湘教版数学七年级下册 整式的乘法
- 格式:docx
- 大小:50.81 KB
- 文档页数:12
湘教版七年级数学下册2.1整式的乘法2.1.4多项式的乘法(1)说课稿一. 教材分析湘教版七年级数学下册2.1整式的乘法2.1.4多项式的乘法(1)是本节课的主要内容。
教材从实际例子出发,引导学生探究多项式相乘的规律,从而让学生掌握多项式乘法的基本方法。
这一部分内容是学生学习了整式和多项式的基础知识后,进一步拓展的内容,对于学生来说,既是对前面知识点的巩固,也是为新知识的学习打下基础。
二. 学情分析面对七年级的学生,他们在之前的学习中已经掌握了整式和多项式的基础知识,对于新的学习内容,他们有一定的接受能力。
但是,由于多项式乘法涉及到多个项的相乘,学生可能会在这一部分产生混淆,因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握。
三. 说教学目标本节课的教学目标有三点:1.让学生掌握多项式乘法的基本方法,能够正确进行多项式相乘的运算。
2.通过实例分析,让学生理解多项式乘法的运算规律,提高学生的逻辑思维能力。
3.培养学生的团队协作能力,提高学生的数学素养。
四. 说教学重难点本节课的重难点是多项式乘法的基本方法和运算规律。
多项式乘法涉及到多个项的相乘,学生可能会在这一部分产生混淆,因此,如何让学生理解和掌握多项式乘法的基本方法,以及如何引导学生发现和总结多项式乘法的运算规律,是本节课的教学难点。
五. 说教学方法与手段为了达到本节课的教学目标,我将以问题驱动的教学方法为主,结合实例分析,引导学生探究多项式乘法的规律。
在教学过程中,我将利用多媒体手段,如PPT 等,展示实例和讲解,以提高学生的学习兴趣,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际例子,让学生尝试进行多项式相乘,引发学生的思考,激发学生的学习兴趣。
2.探究:让学生分组讨论,总结多项式乘法的基本方法,引导学生发现和总结多项式乘法的运算规律。
3.讲解:教师根据学生的探究结果,进行讲解,让学生理解和掌握多项式乘法的基本方法。
湘教版七年级数学下册2.1整式的乘法2.1.4多项式的乘法(2)教学设计一. 教材分析湘教版七年级数学下册2.1整式的乘法2.1.4多项式的乘法(2)是本节课的主要内容。
这部分内容是在学生已经掌握了整式的乘法和多项式的乘法(1)的基础上进行学习的。
教材通过具体的例子,引导学生探究多项式乘以多项式的法则,让学生在自主探究和合作交流中,体会数学知识的形成过程,提高学生的数学素养。
二. 学情分析七年级的学生已经有了一定的数学基础,对整式的乘法和多项式的乘法(1)有一定的了解。
但是,对于多项式乘以多项式的法则,还需要通过具体的例子和实践活动,来加深理解和掌握。
因此,在教学过程中,需要注重引导学生主动探究,提高学生的动手能力和思维能力。
三. 教学目标1.知识与技能:让学生掌握多项式乘以多项式的法则,能够熟练地进行多项式的乘法运算。
2.过程与方法:通过自主探究、合作交流的方式,培养学生的动手能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.教学重点:多项式乘以多项式的法则。
2.教学难点:理解并掌握多项式乘以多项式的过程和方法。
五. 教学方法采用自主探究、合作交流的教学方法。
通过具体的例子,引导学生探究多项式乘以多项式的法则,让学生在自主探究和合作交流中,体会数学知识的形成过程。
六. 教学准备1.教师准备:教材、多媒体教学设备、黑板、粉笔。
2.学生准备:笔记本、尺子、圆规。
七. 教学过程1.导入(5分钟)教师通过一个具体的例子,引导学生回顾整式的乘法和多项式的乘法(1),为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示多个多项式乘以多项式的例子,让学生观察和思考,引导学生发现多项式乘以多项式的规律。
3.操练(10分钟)教师引导学生分组进行实践活动,每组选择一个例子,按照多项式乘以多项式的法则进行计算,并交流解题过程。
4.巩固(10分钟)教师选择几个典型的例子,让学生上黑板进行演示,并解释解题过程。
七年级下册第二章整式的乘法1.同底数幂相乘,底数不变,指数相加。
a n•a m=a m+n(m,n是正整数)例:2.幂的乘方,底数不变,指数相乘。
(a n)m=a mn(m,n是正整数)例:3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(ab)n=a n b n(m,n是正整数)例:4.单项式与单项式相乘,把它们的系数、同底数幂分别相乘。
例:5.单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。
a(m+n)=am+an6.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。
(a+b)(m+n)=am+an+bm+bn例:7.平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。
(a+b)(a-b)=a2-b2 (公式右边:符号相同项的平方-符号相反项的平方)例:8.完全平方公式口诀:头平方和尾平方,头尾两倍在中央,中间符号是一样。
