中的结论仍然成立,即AE ∥BC . 证明:过点F 作FM ∥BC 交AB 的延长线于点M .∵△ABC 为等边三角形,∴△AFM 也是等边三角形.∴∠M =∠AFM =60°.同(1)可证△FDM ≌△FEA ,∴∠EAF=∠M=60°. ∴∠AFM=∠EAF.∴AE∥FM.又∵FM∥BC,∴AE∥BC.。
湘教版八年级数学上册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.化简二次根式 22a a +-) A 2a --B 2a --C 2a -D 2a -4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解 6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1 8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO 的周长是()A.10 B.14 C.20 D.22二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.因式分解:a2-9=_____________.4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。
湘教版八年级数学上册期末测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10 B.12 C.16 D.187.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b+的结果是________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=________.6.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2450x x--=;(2)22210x x--=.2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=.3.解不等式组:3221152x xx x-<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65∠=︒,求FGC∠的度数.ACB∠=︒,28ABC6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、A5、C6、C7、D8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、13、3m ≤.4、135°5、26、32°三、解答题(本大题共6小题,共72分)1、(1)x 1=5,x 2=-1;(2)121313,22x x +-==. 2、3x ,3 3、31x -<<4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)略;(2)78°.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
湘教版八年级数学上册期末考试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩(2)410211x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 13分,求3a-b+c 的平方根.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE . 1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、B5、D6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、-53、14、﹣2<x<25、26、40°三、解答题(本大题共6小题,共72分)1、(1)42xy=⎧⎨=⎩;(2)61xy=⎧⎨=-⎩.2、11a-,1.3、3a-b+c的平方根是±4.4、()1略;()2BEF67.5∠=.5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
湘教版数学八年级上册期末测试卷(一)(时间:120分分值:150分)一、选择题:(每小题4分,共40分)1.(4分)若,则2a+b﹣c等于()A.0 B.1 C.2 D.32.(4分)已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙 B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲3.(4分)解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4 B.6x﹣4x<﹣4+3 C.2x<﹣1 D.4.(4分)不等式的正整数解有()A.2个B.3个C.4个D.5个5.(4分)如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<16.(4分)的相反数是()A.﹣B.C.﹣D.7.(4分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.(4分)已知a<b,则化简二次根式的正确结果是()A.B.C.D.9.(4分)已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.(4分)如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题:(每小题4分,共32分)11.(4分)用不等式表示“6与x的3倍的和大于15”.12.(4分)不等式的最大正整数解是,最小正整数解是.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.(4分)比较大小:﹣3﹣2.16.(4分)如果最简二次根式与是同类二次根式,那么a=.17.(4分)与的关系是.18.(4分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题:(共6小题,共78分)19.(32分)计算:(1);(2);(3);(4).20.(8分)x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.21.(10分)先化简,再求值:(﹣)÷,其中x=2.22.(10分)解方程组,并求的值.23.(10分)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.(8分)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.参考答案:一、选择题。
