第七章 油水两相渗流理论汇总
- 格式:ppt
- 大小:1019.50 KB
- 文档页数:8
第一章 渗流力学基本概念和定律1、多孔介质(porous medium ):含有大量任意分布的彼此连通的且形状各异、大小不一的孔隙的固体介质。
2、渗流(permeability ):流体通过多孔介质的流动,也叫渗滤。
3、油藏:具有统一压力系统的油气聚集体4、渗流力学:研究流体在多孔介质中的运动形态和规律的科学。
5、油气层是油气储集的场所和流动空间6、定压边界油藏:层体延伸到地表,有边水供给区,在边界上保持一个恒定的压头。
7、封闭边界油藏:边界为断层或尖灭 没有边水供给 渗流中的力学分析及驱动类型:力学分析:重力、惯性力、粘滞力(大小用牛顿内摩擦定律表示1mPa·s =lcP )、弹性力、毛管力。
驱动类型:依靠何种能量把原油驱入井底。
弹性驱动、水压驱动、溶解气驱、气压驱动(主要靠气顶气或注入气的膨胀能或压能驱油的驱动方式。
刚性气压驱动、弹性气压驱动)、重力驱动 不同驱动方式及开采特征总结:1、能量补充充足(边、底水,气顶、注水/气):刚性驱动:刚性气/水驱;开采特征:Pe 、 Ql 、 Qo 有稳产段。
2、能量补充不充足(无边底水气顶注水注气或有而不足): 弹性驱动:弹性驱动、溶解气驱、弹性气/水驱;开采特征:Pe 、 Ql 、 Qo 均不断下降。
3、 凡是气驱的Rp 都有上升的过程,其它驱动方式Rp 不变。
溶解气驱、刚/弹性气驱4、 Qo 或Rp 的突然变化反映水或气的突破。
供给压力Pe :油藏中存在液源供给区时,在供给边缘上的压力。
井底压力Pw :油井正常生产时,在生产井井底所测得的压力称为井底压力,也称为流动压力,简称流压。
折算压力Pr :油藏中某点折算到某一基准面时的压力,它表示油层中各点流体所具有的总能量。
达西定律:在一定范围内△P 与Q 成直线关系,当流量不断增大,直线关系就会被破坏。
真实流速与渗流速度的关系达西定律适用条件: 液流处于低速、层流,粘滞力占主导地位,惯性主力很小,可忽略。
第七章 溶解气驱方式下流体的渗流规律任何一个油藏,其原油中总是溶有相当多的天然气。
无论油藏是开启的还是封闭的,当油井的井底压力低于饱和压力时,在井底附近的一定范围内原来溶解在油中的天然气将分离出来,在该区域内形成油气两相渗流,随着地层压力的进一步降低,两相区有可能扩大到整个地层。
当地层压力低于饱和压力时,全油藏将形成油气两相渗流。
溶解气驱是采收率最低的一种驱动方式,采收率一般在5%~25%,然而,由于它完全依靠天然能量进行开采,因此,成本较低。
理论计算证明,地层压力比饱和压力低20%左右不会降低采收率,实际往往并非如此。
所以,即使是以后准备注水开发的油藏,当它在低压下注水开发效果也较好时,开发初期可以采用溶解气驱开采一段时间。
这样做可以降低注水压力和生产成本,提高经济效益。
所以,研究油气两相渗流具有很大的现实意义。
第一节 油气渗流的基本微分方程通过前几章的学习,我们清楚地认识到要解决任何一种渗流问题,首先必须建立与该问题相对应的基本微分方程式,即数学模型,建立油气两相渗流的基本微分方程,也要从取单元体(在直角坐标系下就是平行六面体)开始,然后根据质量守恒定律建立连续性方程。
所不同的是在研究油气两相渗流时,我们将渗流过程中的油气体积都换算到地面标准条件下的体积,这样的话,质量守恒就可以用体积守恒来代替。
设在油气两相渗流区内任取一微小的六面体(图7.1),其中心M 点处原油的流速0V ,体积系数为0B ,自由气的流速为g V ,体积系数为g B 。
不妨假定油气沿x,y,z 方向流入和流出六面体,则M 点油相换算到标准条件下的渗流速度在x 方向上的分量是:oxV B 因为所取得六面体的边长dx 很小,可以认为速度在这个范围内按线性变化,dt 时间内沿x 方向流入六面体内的原油标准体积为:001()2ox ox V V dx dydzdt B x B ⎡⎤∂-⎢⎥∂⎣⎦同理,dt 时间内沿x 轴方向流出六面体的原油标准体积为:001()2ox ox V V dx dydzdt B x B ⎡⎤∂+⎢⎥∂⎣⎦从而求得dt 时间内沿x 方向流入与流出六面体的原油标准体积之差为:()oxV dxdydzdt x B ∂-∂ 同理,可以求得dt 时间内沿y 和z 方向流入与流出六面体的原油标准体积之差为:()oyV dxdydzdt y B ∂-∂()ozV dxdydzdt z B ∂-∂ 所以,dt 时间内沿x,y 和z 轴三各方向流入与流出六面体的总的原油标准体积之差为: 000()()()oy ox oz V V V dxdydzdt x B y B z B ⎡⎤∂∂∂-++⎢⎥∂∂∂⎣⎦ (7.1) 而六面体内油相的标准体积在dt 时间内的增量为:00()S dxdydzdt t B φ∂∂ (7.2) 式中:0S ——油相饱和度;φ——孔隙度,如果不考虑岩石弹性,则φ=常数。
油藏油水两相渗流特征研究油藏油水两相渗流特征研究指的是对具有油水两种相的地下储层中流体运移过程进行分析和研究,以解析油藏中油水相间的相互作用及其对油藏开发和生产的影响。
下面将从原理、特征及影响等方面进行详细介绍,以期更好地理解油藏油水两相渗流特征。
首先,油藏油水两相渗流的原理是基于多相流理论。
地下油藏中油水两相存在共存,每个相都受到渗流过程中的岩石孔隙结构和岩石表面张力等影响。
油水两相的运动会相互干扰,从而影响油藏的开采效果。
油相的渗流受到表面张力的作用,而水相的渗流则受到毛细力的影响。
同时,油水两相之间的界面张力也会影响两相之间的相互转化和流体的分布。
其次,油藏油水两相渗流的特征体现在以下几个方面。
首先,油藏中油水相的分布会受到岩石孔隙结构的限制,不同的孔隙尺度和孔隙连通程度会导致油水相分布的非均匀性。
其次,两相渗流会存在于不同的渗流状态中,包括饱和渗流、非饱和渗流和混相渗流等。