(a+b)2=a2+2ab+b2 =a2+b2+2ab (a-b)2=a2-2ab+b2=a2+b2-2ab例:9.公式的灵活变形:①(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,②(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=2ab+2ab=4ab,③a2+b2=(a+b)2-2ab,④a2+b2= (a-b)2+2ab,⑤(a+b)2=(a-b)2+4ab,⑥(a-b)2=(a+b)2-4ab01各个击破命题点1幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【思路点拨】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等即可得到.【解答】【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.若2x=3,4y=2,则2x+2y的值为________.命题点2多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【解答】【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.(佛山中考)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2C.-1 D.24.下列各式中,正确的是( )A.(-x+y)(-x-y)=-x2-y2B.(x2-1)(x-2y2)=x3-2x2y2-x+2y2C.(x+3)(x-7)=x2-4x-4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是( )A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.5.下列多项式相乘,不能用平方差公式的是( )A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)6.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,适用两数和的完全平方公式计算的有________(填序号).命题点4利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.7.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是________.9.计算:(1)(a+b)2-(a-b)2-4ab;(2)[(x+2)(x-2)]2;(3)(a+3)(a-3)(a2-9).命题点5乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.10.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )图1 图2 A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2C.(a-b)2D.a2-b202整合集训一、选择题(每小题3分,共24分)1.(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a2.(巴彦淖尔中考)下列运算正确的是( )A.x3·x2=x5B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x23.如果a2n-1·a n+5=a16,那么n的值为( )A.3 B.4C.5 D.64.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1 B.a2-2a+1C.a2-2a-1 D.a2+15.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6C.p=1,q=-6 D.p=5,q=-66.(-x+y)( )=x2-y2,其中括号内的是( )A.-x-y B.-x+yC.x-y D.x+y7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8a D.6a3-8a28.已知a=814,b=275,c=97,则a,b,c的大小关系是( )A.a>b>c B.a>c>bC.a<b<c D.b>c>a二、填空题(每小题4分,共16分)9.若a x=2,a y=3,则a2x+y=________.10.计算:3m2·(-2mn2)2=________.11.(福州中考)已知有理数a,b满足a+b=2,a-b=5,则(a+b)3·(a-b)3的值是________.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2;(2)a 2-ab +b 2.15.(10分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2;(2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12.16.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,这个记号就叫做2阶行列式. 例如:⎪⎪⎪⎪⎪⎪123 4=1×4-2×3=-2 . 若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值.17.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a 、b 的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)小华和小明同时计算一道整式乘法题(2x+a)(3x+b).