2024年湘教版数学初二上学期期末模拟试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8cm,宽是5cm,那么它的面积是()平方厘米。
A、40B、32C、30D、252、下列数中,哪个数是负数?()A、-3B、0C、3D、-53、下列四个命题中,正确的个数是:A、2B、3C、4D、53.三角形的三条中线相交于一点。
(正确)4.在同一平面内,垂直于同一条直线的两条直线互相平行。
(正确)5.三角形的一个外角等于不相邻的两个内角之和。
(正确)4、一个等腰三角形的两边长分别为4和8,那么这个等腰三角形的周长为:A、12B、20C、16D、12或205、小明一家去公园游玩,他们乘坐公交车去,票价是每人3元,回家时改乘出租车,出租车起步价是7元,之后每行驶1公里收费1.5元。
若他们往返共行驶了5公里,则他们回家的打车费用是:A. 12元B. 15元C. 17.5元D. 20元6、一个二次函数的图象开口向上,顶点坐标为(-2,1),且过点(1,4)和(4,0)。
则该二次函数的解析式是:A. y = -(x+2)² + 1B. y = (x+2)² + 1C. y = (x-2)² - 1D. y = -(x-2)² + 17、已知函数(y=2x2−4x+3)的图像的顶点坐标是:A. (1, 1)B. (2, 1)C. (1, -1)D. (2, -1)8、在等腰三角形(ABC)中,底边(BC)的长度为 6,腰(AB=AC=8)。
则该三角形的面积(S)为:A. 18B. 24C. 30D. 369、计算:(√16−√9)。
A、1B、2C、3D、4 10、下列哪个图形不是中心对称图形?A、正方形B、圆C、等边三角形D、菱形二、填空题(本大题有5小题,每小题3分,共15分)1、小明用直尺和量角器画了一个直角三角形,测得其两个锐角的度数分别为45°和x°。
湘教版八年级上册数学期末考试试卷一、单选题1.在实数﹣16,0,3.14中,无理数是()A .﹣16B .0CD .3.142.如果分式2+a a b中的a ,b 都同时扩大2倍,那么该分式的值()A .不变B .缩小2倍C .扩大2倍D .扩大4倍3在实数范围内有意义,则x 的取值范围是()A .x≥-3B .x >3C .x≥3D .x≤34.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是()A .B .C .D .5.据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t (℃)的变化范围是()A .t >21B .t <32C .21<t <32D .21≤t≤326.若不等式组1x x m<⎧⎨<⎩的解为x <m ,则m 的取值范围为()A .m≤1B .m=1C .m≥1D .m <17.下列说法错误的是()A .1的平方根是1B .1-的立方根是1-C是2的平方根D .8.如图,AD 是△ABC 的中线,△ABD 比△ACD 的周长大6cm ,则AB 与AC 的差为()A .2cmB .3cmC .6cmD .12cm9.若a 、b 是等腰三角形ABC 60b -=,则ABC 的周长为()A .12B .12和15C .9和12D .1510.16的平方根是()A .4±B .4C .2±D .2二、填空题11.当x=1时,分式2xx +的值是_____.12.如图,小雨把不等式3x+1>2(x ﹣1)的解集表示在数轴上,则阴影部分盖住的数字是_____.13.如图,两个三角形全等,则∠α的度数是____14.比较大小填写“<”或“>”).15.如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是_____(只写一个条件即可).16=______.17.如图,AB ∥CD ,AD ∥BC ,OE=OF ,图中全等三角形共有_____对.18===,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题19.计算222-20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围.21.如图,在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =28°,且AD =AE ,求∠EDC 的度数.22.已知T =22+11+211x x x x x x ⎛⎫-÷ ⎪---⎝⎭,(1)化简T ;(2)若正方形ABCD 的边长为x ,且它的面积为4,求T 的值.23.如图,四边形ABCD 中,AB ∥CD ,∠A =60°,(1)作∠ADC 的角平分线DE ,交AB 于点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)判断△ADE 是什么三角形,并说明理由;24.某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?25这样的式子,还需做进一步的化简:.①3.②21=)()22211--﹣1.③以上化简的步骤叫做分母有理化.21-111.④(1(I;(II=________;(2......+26.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.参考答案1.C【分析】无限不循环小数就是无理数,根据定义可得答案.【详解】是无理数.故选C.