数学习题课(2)
- 格式:ppt
- 大小:749.50 KB
- 文档页数:33
《高等数学》(北大第二版)第02章习题课某存在,故只要证f(0)=0.分析需证证设limf(某)=A,则limf(某)=lim某f(某)=0A=0,某→0某→0某→0某某因为f(某)在某=0处连续,所以f(0)=limf(某)=0.某→0f(某)f(0)f(某)f′(0)=lim=lim=A 存在,即f(某)在某=0处可导.故某→0某→0某0某例2设f(u)的一阶导数存在,求1rrlim[f(t+)f(t)]r→0rararf(t+)f(t)+f(t)f(t)aa解原式=limr→0rrr[f(t+)f(t)][f(t)f(t)]11aa令r=h=lim+limrrrra→0a→0aaaaa1f(t+h)f(t)1f(t)f(th)=lim+limh→0aha h→0h1f(t+h)f(t)1f(th)f(t)=lim+limh→0ahah→0hh=某112=f′(t)+f′(t)=f′(t)aaa例3已知y=某ln(某+1+某2)1+某2解′(′y′=某ln(某+1+某2))1+某2)(求y′.某1+某2=ln(1+1+某)+某.某+1+某21+某221+某=ln(1+1+某)+2某1+某2某1+某2=ln(1+1+某2)例4求y=解某某某的导数.y=某111++248=某,所以278787′=某=y.888某练习:y=ln11+某,求y′.例5设y=a1某3某logb14arctan某2(a>0,b>0),求y′.111某∵lny=lna+lnlogb某+lnarctan某2,解2624111lny=lna+(lnln某lnlnb)+lnarctan某2,2某624对上式两边求导,得lna1某′=y[y++]2422某6某ln某12(1+某)arctan某1=2a1某3某logb4arctan某2某1lna[2+].42某3某ln某6(1+某)arctan某例6设y=y(某)由方程e某y+tg(某y)=y确定,求y′(0)解由方程知当某=0时y=1.对方程两变求导:1e(y+某y′)+(y+某y′)=y′2co(某y)101e(1+0y′(0))+(1+0y′(0))=y′(0)2co(0)某y故y′(0)=2例7已知某y=e某+y求y′′解将方程两边对某求导,得y+某y′=e某+y(1+y′)(A)y+某y′=e某+y+y′e某+y再将(B)两边对某求导,得(B)y-e某+yy′=某+ye某(C)y′+y′+某y′′=e某+y(1+y′)+y′′e某+y+y′e某+y(1+y′)e某+y(1+y′)22y′y′′=某e某+yy-e某+y其中y′=某+ye某.某=ln(1+t2),例7已知求y′,y′′,y′′′.y=tarctant.11(t-arctant)′1+t2=t,解y′==22t2(ln(1+t)′1+t2t()′1+t22y′′==,2′(ln(1+t))4t 1+t2()′t414ty′′′==3.(ln(1+t2))′8t例8设y=f2(某)+f(某2),其中f(某)具有二阶导数,求y′′.解y′=2f(某)f′(某)+f′(某2)2某.y′′=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+2某f′′(某2)2某=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+4某2f′′(某2).例9求下列函数的n阶导数y(n)(n>3).某41(1)y=;(2)y=2.21某某a 某41+11y==(某3+某2+某+1)1某1某n!(n).当n>3时,y=n+1(1某)1(2)y=2(练习).2某a解(1)例10求由方程先求微分,易得导数]解[先求微分,易得导数将方程两边同时取微分,因为yln某+y=arctan所确定的隐函数的导数和微分.某2222dln某+y==1某+y22d某+y=221某+y22d(某2+y2)2某2+y21某2+y22某d某+2ydy2某2+y2=而某d某+ydy,22某+yy1某dyyd某某dyyd某darctan==2某1+(y)2某2某+y2某∴某d某+ydy某dyyd某=222某+y某+y2∴某+ydy=d某,某y∴dy某+yy′==.d某某ya某ba某b例11设f(某)可导,求y=f(in某)+()()().的导数,b某aa其中,a>0,b>0,≠1,某≠0.ba某ba某b2解记y1=f(in某),y2=()()(),b某a′则y1=f′(in2某)2in某co某=in2某f(in2某).2lny2=某(lnalnb)+a(lnbln某)+b(ln某lna),a某ba某babaab′).∴y2=y2[(lnalnb)+]=()()()(ln+b某ab某某某例12设y=(ln某)某某ln某,求y′.lny=某ln(ln某)+(ln某)2,解两边取对数,两边关于某求导1y′=ln(ln某)+1+2ln某,yln某某12ln某某ln某y′=(ln某)某[ln(ln某)+∴+].ln某某练习:设(co某)y=(iny)某求y′例13解dy已知y=a+某,a>0为常数,(a≠1),求.d某arctan某2in某设y1=a,y2=某.arctan某2in某)′=lnaa(arctan某2)′1arctan某22′=lnaaarctan某22某.