小华把第一个多项式中的“a”抄成了-a,得到结果为6x2+11x-10;小明把第二个多项式中的3x抄成了x,得到结果为2x2-9x+10.(1)你知道式子中a,b的值各是多少吗?(2)请你计算出这道题的正确结果.参考答案各个击破【例1】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【例2】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22. 【例3】 C【例4】 原式=(4a 2-b 2)-(a 2-4ab +4b 2)+5b 2=3a 2+4ab.当a =-1,b =2时,原式=3×(-1)2+4×(-1)×2=-5.【例5】 (1)方法一:(a +b)2.方法二:a 2+2ab +b 2.(2)(a +b)2=a 2+2ab +b 2.(3)1022=(100+2)2=1002+2×100×2+22=10 404. 题组训练1.C 2.6 3.C 4.B 5.A 6.②④ 7.D 8.49.(1)原式=a 2+2ab +b 2-a 2+2ab -b 2-4ab =0.(2)原式=(x 2-4)2=x 4-8x 2+16.(3)原式=(a 2-9)(a 2-9)=a 4-18a 2+81. 10.C 11.C 整合集训1.B 2.A 3.B 4.A 5.C 6.A 7.D 8.A 9.12 10.12m 4n 4 11.1 000 12.±4x 或4x 413.(1)原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)原式=a 2+4ab -(a 2-4b 2)-4ab =a 2+4ab -a 2+4b 2-4ab =4b 2.(3)原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.14.(1)原式=(a +b)2-2ab =1+12=13.(2)原式=(a +b)2-3ab =12-3×(-6)=1+18=19.15.(1)原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9. (2)原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.16.(x +1)2-(x -2)(x +2)=2x +5=10,解得x =2.5. 17.(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).18.(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab =6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab =2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9. 解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。
湘教版七年级数学下册2.1整式的乘法2.1.4多项式的乘法(2)说课稿一. 教材分析湘教版七年级数学下册2.1整式的乘法2.1.4多项式的乘法(2)是本节课的主要内容。
这部分内容是在学生已经掌握了整式的乘法的基础上进行学习的,通过这部分的学习,让学生能够理解和掌握多项式乘法的运算方法和规则,提高他们的数学运算能力。
二. 学情分析学生在之前的学习中已经掌握了整式的乘法,对于多项式的乘法(1)也有了一定的了解。
但是,对于多项式乘法的运算规则和应用,还需要进一步的巩固和提高。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学设计和引导。
三. 说教学目标1.知识与技能目标:让学生理解和掌握多项式乘法的运算方法和规则,能够熟练地进行多项式的乘法运算。
2.过程与方法目标:通过学生的自主探究和合作交流,培养他们的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 说教学重难点1.教学重点:多项式乘法的运算方法和规则。
2.教学难点:多项式乘法的应用和解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件和教学辅助工具,进行直观的教学展示和讲解。
六. 说教学过程1.导入新课:通过复习整式的乘法,引出多项式的乘法,激发学生的学习兴趣。
2.知识讲解:利用多媒体课件,进行多项式乘法的运算方法和规则的讲解,让学生理解和掌握。
3.案例分析:通过具体的案例,让学生进行多项式乘法的运算,巩固和提高他们的运算能力。
4.合作交流:学生分组进行合作交流,讨论多项式乘法的应用和解决实际问题,培养他们的数学思维能力和解决问题的能力。
5.总结归纳:对所学内容进行总结归纳,让学生形成系统的知识结构。
6.课堂练习:布置适量的课堂练习题,进行知识的巩固和提高。
七. 说板书设计板书设计要简洁明了,能够清晰地展示多项式乘法的运算方法和规则。
湘教版七年级数学下册2.1整式的乘法2.1.3单项式的乘法教学设计一. 教材分析湘教版七年级数学下册2.1整式的乘法,主要介绍了单项式的乘法和多项式的乘法。
本节课的重点是单项式的乘法,通过实例讲解和练习,让学生掌握单项式乘以单项式的法则,以及单项式乘以多项式的法则。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析七年级的学生已经掌握了整数和分数的乘法,对于新的学习内容,他们有一定的接受能力。