【点睛】本题考查的是无理数的认识,掌握无理数的定义即表现形式是解题关键.2.C【分析】依题意分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可.【详解】分式2aa b⎛⎫⎪+⎝⎭中的a、b都同时扩大2倍,∴()22 2222a aa b a b=++,∴该分式的值扩大2倍.故选:C.【点睛】本题考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.C【详解】由题意得x-3≥0,即x≥3;故当x≥3在实数范围内有意义;故选C.4.C【分析】写出不等式解集,然后在数轴上表示出来.【详解】不等式组的解集为24x <≤∴答案选C.【点睛】本题主要考查了不等式在数轴上的表示,要注意实心与空心圆点的区别.5.D 【分析】气温变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温,根据题意可直接写出结果.【详解】大田县的最高气温是32℃,最低气温是21℃,所以当天大田县气温的变化范围为21≤t≤32.所以答案选D.【点睛】本题主要考查了用字母表示数,准确理解题意,理解当天气温变化范围为最低气温和最高高气温之间.6.A 【分析】根据题中不等式组的解,判断m 的范围.【详解】同小取最小,题中不等式组x<1,x<m解为x<m ,∴1m £.所以答案选A.【点睛】本题主要考查了一元一次不等式组的解,熟练掌握解不等式组是本题解题的关键.7.A 【分析】据平方根及立方根的定义对各选项分析判断后利用排除法即可得出答案.【详解】解:A 、1的平方根是±1,故本选项错误;B 、-1的立方根是-1,正确;C.是2的平方根,正确;D.故选:A .【点睛】本题考查了平方根立方根的定义,是基础题,比较简单.8.C 【分析】根据三角形的周长和中线的定义进行解题.【详解】∵AD 是△ABC 的中线,∴BD=BC.∴△ABD 比△ACD 的周长大6cm ,即AB 与AC 的差值为6cm .故选C .【点睛】本题考查了三角形的角平分线、中线和高,熟练掌握三角形是本题解题的关键.9.D 【分析】设等腰三角形ABC 的第三边长为c ,先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再根据三角形的三边关系定理、等腰三角形的定义可得出c 的值,然后利用三角形的周长公式即可得.【详解】设等腰三角形ABC 的第三边长为c ,由算术平方根的非负性、绝对值的非负性得:30a -=,60b -=,解得3,6a b ==,由三角形的三边关系定理得:6363c -<<+,即39c <<,ABC 是等腰三角形,6c b ∴==或3c a ==(不符39c <<,舍去),则ABC 的周长为36615a b c ++=++=,故选:D .【点睛】本题考查了三角形的三边关系定理、等腰三角形的定义、算术平方根的非负性、绝对值的非负性等知识点,熟练掌握等腰三角形的定义是解题关键.10.A 【分析】如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.【详解】解:16的平方根是4±.故选A .【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.11.13【分析】将1x =代入分式,按照分式要求的运算顺序计算可得.【详解】当1x =时,原式11123==+.故答案为:13.【点睛】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.12.-3【分析】按照去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集,即可求出阴影部分盖住的数字.【详解】∵3x +1>2(x ﹣1),∴3x+1>2x-2,∴3x-2x>-2-1,∴x>-3,∴阴影部分盖住的数字是-3.故答案为-3.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.13.50°【分析】根据全等三角形的对应角相等解答.【详解】解:∵两个三角形全等,∴∠α=50°,故答案为:50°.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.14.<.【分析】首先把两个数分别平方,然后比较平方的结果即可比较大小.【详解】∵27=,239=,且79<<,3故答案为<.【点睛】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.15.∠B=∠C (答案不唯一).【详解】由题意得,AE=AD ,∠A=∠A (公共角),可选择利用AAS 、SAS 、ASA 进行全等的判定,答案不唯一:添加,可由AAS 判定△ABE ≌△ACD ;添加AB=AC 或DB=EC 可由SAS 判定△ABE ≌△ACD ;添加∠ADC=∠AEB 或∠BDC=∠CEB ,可由ASA 判定△ABE ≌△ACD .16.3π-【分析】根据算术平方根的定义即可得.【详解】33ππ=-=-,故答案为:3π-.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题关键.17.有6对【详解】分析:在如上图形中可知相交的两直线和四边形的边长所组成的三角形全等,然后得到结论,再找其它的三角形由易到难.详解:∵AD ∥BC ,OE=OF ,∴∠FAC=∠BCA ,又∠AOF=∠COE ,∴△AFO ≌△CEO ,∴AO=CO ,进一步可得△AOD ≌△COB ,△FOD ≌△EOB ,△ACB ≌△ACD ,△ABD ≌△DCB ,△AOB ≌△COD 共有6对.故答案为6点睛:考查全等三角形的判定,做题时要从已知开始思考结合全等的判定方法由易到难找寻,注意顺序别遗漏.18(1)n n =+≥【分析】=(2=+(3=+则将此规律用含自然数n(n≥1)(1)n n =+≥【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.-6【分析】先计算乘方,算术平方根,再计算乘最后计算加减即可.【详解】解:原式4423=-+-⨯6=-.