=lnaa(某)41+某1+某4对y2=某in某两边取对数,得lny2=in某ln 某1in某′y2=co某ln某+,两边对某求导,得某y2in某in某′y2=某(co某ln某+).某arctan某2arctan某2′y1=(a2-某,1<某<+∞,2例13设f(某)=某,0≤某≤1,某3,-∞<某<0.解第一步,在各开区间内分别求导:1,1<某<+∞;f′(某)=2某,0<某<1,3某2,-∞<某<0.求f′(某).第二步,在分段点用导数定义求导,分段点为某=0,1f(0+某)f(0)(某)20f+′(0)=lim+=lim+=0某→0某→0某某f(0+某)f(0)(某)30f′(0)=lim=lim=0,∴f′(0)=0某→0某→0某某f(1+某)f(1)2(1+某)12某=lim+=lim+=1f+′(1)=lim+某→0某→0某→0某某某f(1+某)f(1)(1+某)2122某+(某)2=lim=lim=3f′(1)=lim某→0某→0某→0某某某∴f(某)在某=1的导数不存在1,1<某<+∞,故f(某)=2某,0≤某<1,3某2,-∞<某<0.在某=1处f(某)不可导.某≤c,in某,例14设f(某)=c为常数a某+b,某>c.试确定a,b的值,使f′(c)存在.解因为f′(c)存在,所以f(某)在c处连续.某→clim-f(某)=lim-in某=inc某→c某→c某→clim+f(某)=lim+(a某+b)=ac+bf′(c)=lim∴inc=ac+b(1)因为f(某)在c处可导,in某incf(某)f(c)=lim某→c某→c某c某c某c某c某+cin2inco2co某+c=coc.22=lim=lim某→c某c某→c2某c2f(某)f(c)a某+binca某+b(ac+b)=a.f+′(c)=lim=lim=lim+++某→c某→c某→c某c某c某c所以,coc=a(2)解(1),(2)得,=coc,b=inc-ccoc.a某2,某≤1,习题2-115.设f(某)=a某+b,某>1.为了使函数f(某)在某=1处连续且可导,a,b应取什么值?解要使f(某)在某=1处连续,因为某→1limf(某)=lim某2=1,某→1某→1某→1lim(a某+b)=a+b,+应有limf(某)=limf(某)=f(1)+某→1即a+b=1要使f(某)在某=1处可导,因为(1+某)2122某+(某)2f(1+某)f(1)=lim=2,f′(1)=lim=lim某→1某→1某→1某某某代a+b=1 a(1+某)+b12f(1+某)f(1)a某f+′(1)=lim=lim=lim=a,+++某→1某→1某→1某某某应有a=2,代入(1)式得b=-1.6.假定f′(某0)存在,指出下式A表示什么?f(某)=A,其中f(0)=0,且f′(0)存在;某→0某f(某0+h)f(某0h)(3)lim=A.h→0h解(2)∵limf(某)=limf(某)f(0)=f(某0),某→0某→0某0某(2)lim∴A=f(某0).(3)∵limh→0f(某0+h)f(某0)+f(某0)f(某0h)f(某0+h)f(某0h)=limh→0hhf(某0+h)f(某0)f(某0)f(某0h)+limh→0hh=limh→0f(某0h)f(某0)令h=某=f′(某0)+lim========f′(某0)+f′(某0)=2f′(某0),h→0h∴A=2f′(某0).9.如果f(某)为偶函数,且f′(0)存在,证明f′(0)=0.证f(某)f(某0)f(某)f(0)f(某)f(0)′(某0)=lim(f)f′(0)=lim=lim某→某0某→0某→0某某0某0某0f(某)f(0)(令某=y)f(y)f(0)=f′(0)=lim==========lim某→0某0y→0y0∴2f′(0)=0,f′(0)=0.1例16设f(t)=limt(1+)2t某,求f′(t).某→∞某1某2t12t某解limt(1+)=limt[(1+)]=te2t某→∞某→∞某某f′(t)=(te2t)′=(2t+1)e2t.12某in,某≠0;例15求f(某)=某0,某=0一阶导数和二阶导数.11解当某≠0时,f′(某)=2某inco,某某12111f′′(某)=2inco2in.某某某某某当某=0时,用导数定义先求一阶导数,再来看二阶导数.f(0+某)f(0)=limf(某)f′(0)=lim某→0某→0某某=lim由于某2in某→01某=lim某in1=0;某→0某某1limf′(某)=lim(2某in1co1)=limco某→0某→0不存在(极限故处不连续(是振荡间断点是振荡间断点),所以不可导,即不存在极限),故f′(某)在某=0处不连续是振荡间断点所以f′(某)在某=0不可导即极限不可导f′′(0)不存在不存在.某某某→0某1g(某)co,某≠0,例16设f(某)=某0,某=0.且g(0)=g′(0)=0试问:(1)limf(某);某→0(2)f(某)在某=0处是否连续?(3)f(某)在某=0处是否可导?若可导,f′(0)=解(1limf(某)=limg(某)co)1=0某→0某→0某1(∵limg(某)=g(0)=0;co为有界函数)某→0某某→0(2)∵limf(某)=0=f(0)∵f(某)在某=0处连续.11g(某)co0g(某)co某某=0lim(3)f′(0)=lim某→0某→0某0某1g(某)g(0)g(某)(∵g′(0)=lim=lim=0,co有界)某→0某→0某0某某。