但是,对于整式乘法这种较为抽象的概念,部分学生可能会感到难以理解。
因此,在教学过程中,需要注重引导学生从具体到抽象的思考,通过实例讲解,让学生感受整式乘法的实际意义。
三. 教学目标1.理解单项式乘以单项式的法则,以及单项式乘以多项式的法则。
2.能够运用所学知识,解决相关的数学问题。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.重点:单项式乘以单项式的法则,以及单项式乘以多项式的法则。
2.难点:理解整式乘法的实际意义,以及如何运用所学知识解决实际问题。
五. 教学方法1.实例讲解:通过具体的例子,让学生理解整式乘法的概念和法则。
2.小组讨论:引导学生进行团队协作,共同解决问题,提高学生的团队协作能力。
3.练习巩固:通过大量的练习题,让学生巩固所学知识,提高解题能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示例题和练习题。
2.练习题:准备相关的练习题,用于课堂练习和巩固知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出整式乘法的重要性。
例如,假设有一块长为a,宽为b的土地,求这块土地的面积。
让学生思考如何用数学表达式表示这个问题,从而引入整式乘法的概念。
2.呈现(15分钟)讲解单项式乘以单项式的法则,以及单项式乘以多项式的法则。
通过PPT展示例题,让学生跟随讲解,理解并掌握这些法则。
3.操练(15分钟)让学生进行课堂练习,运用所学的知识解决实际问题。
初中数学试卷整式的乘法一、选择题1.(x4)2等于( )A.x6B.x8C.x16D.2x42.计算2101×0.5100的结果是( )A.1B.2C.0.5D.103.计算(-2a)2-3a2的结果是( )A.-a2B.a2C.-5a2D.5a24.计算2x(3x2+1),正确的结果是( )A.5x3+2xB.6x3+1C.6x3+2xD.6x2+2x5.已知m+n=2,mn=1,化简(m-1)(n-1)的结果为( )A.-2B.-1C.0D.16.下列各式中,不能用平方差公式计算的是( )A.(-4x+3y)(4x+3y)B.(4x-3y)(3y-4x)C.(-4x+3y)(-4x-3y)D.(4x+3y)(4x-3y)7.下列运算正确的是( )A.a3·a2=a6B.(a3)2=a5C.(a-b)(a+b)=a2-b2D.(a+b)2=a2+b28.某青少年活动中心的场地为长方形,原来长a米,宽b米.现在要把四周都向外扩展,长增加3米,宽增加2米,那么这个场地的面积增加了( )A.6平方米B.(3a-2b)平方米C.(2a+3b+6)平方米D.(3a+2b+6)平方米二、填空题(每小题4分,共16分)9.计算a·(-a6)的结果等于________.10.化简:(x+1)(x-1)+1=________.11.若(x-1)(x+3)=x2+px+q,则p=________,q=________.12.定义为二阶行列式,规定它的运算法则为=ad-bc,那么当x=1时,二阶行列式的值为________.三、解答题13.计算:(1)(-2x2y)3·(3xy2)2;(2)a(2a-b)+(2b-1)(a+1)-2a2;b(a-8b).(3)(a+2b)(a-2b)-1214.解方程:x(2x+3)-(x-7)(x+6)=x2-10.15.先化简,再求值:a(a-3b)+(a+b)2-a(a-b),其中a=1,b=-1.2 16.已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.(1)mn;(2)m2+n2-mn.17.若|a-b+3|+(2a+b)2=0,化简2a3b(2ab+1)-a2(-2ab)2,并求它的值.18.通过学习同学们已经体会到灵活运用整式乘法公式给计算和化简带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200-5)(200+5)①=2002-52②=39 975.(1)例题求解过程中,第②步变形是利用(填乘法公式的名称);(2)用简便方法计算:①9×11×101×10 001; ②(2+1)(22+1)(24+1)…(232+1)+1.参考答案1.B2.B3.B4.C5.C6.B7.C8.C9.-a 7 10.x 2 11.2 -3 12.0 13.(1)原式=-8x 6y 3·9x 2y 4=-72x 8y 7.(2)原式=2a 2-ab+2ab+2b-a-1-2a 2=ab-a+2b-1. (3)原式=a 2-4b 2-12ab+4b 2=a 2-12ab. 14.2x 2+3x-x 2+x+42=x 2-10,4x=-52,x=-13. 15.原式=a 2-3ab +a 2+2ab +b 2-a 2+ab=a 2+b 2.当a=1,b=-12时,原式=12+(-12)2=54.16.由题意,得(m+n)2=m 2+2mn+n 2=9,① (m-n)2=m 2-2mn+n 2=1.② (1)(①-②)÷4,得mn=2.(2)(①+②)÷2,得m 2+n 2=5.所以m 2+n 2-mn=5-2=3. 17.因为|a-b+3|+(2a+b )2=0,所以30,20.a b a b -+=+=⎧⎨⎩解得1,2.a b =-=⎧⎨⎩2a 3b (2ab+1)-a 2(-2ab )2=4a 4b 2+2a 3b-a 2·4a 2b 2=4a 4b 2+2a 3b-4a 4b 2=2a 3b. 