【点睛】本题考查实数混合运算,掌握实数混合运算,会计算乘方,算术平方根是解题关键.20.43a -<≤-【详解】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.21.14°【分析】由条件可先求得∠DAE ,再根据等腰三角形的性质可求得∠ADC ,则可求得∠EDC .【详解】∵AB =AC ,AD ⊥BC ,∴∠DAE =∠BAD =28°,∵AD =AE ,∴∠ADE =12(180°﹣∠DAE )=12×(180°﹣28°)=76°,∴∠EDC =90°﹣∠ADE =90°﹣76°=14°【点睛】本题考查了等腰三角形的高、中线和角平分线三线合一的性质,以及角的度量运算.得到∠DAE =∠BAD 是正确解答本题的关键.22.(1)T =22x x +;(2)T =1.【分析】(1)通过通分将分式化简,并将除法转化成乘法,再通过约分化简即可;(2)根据面积公式计算出x 的值,再代入(1)即可.【详解】解:(1)T =()()()()()11111112x x x x x x x x x ⎡⎤-+++⨯⎢⎥+-+-+⎣⎦=()1212x x x x -⨯-+=2 2 x x+(2)∵正方形ABCD的边长为x,且它的面积为4,x+2≠0∴x=2∴T=22xx+=22122⨯=+【点睛】本题主要考查同学们对化简知识的掌握运用,解答本题的关键是要求同学们把括号里的分数通分计算后灵活与下一个数相乘,约分后就得到最简的式子.23.(1)作图见解析;(2)△ADE是等边三角形;理由见解析.【分析】(1)根据角平分线的作法作出图形即可;(2)由角平分线定义,平行线的性质,得到∠ADE=∠AED,则AD=AE,结合∠A=60°,即可得到答案.【详解】解:(1)如图所示,(2)△ADE是等边三角形;理由如下:∵DE平分∠ADC,∴∠ADE=∠CDE,∵AB//CD,∴∠CDE=∠AED,∴∠ADE=∠AED,∴AD=AE,∵∠A=60°,∴△ADE是等边三角形;【点睛】本题考查了角平分线的作法,等边三角形的判定,平行线的性质,解题的关键是熟练掌握所学的知识,正确的作出图形进行分析.24.30天【分析】设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工,依题意,得:1551511.5x x ++=,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.25.(1)(I (II (2))112.【分析】(1)根据提供的方法进行化简即可;(2)先分母有理化,然后合并即可.【详解】解:(1)(I==;(II=(2......+......1=......2222++++1=......22222222-+-++-=12=)112.【点睛】本题考查了分母有理化在二次根式混合运算中的应用,读懂阅读材料中所展示的方法是解答此题的关键.26.(1)(10﹣2t );(2)t =2.5;(3)存在;v 的值为2.4或2【分析】(1)根据题意求出BP ,计算即可;(2)根据全等三角形的判定定理解答;(3)分△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,根据全等三角形的性质解答.【详解】解:(1)∵点P 的速度是2c m/s ,∴ts 后BP =2tcm ,∴PC=BC−BP =(10−2t )cm ,故答案为:(10﹣2t )(2)当t=2.5时,△ABP ≌△DCP ,∵当t =2.5时,BP=CP =5,在△ABP 和△DCP 中,AB DC B C BP CP =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△DCP ;(3)∵∠B=∠C =90°,∴当AB=PC,BP=CQ 时,△ABP ≌△PCQ ,∴10−2t =6,2t=vt ,解得,t=2,v=2,当AB=QC,BP=CP时,△ABP≌△QCP,此时,点P为BC的中点,点Q与点D重合,∴2t=5,vt=6,解得,t=2.5,v=2.4,综上所述,当v=1或v=2.4时,△ABP≌△PCQ全等.【点睛】本题考查的是矩形的性质、全等三角形的判定和性质,掌握矩形的对边相等、四个角都是直角以及全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。
湘教版八年级数学上册期末测试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、31 3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .2 5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是________.2.因式分解:2218x -=__________.3.若m+1m =3,则m 2+21m=________. 4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:21(1)11x x x ÷+--,其中21x =-.3.解不等式组:3221152x x x x -<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).(1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x => 的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、B7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、2(x +3)(x ﹣3).3、74、2≤a+2b ≤5.5、406、45︒三、解答题(本大题共6小题,共72分)1、x=12、11x +,23、31x -<<4、(1)略(2)略5、(1) k 的值为3,m 的值为1;(2)0<n ≤1或n ≥3.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