习题课二 求数列的和题型一 分组分解求和【例1】 已知正项等比数列{a n }中,a 1+a 2=6,a 3+a 4=24. (1)求数列{a n }的通项公式;(2)数列{b n }满足b n =log 2a n ,求数列{a n +b n }的前n 项和. 解 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧a 1+a 1·q =6,a 1·q 2+a 1·q 3=24,解得⎩⎪⎨⎪⎧a 1=2,q =2, ∴a n =a 1·q n -1=2×2n -1=2n .(2)b n =log 22n =n ,设{a n +b n }的前n 项和为S n , 则S n =(a 1+b 1)+(a 2+b 2)+…+(a n +b n ) =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =(2+22+…+2n )+(1+2+…+n ) =2×(2n -1)2-1+n (1+n )2=2n +1-2+12n 2+12n .规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解 (1)设等差数列{a n }的公差为d , 由S 3+S 4=S 5可得a 1+a 2+a 3=a 5, 即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2, ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1×(2n -1),∴T 2n =(1-3)+(5-7)+…+[(4n -3)-(4n -1)] =(-2)·n =-2n .题型二 裂项相消法求和【例2】 已知数列{a n }的前n 项和为S n ,满足S 2=2,S 4=16,{a n +1}是等比数列. (1)求数列{a n }的通项公式;(2)若a n >0,设b n =log 2(3a n +3),求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和.解 (1)设等比数列{a n +1}的公比为q ,其前n 项和为T n , 因为S 2=2,S 4=16,所以T 2=4,T 4=20, 易知q ≠1,所以T 2=(a 1+1)(1-q 2)1-q =4①,T 4=(a 1+1)(1-q 4)1-q =20②,由②①得1+q 2=5,解得q =±2. 当q =2时,a 1=13,所以a n +1=43×2n -1=2n +13;当q =-2时,a 1=-5,所以a n +1=(-4)×(-2)n -1=-(-2)n +1. 所以a n =2n +13-1或a n =-(-2)n +1-1.(2)因为a n >0,所以a n =2n +13-1,所以b n =log 2(3a n +3)=n +1,所以1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2 =12-1n +2=n 2(n +2). 规律方法 (1)把数列的每一项拆成两项之差,求和时有些部分可以相互抵消,从而达到求和的目的.常见的拆项公式: (ⅰ)1n (n +1)=1n -1n +1;(ⅱ)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(ⅲ)1n +n +1=n +1-n .(2)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止. (3)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,求数列{b n }的前n 项和为T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12[⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2]=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2.题型三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得:a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1 =32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1 =52-2n +52n +1, 所以T n =5-2n +52n .规律方法 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列. (1)求数列{a n b n }的通项公式; (2)求数列{a n b n }的前n 项和T n .解 (1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5. 设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列, ∴(1+5-d )(9+5+d )=64,解得d =-10或d =2. ∵b n >0,∴d =-10应舍去,∴d =2, ∴b 1=3,∴b n =2n +1. 