把a=-1,b=2代入,得原式=2×(-1)3×2=-4. 18.(1)平方差公式.(2)①9×11×101×10 001=(10-1)(10+1)(100+1)(10 000+1)=(100-1)(100+1)(10 000+1)=(10 000-1)(10 000+1)=108-1.②原式=(2-1)(2+1)(22+1)(24+1)…(232+1)+1=(22-1) (22+1)(24+1)…(232+1)+1=(24-1)(24+1)…(232+1)+1=264-1+1=264.综合练习整式的乘法及其应用1.计算6x 3·x 2的结果是( )A.6xB.6x 5C.6x 6D.6x 9 2.(m 2)3·m 4等于( )A.m 9B.m 10C.m 12D.m 14 3.(2014·邵阳)下列计算正确的是( )A.2x-x=xB.a 3·a 2=a 6C.(a-b)2=a 2-b 2D.(a+b)(a-b)=a 2+b 24.等式(-3x 2-4y 2)( )=16y 4-9x 4中括号内应填入下式中的( )A.3x 2-4y 2B.4y 2-3x 2C.-3x 2-4y 2D.3x 2+4y 2 5.若用简便方法计算1 9992,应当用下列式子中的( )A.(2 000-1)2B.(2 000-1)(2 000+1)C.(1 999+1)(1 999-1)D.(1 999+1)26.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②-①得6S-S=610-1,即5S=610-1,所以S=10615-,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a+a 2+a 3+a 4+…+a 2 014的值?你的答案是( )A.201411a a --B.201511a a --C.201611a a -- D.a 2 016-17.计算:(-a 5)·(-a 2)3·(-a 3)2=__________. 8.计算:42 014×(-0.25)2 015-1=__________.9.边长为a的正方形,边长增加b以后,则所得新正方形的面积比原正方形的面积增加了__________.10.若等式(x-4)2=x2-8x+m2成立,则m的值是__________.11.计算:(1)2(x2)3·x3-(-2x3)3+4x2·x7;(2)(3x+2y)(2x+3y)-(x-3y)(3x+4y);(3)(a+3b)2-(2a-1b)2;(4)(x-2y+3)(x+2y-3);(5)(x+1)2(x-1)2(x2+1)2.212.已知多项式x2-mx-n与x-2的乘积中不含x2项和x项,求这两个多项式的乘积.13.已知A=2x+y,B=2x-y,计算A2-B2.14.先化简,再求值:;(1) (a+2)2+(1+a)(1-a),其中a=-34(2)(2x-y)2-4(x-2y)(x+2y),其中x=2,y=-1.15.用简便方法计算:(1)-0.2550×2100;(2)2 0002-4 000×1 999+1 9992;(3)999×1 001.16.比较大小:(1)1625与290;(2)2100与375.17.已知162×43×26=22x-1,(102)y=1012.求2x+y的值.参考答案1.B2.B3.A4.A5.A6.B7.a178.-1.259.2ab+b210.4或-4 11.(1)原式=2x9+8x9+4x9=14x9.(2)原式=6x2+13xy+6y2-(3x2-5xy-12y2)=3x2+18xy+18y2.(3)原式=a2+6ab+9b2-4a2+2ab-14b2=-3a2+8ab+354b2.(4)原式=[x-(2y-3)][x+(2y-3)]=x2-(2y-3)2=x2-4y2+12y-9.(5)原式=(x2-1)2(x2+1)2=(x4-1)2=x8-2x4+1.12.(x-2)(x2-mx-n)=x3-mx2-nx-2x2+2mx+2n=x3-(m+2)x2+(2m-n)x+2n. 因为不含x2项和x项,所以()20,20.mm n-+=-=⎧⎨⎩解得2,4.mn=-=-⎧⎨⎩所以这两个多项式的乘积为x3-8.13.A2-B2=(2x+y)2-(2x-y)2=(4x2+4xy+y2)-(4x2-4xy+y2)=4x2+4xy+y2-4x2+4xy-y2=8xy.14.(1)原式=a2+4a+4+1-a2=4a+5.当a=-34时,原式=4×(-34)+5=2.(2)原式=4x2-4xy+y2-4(x2-4y2)=4x2-4xy+y2-4x2+16y2=-4xy+17y2. 当x=2,y=-1时,原式=-4×2×(-1)+17×(-1)2=25.15.(1)原式=-(14)50×(22)50=-(14×4)50=-1.(2)原式=2 0002-2×2 000×1 999+1 9992=(2 000-1 999)2=1.(3)原式=(1 000-1)×(1 000+1)=1 0002-12=999 999.16.(1)1625=(24)25=2100.因为2100>290,所以1625>290.(2)2100=(24)25=1625,375=(33)25=2725.因为1625<2725,所以2100<375.17.因为162×43×26=(24)2×(22)3×26=220=22x-1,所以2x-1=20,即2x=21.因为(102)y=102y=1012,所以2y=12,即y=6.所以2x+y=21+6=27.。