【湘教版】八年级数学上期末考试试卷(含答案)一、选择题(每小题3分,共30分)1.将分式2x x y+中的x 、y 的值同时扩大为原来的2倍,则分式的值( ) A.扩大为原来的2倍 B.缩小到原来的21 C.保持不变 D.无法确定 2、. 如图, 数轴上表示的是下列哪个不等式组的解集( ) A .53x x ≥-⎧⎨>-⎩ B .53x x >-⎧⎨≥-⎩C .53x x <⎧⎨<-⎩D .53x x <⎧⎨>-⎩ 3.下列说法,正确的是( )A 、9的算术平方根是±3。
B 、125.0的立方根是5.0±C 、无限小数是无理数,无理数也是无限小数D 、一个无理数和一个有理数之积为无理数4. 是二次根式,那么x 应满足的条件是( )A.8x ≠B.8x ≤C.8x <D.0x >且8x ≠5.下列说法,正确的是( )A 、零不存在算术平方根B 、一个数的算术平根一定是正数C 、一个数的立方根一定比这个数小D 、一个非零数的立方根仍是一个非零数6.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2B.4C.6D.8 7.若0<x <1,那么2)1(1-++x x 的化简结果是( )A 、x 2B 、2C 、0D 、22+x8.下列各结论中,正确的是( )A 、6)6(2-=--B 、9)3(2=-C 、16)16(2±=-D 、2516)2516(2=-- 9.边长为a cm 的正方形的面积与长、宽分别为8cm 、4cm 的长方形的面积相等,则a 的值在( )A 、2与3之间B 、3与4之间C 、4与5之间D 、5与6之间10.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为( )A.35°B.45°C.55°D.60°二、填空题(每小题3分,共30分) 11.2)5(-的平方根是 .12.计算:2223362cab b c b a ÷= . 13. 计算22(1)b a a b a b÷---的结果是 . 14.在722,4,39, 141414.3-,π-, 2323323332.0,023⎪⎪⎭⎫ ⎝⎛中无理数是 . 15. 当代数式2x -3x 的值大于10时,x 的取值范围是________. 16. 不等式组 110320x x ⎧+>⎪⎨⎪-⎩,≥的解集是 .17. 关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 .18.若42-a 与13-a 是同一个数的平方根,则a 的值为 .19. 在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .20.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是_____度.三、解答题(本大题共6小题,共60分)21.化简:(12分)(1)54 (2))32)(23(+-+(3)10101540+- (4)2021236)2009(23-⎪⎭⎫ ⎝⎛--⨯+-+-π 22. (6分)解不等式11237x x --≤,并把它的解集表示在数轴上. 23.(8分)已知A =222111x x x x x ++---. (1)化简A ;(2)当x 满足不等式组且x 为整数时,求A 的值.24.(8分)如图,在△ABC 中,∠ACB =90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE =EF ;(2)连接CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B =∠A +∠DGC .25.(5分) 小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?26. (5分)某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.27. (8分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+; ;23)23)(23(23231-=-+-=+25)25)(25(25251-=-+-=+. 试求:(1)671+的值; (2)17231+的值; (3)nn ++11(n 为正整数)的值. 28、(8分)如图,在△ABC 中,∠1=∠2,∠3=∠4,∠A=60°,求证:CD+BE=BC .第24题图参考答案一、1.A 2.B ;3、D ;4.B ;5、D ;6.B ;7、B ;8、A ;9、D ;10. C二、11. ±5; 12、 c b a 323 13.1a b- 14、π-, 2323323332.0; 15. 4x <-; 16. 32x -<≤; 17. 2k >;18、1;19. 4∶3;20. 60°三、21、(1);(2)1;(34)2-; 22.解:(1) A =11x - (2)不等式组的解集为:1≤x <3.∵ x 为整数,∴ x =1或2.∵ A =∴ x ≠1. 当x =2时,A =11x -=1. 23. 4x ≥,数轴表示略.24.证明:(1)∵ 点D 为边AB 的中点,DE ∥BC ,∴ AE =EC .∵ CF ∥AB ,∴ ∠A =∠2.在△ADE 和△CFE 中,∴ △ADE ≌△CFE (ASA),∴ DE =EF .(2)在Rt △ACB 中,∵ ∠ACB =90°,点D 为边AB 的中点,∴ CD =AD ,∴ ∠1=∠A . ∵ DG ⊥DC ,∴ ∠1+∠3=90°.又∵ ∠A +∠B =90°,∴ ∠B =∠3.∵ CF ∥AB ,∴ ∠2=∠A .∵ ∠3=∠2+∠DGC ,∴ ∠B =∠A +∠DGC .25. 解:设小颖家每月用水量x 立方米. 则1.85(5)215x ⨯+-⨯≥.解得8x ≥.答:小颖家每月最少用水量为8立方米.26. 解:由租用甲种汽车x 辆,则租用乙种汽车(8x -)辆.由题意得:290,100.4030(8)1020(8)x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤. 即共有2种租车方案: 第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.27. (1)671+=67-;(2)17231+=1723-; (3)nn ++11=n n -+1 . 28、证明:在BC 上截取BF=BE,连接IF .∵BI=BI,∠1=∠2,BF=BE,∴△BFI ≌△BEI,∴∠5=∠6.∵∠1=∠2.∠3=∠4,∠A=60°,∴∠BIC=120°,∴∠5=60°.∴∠7=∠5=60°,∠6=∠5=60°,∠8=120°-60°=60°,∴∠7=∠8.∵∠3=∠4,CI=CI,∠7=∠8,∴△IDC ≌△IFC,∴CD=CF .∴CD+BE=CF+BF,即CD+BE=BC .。