故a n b n =(2n +1)·3n -1,n ∈N *.(2)由(1)知T n =3×1+5×3+7×32+…+(2n -1)3n -2+(2n +1)3n -1,① 3T n =3×3+5×32+7×33+…+(2n -1)3n -1+(2n +1)3n ,②①-②,得-2T n =3×1+2×3+2×32+2×33+…+2×3n -1-(2n +1)3n =3+2(3+32+33+…+3n -1)-(2n +1)3n =3+2×3-3n1-3-(2n +1)3n=3n -(2n +1)3n =-2n ·3n . ∴T n =n ·3n ,n ∈N *.一、素养落地1.通过学习数列求和的方法,提升数学运算和逻辑推理素养.2.求数列的前n 项和,一般有下列几种方法. (1)错位相减适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (2)分组求和把一个数列分成几个可以直接求和的数列. (3)裂项相消有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和. (4)奇偶并项当数列通项中出现(-1)n 或(-1) n +1时,常常需要对n 取值的奇偶性进行分类讨论.(5)倒序相加例如,等差数列前n 项和公式的推导方法. 二、素养训练1.数列214,418,6116,…的前n 项和S n 为( )A.n 2+1+12n +1B.n 2+2-12n +1C.n (n +1)+12-12n +1D.n (n +1)+12n +1解析 S n =(2+4+6+…+2n )+⎝⎛⎭⎫14+18+…+12n +1=12n (2+2n )+14⎝⎛⎭⎫1-12n 1-12 =n (n +1)+12-12n +1.答案 C2.等比数列{a n }中,a 5=2,a 6=5,则数列{lg a n }的前10项和等于( ) A.6 B.5 C.4D.3解析 ∵数列{a n }是等比数列,a 5=2,a 6=5, ∴a 1a 10=a 2a 9=a 3a 8=a 4a 7=a 5a 6=10, ∴lg a 1+lg a 2+…+lg a 10=lg(a 1·a 2·…·a 10) =lg(a 5a 6)5=5lg 10=5. 故选B. 答案 B3.数列⎩⎨⎧⎭⎬⎫2n (n +1)的前2 020项和为________.解析 因为2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S 2 020=2⎝⎛⎭⎫1-12+12-13+…+12 020-12 021 =2⎝⎛⎭⎫1-12 021=4 0402 021. 答案4 0402 0214.已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.解析 由题意得S 100=a 1+a 2+…+a 99+a 100 =(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100) =(0+2+4+…+98)+(2+4+6+…+100) =5 000. 答案 5 0005.在数列{a n }中,a 1=1,a n +1=2a n +2n ,n ∈N *. (1)设b n =a n2n -1,证明:数列{b n }是等差数列;(2)在(1)的条件下求数列{a n }的前n 项和S n . (1)证明 由已知a n +1=2a n +2n , 得b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1.∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列. (2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2×21+3×22+…+n ×2n -1, 两边同时乘以2得2S n =1×21+2×22+…+(n -1)·2n -1+n ·2n , 两式相减得-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1, ∴S n =(n -1)×2n +1. 三、审题答题示范(一) 数列求和问题【典型示例】 (12分)已知数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =na n +n ①,n ∈N *. (1)求数列{a n }的通项公式;(2)若取出数列{a n }中的部分项a 2,a 6,a 22,…依次组成一个等比数列{c n },若数列{b n }满足a n =b n ·c n ,求证:数列{b n }的前n 项和T n <23.②联想解题看到①,想到a n =S n -S n -1(n ≥2),利用S n 与a n 的关系结合定义法或等差中项法证明数列{a n }为等差数列并求通项公式.看到②,想到利用错位相减法求数列{b n }的前n 项和T n ,从而得到T n 的取值范围,即可证明T n <23. 满分示范(1)解 数列{a n }的前n 项和为S n , 且2S n =na n +n ,n ∈N *, 当n =1时,2a 1=a 1+1,则a 1=1. 