八年级上期末数学教课目的检测试卷学校姓名 准考据号 _______________一、选择题:本大题共10 小题,每题3 分,共 30 分 . 在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.计算 (2) 2 的结果是()A . 2B . 2C . 4D .2. 分式x2 存心义,则 x 的取值范围为( )x 2A . x2 B . x 2C . x 2D .3.不等式 2x2 6 的解集在数轴上表示正确的选项是()4x 2-10123-10123-10123 -101234. 若一个三角形三个内角度数的比为B 2︰ 3︰ 4,那么这个三角形的一个内角的度数是()AC DA .20B. 40C. 90D. 1205.在实数 0,-3 ,2(),|- 2|中,最小的是32A . 0B .-3C .D .|- 2|3. . .6.如图, ABAC ,要说明 ADCAEB ,需增添的条件不行能是 A ( )A .B CB. ADAE DEC . ADC AEBD. DCBE1 11,则ab的值是(F7. 已知)BCab 2a bA .1 B.-1C.2D.-222A8. 如图,是一块三角形的草坪,现要在草坪上建一凉亭供大家歇息,要使凉亭到草坪三条边的距离相等,凉亭的地点应选在()A . △ ABC 三条角均分线的交点B. △ ABC 三边的中垂线的交点BCC . △ ABC 的三条中线的交点D . △ABC 三条高所在直线的交点9. 某市出租车的收费标准:起步价7 元(即行驶距离不超出3 千米都需付 7 元车资) ,超出 3 千米后,每增添1 千米,加收 2.4 元(不足 1 千米按 1 千米计) .小王乘出租车从甲地到乙地共付车资 19 元,那么甲地到乙地行程的最大值是()A.5 千米B.7 千米C.8 千米D.15 千米10 .我们常用的数是十进制数,计算机程序使用的是二进制数 (只有数码 0和 1),它们二者之间能够相互换算,如将 (101) 2,(1011) 2 换算成十进制数应为:(101) 21 2 2021120401 5 ;(1011)2123022121120802111 .按此方式,将二进制(1001) 2 换算成十进制数和将十进制数13转变为二进制的结果分别为( )A.9,(1101)2B. 9,(1110)2C. 17,(1101)2D. 17,(1110)2二、填空题 :(本大题共8 小题,每题 3 分,共 24分 .请把答案填在题中横线上 .)11.使x 3存心义的 x 的取值范围是.x212. x与 5 的差不小于3,用不等式表示为_____________ .13.计算:-18×1= ________.24314.命题“全等三角形的面积相等”的抗命题是.15. 以长为 13cm、 10cm、 5cm、 7cm 的四条线段中的三条线段为边,可画出三角形的个数是.16.如图,点 D、E 分别在线段 AB,AC上, AE=AD,不增添新的线段和字母,要使△ ABE≌△ ACD,需增添的一个条件是(只写一个条件即可).16 .假如对于x 的方程 3( x4)2a 5的解大于对于(4a1)x a (3x4)x 的方程43的解,则 a 的取值范围为.17 .以下图,E F90,B C, AE AF ,结论:① EM FN ;② CD DN ;③ FAN EAM ;④△ ACN≌△ ABM .此中正确的有(注:把你以为正确的答案序号都写上)18 .某校数学课外小组利用数轴为学校门口的一条马路设计植树方案以下:第k 棵树栽种在点x k处,此中 x1 1 ,当 k ≥ 2时, x k x k 1T k 1T k 2, T (a)表示非负实55数 a 的整数部分,比如T (2.6) 2 , T (0.2)0.按此方案,第6棵树栽种点x6为;第 2011棵树栽种点x2011为.三、计算题 : 本大题共18 分.计算应有演算步骤.19 .计算:(每题 4 分,共8 分)13 27;1(1)12 6(2)(464)22.3220 . 解以下不等式(每题3 分,共 6 分)( 1) 10 4( x 4) 2( x 1);( 2)2 x 2x 1 2 .232x 6 6 2x21 . ( 本小题满分 4 分 ) 求不等式组2x3 x 的整数解 .1 2四、解答题 : 本大题共 5 小题,共 30 分 . 解答应写出文字说明、证明过程或演算步骤.22 .先化简,再求值 (本小题满分 5 分 )x ( x1- 2) ,此中 x2 .x 2 1x23 . ( 本小题满分 6 分 )为了充足保护乘客的安全,从 2011 年 8 月 16 日起,部分高铁推行了不一样程度降速. 京沪高铁全长1400 km ,均匀速度降低了1,行驶的时间比本来增添了40 分钟,求京沪高铁降速后的速度.724. ( 本小题满分6 分 )小明同学准备暑期和爸爸妈妈去香港迪士尼和西安世界园艺展览会进行为期8 天的旅行,他们先乘飞机从北京到香港,每人票价 2000 元,再乘飞机从香港到西安,每人票价1400 元,最后从西安坐火车回到北京,三人火车票共1400 元 . 若在香港、西安每日三人的基本花费 (生活费、住宿费、交通费及各种门票)共分别为 1200 元、 800 元, 求小明一家在西安起码旅行几日总花费不会超出旅行总估算20000元?25 . ( 本小题满分 6 分 )如图,( 1)要使BACABD .OC OD ,能够增添的条件为:或;(写出 2 个切合题意的条件即可)( 2)请选择 (1)....C中你所增添的一个条件,利用全等D证明 OC OD .O26 . ( 本小题满分 7 分 )AB已知:如图 MON 90 ,与点 O 不重合的两点 A 、B 分别在 OM B、 ON 上, BE 均分 ABN ,BE 所在的直线与OAB 的均分线所在的直线订交于点C .