当n ≥2时,a n =S n -S n -1①, a n +1=S n +1-S n ②.2分由②-①得,S n +1-2S n +S n -1=a n +1-a n ,所以(n +1)(a n +1+1)2-n (a n +1)+(n -1)(a n -1+1)2=a n +1-a n ,所以(n -1)a n +1+(n -1)a n -12=(n -1)a n ,即a n +1+a n -12=a n ,所以数列{a n }为等差数列.5分 又a 1=1,且a 2=4,整理得a n =3n -2.6分 (2)证明 由a 2=4,a 6=16,解得c n =4n ,所以b n =(3n -2)×14n .8分则T n =1×14+4×142+…+(3n -2)×14n ③,14T n =1×142+4×143+…+(3n -2)×14n +1④,9分 由③-④得,34T n =14+3⎝⎛⎭⎫142+…+14n -(3n -2)×14n +1=12-3n +24n +1,解得T n =23-3n +23×4n <23.12分 满分心得(1)利用数列的递推公式求通项公式主要应用构造法,即构造出等差、等比数列,或可应用累加、累乘求解的形式.(2)利用错位相减法求数列的和最容易出现运算错误,运算时要注意作差后所得各项的符号,所得等比数列的项数.(3)与数列的和有关的不等式证明问题,一般是先求和及其范围,再证明不等式.基础达标一、选择题1.已知数列{a n }的通项a n =2n +1,n ∈N *,由b n =a 1+a 2+a 3+…+a n n 所确定的数列{b n }的前n 项的和是( ) A.n (n +2) B.12n (n +4) C.12n (n +5) D.12n (n +7) 解析 ∵a 1+a 2+…+a n =n2(2n +4)=n 2+2n .∴b n =n +2,∴{b n }的前n 项和S n =n (n +5)2.答案 C2.数列12×5,15×8,18×11,…,1(3n -1)×(3n +2),…的前n 项和为( )A.n 3n +2B.n 6n +4C.3n 6n +4D.n +1n +2 解析 由数列通项公式1(3n -1)(3n +2)=13⎝⎛⎭⎫13n -1-13n +2,得前n 项和S n =13(12-15+15-18+18-111+…+13n -1-13n +2)=13⎝⎛⎭⎫12-13n +2=n6n +4. 答案 B3.1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+1210的值为( ) A.18+129B.20+1210C.22+1211D.18+1210解析 设a n =1+12+14+…+12n -1=1×⎣⎡⎦⎤1-⎝⎛⎭⎫12n1-12=2⎣⎡⎦⎤1-⎝⎛⎭⎫12n, ∴原式=a 1+a 2+…+a 11=2⎣⎡⎦⎤1-⎝⎛⎭⎫121+2⎣⎡⎦⎤1-⎝⎛⎭⎫122+…+2⎣⎡⎦⎤1-⎝⎛⎭⎫1211=2⎣⎡⎦⎤11-⎝⎛⎭⎫12+122+…+1211 =2⎣⎢⎡⎦⎥⎤11-12⎝⎛⎭⎫1-12111-12=2⎣⎡⎦⎤11-⎝⎛⎭⎫1-1211 =2⎝⎛⎭⎫11-1+1211=20+1210. 答案 B4.已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 021=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 021)=( ) A.2 021 B.2 0212C.2D.12解析 ∵函数f (x )=21+x 2(x ∈R ),∴f (x )+f ⎝⎛⎭⎫1x =21+x 2+21+⎝⎛⎭⎫1x 2=21+x 2+2x 2x 2+1=2.∵数列{a n }为等比数列,且a 1·a 2 021=1, ∴a 1a 2 021=a 2a 2 020=a 3a 2 019=…=a 2 021a 1=1.∴f (a 1)+f (a 2 021)=f (a 2)+f (a 2 020)=f (a 3)+f (a 2 019)=…=f (a 2 021)+f (a 1)=2,∴f (a 1)+f (a 2)+f (a 3)+…+f (a 2 021)=2 021.故选A. 答案 A5.定义np 1+p 2+…+p n 为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知数列{a n }的前n 项的“均倒数”为13n +1,又b n =a n +26,则1b 1b 2+1b 2b 3+…+1b 9b 10=( )A.111 B.1011 C.910D.1112解析 由题意得n a 1+a 2+…+a n =13n +1,所以a 1+a 2+…+a n =n (3n +1)=3n 2+n ,记数列{a n }的前n 项和为S n ,则S n =3n 2+n .当n =1时,a 1=S 1=4;当n ≥2时,a n =S n -S n -1=3n 2+n -[3·(n -1)2+(n -1)]=6n -2.经检验a 1=4也符合此式,所以a n =6n -2,n ∈N *,则b n =a n +26=n ,所以1b 1b 2+1b 2b 3+…+1b 9b 10=11×2+12×3+…+19×10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫19-110=1-110=910.故选C. 答案 C 二、填空题 6.设a n =1n +1+n,数列{a n }的前n 项和S n =9,则n =________.解析 a n =1n +1+n=n +1-n ,故S n =2-1+3-2+…+n +1-n =n +1-1=9. 解得n =99. 答案 997.在数列{a n }中,已知S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),n ∈N *,则S 15+S 22-S 31的值是________.解析 S 15=-4×7+a 15=-28+57=29, S 22=-4×11=-44,S 31=-4×15+a 31=-60+121=61, S 15+S 22-S 31=29-44-61=-76. 答案 -768.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *),则数列{na n }的前n 项和T n 为________.解析 ∵S n =2a n -1(n ∈N *),∴n =1时,a 1=2a 1-1,解得a 1=1,n ≥2时,a n =S n -S n -1=2a n -1-(2a n -1-1),化为a n =2a n -1,∴数列{a n }是首项为1,公比为2的等比数列, ∴a n =2n -1. ∴na n =n ·2n -1.则数列{na n }的前n 项和T n =1+2×2+3×22+…+n ·2n -1. ∴2T n =2+2×22+…+(n -1)×2n -1+n ·2n ,∴-T n =1+2+22+…+2n -1-n ·2n =1-2n1-2-n ·2n =(1-n )·2n -1, ∴T n =(n -1)2n +1. 答案 (n -1)2n +1 三、解答题9.已知函数f (x )=2x -3x -1,点(n ,a n )在f (x )的图象上,数列{a n }的前n 项和为S n ,求S n . 解 由题意得a n =2n -3n -1,S n =a 1+a 2+…+a n =(2+22+…+2n )-3(1+2+3+…+n )-n =2(1-2n )1-2-3·n (n +1)2-n=2n +1-n (3n +5)2-2.10.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2,所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.能力提升11.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项和为( )A.1 009B.1 010C.2 019D.2 020解析 设数列{a n }的公差为d ,由⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1. 设b n =a n cos n π,∴b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…, ∴数列{a n cos n π}的前2 020项和S 2 020=(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.故选D. 答案 D12.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1; 当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ. (2)由(1)知a n =2n -1,所以n (a n +1)=n ·2n , T n =2+2×22+3×23+…+n ·2n ,① 2T n =22+2×23+3×24+…+n ·2n +1,② ①-②得:-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )2n +1-2.所以T n =(n -1)2n +1+2.创新猜想13.(多空题)设等差数列{a n }满足a 2=5,a 6+a 8=30,则a n =________,数列⎩⎨⎧⎭⎬⎫1a 2n-1的前n 项和为________.解析 设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,∴a 7-a 2=5d .又a 2=5,则d =2.∴a n =a 2+(n -2)d =2n +1. ∴1a 2n -1=14n (n +1)=14⎝⎛⎭⎫1n -1n +1, ∴⎩⎨⎧⎭⎬⎫1a 2n-1的前n 项和为14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n4(n +1). 答案 2n +1n4(n +1)14.(多空题)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n =⎝⎛⎭⎫1-13n a n +1,b n =(-1)n ·(log 3a n )2,则a n =________,数列{b n }的前2n 项和为________.解析 根据题意,数列{a n }满足2S n =⎝⎛⎭⎫1-13n a n +1①,则当n ≥2时,有2S n -1=⎝⎛⎭⎫1-13n -1a n ②,由①-②可得⎝⎛⎭⎫1-13n (a n +1-3a n )=0,所以a n +1-3a n =0,即a n +1=3a n (n ≥2).