( 1) 当点 A 、 B 分别在射线 OM 、 ON 上,且 BAO 45 时,求 ACB 的度数;( 2) 当点 A 、 B 分别在直线 OM 、 ON 上的运动时,ACB 的大小能否发生变化 ? 若不变,请给出证明;若发生变化,恳求出ACB 的范围.NE八年级上数学期末教课目的检测试卷BCO AM初二数学参照答案3301.A2.C3.A4.B5.B6.D7.D8.B9.C 10.A32411.x312.15. 316.x 5 313. 914.a717.18. 2 403.181812 1820.36110 4( x 4) 2( x1)10 4x 16 2x 2.16x28.21 x14314x.3322x2x1 2 .233(2x)2(2 x1)12.163x4x212.2x20x20.32x662x①2113x②2x2. x 3.1x 1.2 31x 3.332x 6 6 2x2x3 x 12.4122822 .x ( x 1 2)x 2 .x 2 1 x1x(x1 2)x 21 xx x 1 2xx 21 x (1)x( x 1)x21 x (3)x(x 1) 1 .4( x 1)( x 1)x.....x 1x211. (5)x 12x(x1 2)x 2 1x x x 12x (1)x 2 1xx 2 1xx 12x( x 1)( x 1)x(x (2)1)(x 1)x 12x ( x 1)( x 1)(x 1)(x 1).. .. .3x 11)1. (4)( x 1)( xx 1x21 1 (5)x 16x km / h23 .x km / h114001400 27x.363x7x 350 .5x3506x x0x 350.76350 300 km/ h7300km / h (6)24 .x8x.132000 3 1400 1400 800x 1200(8x)20000 .3x 3 .53 (6)25 .1.C D ABC BAD OAD OBCAC BD .2221 1 .2.AC BD OC=OD .:ABD BACCDABD BAC .3OAD BC D C .4A BAOD BOCAOD BOC .5OD OC .6.26.解:( 1)当BAO45 时,BDC45,9067.52CBO NBE 1(18045 )67.5,2ACB180267.545 . 1 分(2)①当点A在射线OM上时,点B在射线ON上时,如答图 2.NACB 为定值,且ACB45,证明以下:E方法一:NBA BOA OAB ,①B CEBA ACB BAC②NBA2EBA , AOB2BACO A M 将② 式两边乘以2,得NBA 2 ACB BAO③比较① 、③两式,得2 ACB BOA90 ,NACB45 .即ACB 的大小为必定值,不随点 A 、 B答图2 E的挪动而变化.3 分B方法二:CDO A M答图 3如答图 3,作ABO 的均分线交 AC 于点 D ,则有又由 BD 、 BE 分别是0BA 和∠NBA 的均分线知DB CE ,因此ACB BDA DBC 13590 45.即ACB 的大小为必定值,不随点 A 、B 的挪动而变化.3 分②当点 A 在射线 OM 的反向延伸线上,点 B 在射线 ON 上时,如答图 4,NEACB45.4分同①可求得B ③当点 A 在射线 OM 的反向延伸线上,点 B 在射线 ON 的反向延伸ACB 为定值,且ACB135 ,证明以下:∵ AC 、 BE 分别均分∠ OAB 、∠ ABN ,A O∴ BAC=1∠OAB,ABC=1∠OBA.NE22AO∵∠ MON =90 0.答图 4C∴∠ AOB ==900.在△ OAB 中B∠O AB +∠ OBA=180 0-∠ AOB=90 0,∴ CAB ABC=11答图 5 (∠ OAB+ ∠OBA)=×900=450.22在△ ABC 中∠ACB=180 0-( CAB ABC )= 1800-450= 1350.6分N④当点 A 在射线 OM 上,点 B 在射线 ON 的反向延伸线上时,如答图 6,同③可求得∠ ACB=135 0.7 分OC 综上所述,当点 A 、 B 分别在直线 OM 、 ON 上运动时,∠ ACB 的大小为450或 1350.B答图 6C线时,答图 5.MMEAM。
2017-2018学年八年级数学上期末模拟试题
一、选择题(每小题3分,共30分)
1.将分式2
x x y
+中的x 、y 的值同时扩大为原来的2倍,则分式的值( ) A.扩大为原来的2倍 B.缩小到原来的2
1 C.保持不变 D.无法确定 2、. 如图, 数轴上表示的是下列哪个不等式组的解集( ) A .53x x ≥-⎧⎨>-⎩ B .53x x >-⎧⎨≥-⎩
C .53x x <⎧⎨<-⎩
D .53x x <⎧⎨>-⎩ 3.下列说法,正确的是( )
A 、9的算术平方根是±3。
B 、125.0的立方根是5.0±
C 、无限小数是无理数,无理数也是无限小数
D 、一个无理数和一个有理数之积为无理数
4. 是二次根式,那么x 应满足的条件是( )
A.8x ≠
B.8x ≤
C.8x <
D.0x >且8x ≠
5.下列说法,正确的是( )
A 、零不存在算术平方根
B 、一个数的算术平根一定是正数
C 、一个数的立方根一定比这个数小
D 、一个非零数的立方根仍是一个非零数
6.如果一个三角形的两边长分别为2和4,则第三边长可能是( )
A.2
B.4
C.6
D.8
7.若0<x <1,那么2)1(1-++x x 的化简结果是( )
A 、x 2
B 、2
C 、0
D 、22+x
8.下列各结论中,正确的是( )
A 、6)6(2-=--
B 、9)3(2=-
C 、16)16(2±=-
D 、25
16)2516(2=-- 9.边长为a cm 的正方形的面积与长、宽分别为8cm 、4cm 的长方形的面积相等,则a 的值在( )
A 、2与3之间
B 、3与4之间
C 、4与5之间 之间
10.如图,在△ABC 中,AB =AC ,D 为BC 中点,
∠BAD =35°,则∠C 的度数为( )
A.35°
B.45°
C.55°
D.60°
二、填空题(每小题3分,共30分)
11.2)5(-的平方根是 .
12.计算:22
23362c
ab b c b a ÷= . 13. 计算22(1)b a a b a b
÷---的结果是 . 14.在722,4,39, 141414.3-,π-, 2323323332.0,023⎪⎪⎭
⎫ ⎝⎛中无理数是 .
15. 当代数式2
x -3x 的值大于10时,x 的取值范围是________. 16. 不等式组 110320
x x ⎧+>⎪⎨⎪-⎩,≥的解集是 .
17. 关于x 的方程x kx 21=-的解为正实数,则k
18.若42-a 与13-a 是同一个数的平方根,则a 19. 在△ABC 中,AB =4,AC =3,AD 是△ABC 之比是 .
20.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,
∠A =80°,∠B =40°,则∠ACE 的大小是_____度.
三、解答题(本大题共6小题,共60分)
21.化简:(12分)
(1)54 (2))32)(23(+-+
(3)10101540+- (4)2021236)2009(23-⎪⎭
⎫ ⎝⎛--⨯+-+-π 22. (6分)解不等式
11237
x x --≤,并把它的解集表示在数轴上. 23.(8分)已知A =222111
x x x x x ++---. (1)化简A ;
(2)当x 满足不等式组
且x 为整数时,求A 的值.
24.(8分)如图,在△ABC 中,∠ACB =90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .
(1)求证:DE =EF ;
(2)连接CD ,过点D 作DC 的垂线交CF 的延长线于点G ,
求证:∠B =∠A +∠DGC .
25.(5分) 小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月
用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?
26. (5分)某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.
27. (8分)阅读下面问题:
12)12)(12()12(12
11
-=-+-⨯=+; ;23)23)(23(232
31-=-+-=+25)
25)(25(2
5251
-=-+-=+. 试求:
(1)671+的值; (2)17
231+的值; (3)n
n ++11(n 为正整数)的值. 28、(8分)如图,在△ABC 中,∠1=∠2,∠3=∠4,∠A=60°,求证:CD+BE=BC .
第24题图
参考答案
一、1.A 2.B ;3、D ;4.B ;5、D ;6.B ;7、B ;8、A ;9、D ;10. C
二、11. ±5; 12、 c b a 323 13.1a b
- 14、π-, 2323323332.0; 15. 4x <-; 16. 32x -<≤; 17. 2k >;18、1;19. 4∶3;20. 60°
三、21、(1)2)1;(3;(4)2; 22.解:(1) A =11
x - (2)不等式组的解集为:1≤x <3.
∵ x 为整数,∴ x =1或2.∵ A =∴ x ≠1. 当x =2时,A =11
x -=1. 23. 4x ≥,数轴表示略.
24.证明:(1)∵ 点D 为边AB 的中点,DE ∥BC ,∴ AE =EC .
∵ CF ∥AB ,∴ ∠A =∠2.
在△ADE 和△CFE 中,∴ △ADE ≌△CFE (ASA),∴ DE =EF .
(2)在Rt △ACB 中,∵ ∠ACB =90°,点D 为边AB 的中点,∴ CD =AD ,∴ ∠1=∠A .
∵ DG ⊥DC ,∴ ∠1+∠3=90°.又∵ ∠A +∠B =90°,∴ ∠B =∠3.
∵ CF ∥AB ,∴ ∠2=∠A .∵ ∠3=∠2+∠DGC ,∴ ∠B =∠A +∠DGC .
25. 解:设小颖家每月用水量x 立方米. 则1.85(5)215x ⨯+-⨯≥.解得8x ≥.
答:小颖家每月最少用水量为8立方米.
26. 解:由租用甲种汽车x 辆,则租用乙种汽车(8x -)辆.
由题意得:290,100.4030(8)1020(8)x x x x +-⎧⎨+-⎩
≥≥ 解得:56x ≤≤. 即共有2种租车方案: 第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.
27. (1)671+=67-;(2)17
231+=1723-;
(3)n
n ++11=n n -+1 .
28、证明:在BC上截取BF=BE,连接IF.
∵BI=BI,∠1=∠2,BF=BE,
∴△BFI≌△BEI,∴∠5=∠6.
∵∠1=∠2.∠3=∠4,∠A=60°,
∴∠BIC=120°,∴∠5=60°.
∴∠7=∠5=60°,∠6=∠5=60°,∠8=120°-60°=60°,∴∠7=∠8.∵∠3=∠4,CI=CI,∠7=∠8,
∴△IDC≌△IFC,∴CD=CF.
∴CD+BE=CF+BF,即CD+BE=BC.。