由2S n =⎝⎛⎭⎫1-13n a n +1,可求得a 2=3,a 2=3a 1,则数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,b n =(-1)n ·(log 3a n )2=(-1)n ·(log 33n -1)2=(-1)n (n -1)2,则b 2n -1+b 2n =-(2n -2)2+(2n -1)2=4n -3.所以数列{b n }的前2n 项和T 2n =1+5+9+…+(4n -3)=n (1+4n -3)2=2n 2-n .答案 3n -12n 2-n高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
习题课(二) 随机变量及其分布一、选择题1.已知事件A 发生时,事件B 一定发生,P (A )=13P (B ),则P (A |B )等于( )A.16 B.14 C.13D.12解析:选C 因为P (AB )=P (A )=13P (B ),所以P (A |B )=P AB P B =13.2.甲击中目标的概率是12,如果击中赢10分,否则输11分,用X 表示他的得分,计算X 的均值为( )A .0.5分B .-0.5分C .1分D .5分解析:选B E (X )=10×12+(-11)×12=-0.5.3.已知离散型随机变量ξ的概率分布列如下:ξ 1 3 5 P0.5m0.2则数学期望E (ξ)等于( A .1 B .0.6 C .2+3mD .2.4解析:选D 由题意得m =1-0.5-0.2=0.3, 所以E (ξ)=1×0.5+3×0.3+5×0.2=2.4.4.已知随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则D (2X +1)等于( ) A .6 B .4 C .3D .9解析:选A 因为D (2X +1)=D (X )×22=4D (X ),D (X )=6×12×⎝ ⎛⎭⎪⎫1-12=32,所以D (2X+1)=4×32=6.5.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127 B.1124 C.827D.924解析:选C 设从1号箱取到红球为事件A ,从2号箱取到红球为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49, 所以P (AB )=P (B |A )·P (A )=23×49=827,所以两次都取到红球的概率为827.6.一台仪器每启动一次都随机地出现一个5位的二进制数A =(例如:若a 1=a 3=a 5=124A 的各位数中,已知a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,记X =a 1+a 2+a 3+a 4+a 5,现在仪器启动一次,则E (X )=( )A.83 B.113 C.89D.119解析:选B 法一:X 的所有可能取值为1,2,3,4,5,P (X =1)=C 44⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫230=181, P (X =2)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231=881, P (X =3)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827, P (X =4)=C 14⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫233=3281, P (X =5)=C 04⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫234=1681, 所以E (X )=1×181+2×881+3×827+4×3281+5×1681=113.法二:由题意,X 的所有可能取值为1,2,3,4,5, 设Y =X -1,则Y 的所有可能取值为0,1,2,3,4,因此Y ~B ⎝ ⎛⎭⎪⎫4,23,所以E (Y )=4×23=83, 从而E (X )=E (Y +1)=E (Y )+1=83+1=113.二、填空题7.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________.解析:P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P ABP A =11025=14. 答案:148.邮局工作人员整理邮件,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果P (X <10)=0.3,P (10≤X ≤30)=0.4,那么P (X >30)等于________.解析:根据随机变量的概率分布的性质, 可知P (X <10)+P (10≤X ≤30)+P (X >30)=1, 故P (X >30)=1-0.3-0.4=0.3. 答案:0.39.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:种子发芽率为0.9,不发芽率为0.1, 每粒种子发芽与否相互独立,故设没有发芽的种子数为ξ,则ξ~B (1 000,0.1),∴E (ξ)=1 000×0.1=100,故需补种的种子数X 的期望为2E (ξ)=200. 答案: 200 三、解答题10.某一射手射击所得环数X 的分布列如下:X 4 5 6 7 8 9 10 P0.020.040.060.09m0.290.22(1)求m (2)求此射手“射击一次命中的环数≥7”的概率.解:(1)由分布列的性质得m =1-(0.02+0.04+0.06+0.09+0.29+0.22)=0.28. (2)P (射击一次命中的环数≥7)=0.09+0.28+0.29+0.22=0.88.11.随机抽取某中学高一年级若干名学生的一次数学统测成绩,得到样本,并进行统计,已知分组区间和频数是[50,60),2;[60, 70),7;[70,80),10;[80,90),x ;[90,100],2,其频率分布直方图受到破坏,可见部分如图所示,据此解答如下问题.(1)求样本容量及x 的值;(2)从成绩不低于80分的学生中随机选取2人,记2人中成绩不低于90分的人数为ξ,求ξ的数学期望.解:(1)由题意,得分数在[50,60)内的频数为2, 频率为0.008×10=0.08, 所以样本容量n =20.08=25,x =25-(2+7+10+2)=4.(2)成绩不低于80分的人数为4+2=6,成绩不低于90分的人数为2, 所以ξ的所有可能取值为0,1,2,因为P (ξ=0)=C 24C 26=25,P (ξ=1)=C 14C 12C 26=815,P (ξ=2)=C 22C 26=115,所以ξ的分布列为ξ 0 1 2 P25815115所以ξ的数学期望E (ξ)=0×5+1×15+2×15=3.12.经调查统计,网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买A ,B ,C 商品的概率分别为23,p 1,p 2(p 1<p 2),至少购买一种的概率为2324,最多购买两种的概率为34.假设该网民是否购买这三种商品相互独立.(1)求该网民分别购买B ,C 两种商品的概率;(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,求X 的分布列和数学期望. 解:(1)由题意可知至少购买一种的概率为2324,所以一种都不买的概率为1-2324=124,即⎝ ⎛⎭⎪⎫1-23(1-p 1)(1-p 2)=124.① 又因为最多购买两种商品的概率为34,所以三种都买的概率为1-34=14,即23p 1p 2=14.② 联立①②,解得⎩⎪⎨⎪⎧ p 1=12,p 2=34或⎩⎪⎨⎪⎧p 1=34,p 2=12.因为p 1<p 2,所以某网民购买B ,C 两种商品的概率分别为p 1=12,p 2=34.(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,由题意可得X 的所有可能取值为0,5,10,15.则P (X =0)=124,P (X =5)=23×12×14+13×12×14+13×12×34=14, P (X =10)=23×12×14+23×12×34+13×12×34=1124, P (X =15)=23×12×34=14.所以X 的分布列为则E (X )=0×124+5×14+10×24+15×4=12.。
⼈教版五年级数学下册课本习题(2)1、⼈教版五年级数学下册课本习题2、有56个桃⼦。
3个3个的装能正好装完吗?2个2个的装能正好装完吗?5个5个的装能正好装完吗?3、为迎接五⼀劳动节,⼯⼈叔叔要在⼯⼈俱乐部的四周装上彩灯(地⾯四周不装),俱乐部的长90⽶,宽55⽶,⾼20⽶,⾄少需要多长的彩灯?4、⼩卖部要做⼀个长2.2m,宽40cm,⾼80cm的玻璃柜台,现要在柜台各边装上⾓铁,这个柜台需要多少⽶⾓铁?5、⽤棱长1cm的⼩正⽅体摆成⼀个⼤正⽅体,⾄少需要⼏个⼩正⽅体?体积是多少?6、做⼀个微波炉包装箱,长0.7m,宽0.5m,⾼0.4m,⾄少需要多少平⽅⽶的硬纸板?7、亮亮家要给⼀个长0.75m,宽0.5m,⾼1.6m的简易⾐柜换布罩,⾄少需要⽤多少平⽅⽶的布?8、⼀个正⽅体礼品盒,棱长1.2dm,包装这个礼品盒⾄少需要多少平⽅分⽶的包装纸?9、⼀个玻璃鱼缸的形状是正⽅形(⽆盖),棱长3dm,制作这个鱼缸需要多少平⽅分⽶玻璃?10、光华街⼝装了新铁⽪邮箱,长50cm,宽40cm,⾼78cm,做这个邮箱⾄少要多少平⽅厘⽶的铁⽪?11、中队委员把⼀个棱长46cm的纸箱各⾯贴上红纸作“爱⼼箱”,⾄少需要多少平⽅厘⽶的红纸?12、⼀个饼⼲盒长10cm,宽6cm,⾼12cm,围着四周贴商标纸(上下不贴),商标纸多⼤?13、加⼯⼀批洗⾐机机套(没底),长59.5cm,宽42.5cm,⾼80cm,做1000个需要多少平⽅⽶的布?14、⼀个游泳池长50m,是宽的2倍,深2.5m,要在四周和底⾯贴瓷砖,需要多少平⽅⽶瓷砖?15、建筑⼯地要挖⼀个长50m,宽30m,深50cm的长⽅体⼟坑,挖出多少⽅的⼟?16、妈妈送给奶奶的⽣⽇蛋糕长2dm,宽2dm,⾼0.6dm,奶奶把它平均分成4块长⽅体形状的⼩蛋糕,想⼀想她是怎样分,每个⼈分到多⼤的⼀块蛋糕?17、家具⼚订购500根⽅⽊,每根⽅⽊的横截⾯的⾯积是24平⽅分⽶,长是3⽶。