不同的渗流状态会导致两相的流动特征和渗透能力有所不同。
最后,油水两相会发生相间的运移,即油相和水相会在渗流过程中相互转化。
这种相间运移会影响油藏中的渗流行为和生产动态,对油气开发产生重要影响。
最后,油藏油水两相渗流的特征对油气开发和生产有着重要的影响。
首先,了解和研究油藏油水两相渗流特征可以帮助评估储层的物理性质和渗流能力,为开发方案的制定和调整提供依据。
其次,油藏中油水两相的相互作用与运动对油气的产出和采收率有着重要的影响。
通过深入研究油藏中油水两相渗流的特征,可以优化开采方案,提高采收率,减少技术和经济风险。
此外,还可以通过研究油藏中的油水两相渗流特征来评估油藏的剩余储量和可采储量,为资源评价和油气储量估算提供依据。
综上所述,油藏油水两相渗流特征研究对油气开发和储层评价具有重要作用。
通过对油藏中油水两相渗流的原理、特征及其影响进行深入研究,可以更好地理解油藏中油水相的相互作用和运动规律,为优化油气开发方案以及评估油藏剩余储量提供科学依据。
摘要本文根据拟三维原理,将理论分析方法和一维油水两相渗流理论相结合,求解分支水平井单井和井网三维两相非活塞渗流问题。
采用适当的保角变换,将XY 平面二维两相复杂渗流问题转化为一维两相问题求解,从而确定出水平井在油水两相流条件下XY平面内的渗流阻力和水平井的水驱油前缘推进方程;根据一维渗流条件下见水前后的无因次时间和无因次见水时间,确定出水平井见水前后的无因次时间和无因次见水时间。
根据W平面内水平井见水前及见水后产量和时间的计算公式,确定分支水平井见水前和见水后产量随时间的变化规律。
该理论的建立为水平井注水开发油田的动态分析和预测提供了依据;利用保角变换还建立了含启动压力梯度的水平井两相渗流的数学模型。
关键词:水平井;油水两相;渗流理论AbstractThe article use the pseudo three-dimensional methodology combine the theoretical analysis and the 1-D and 2-phase percolation theory of oil and water, solve a problem of horizontal well and well patterns and the 3-D and 2-phase flow of oil and water in non piston-like transfusion . Adopting a suitable conformal transformation, change the complex 2-D and 2-phase flow in XY plane of horizontal wells into a simple 1-D and 2-phase flow problem determine seepage resistance and water-flooding front equation in this plane. According to the pre-water breakthrough dimensionless time and dimensionless water breakthrough time in 1-D and 2-phase flow, determining the pre-water breakthrough dimensionless time and dimensionless water breakthrough time of horizontal well. According the calculate equation of water breakthrough and after outcome and time in W plan to determine the rule that breakthrough and after outcome change with time of branch horizontal well. This theory can provide valuable basis for dynamic analysis and prediction of water-flooding development field for horizontal well, adopting conformal transformation establish a startup pressure gradient of the horizontal wells two-phase flow mathematical model.Key words:horizontal well; oil-water 2-phase; flow theoretical目录第1章概述 (1)1.1 立论依据及研究的目的意义 (1)1.2 国内外研究现状 (2)1.3 本文主要研究内容 (4)第2章水平井开发渗流理论 (5)2.1 水平井开发渗流理论 (5)2.2 分支水平井产能研究 (9)2.3 产能的影响因素 (13)2.4 小结 (14)第3章水平井水驱两相渗流理论 (15)3.1 水平井油水两相渗流数学模型及模型的解 (15)3.2 水平井油水两相渗流非活塞驱替理论 (19)3.3 水平井油水两相渗流开发指标计算 (19)3.4 小结 (20)第4章水平井井网渗流理论 (21)4.1 井网布井方式(一)—四井底水平井及直井联合开采 (21)4.2 井网布井方式(二)—水平井及水平井联合开采井网 (25)4.3 井网布井方式(三)—两井底水平井及直井联合开采 (27)4.4 三种井网的对比分析 (27)第5章低渗透油藏中水平井两相渗流分析 (31)5.1 两相流体水平井椭球渗流模型 (31)5.2 小结 (35)结论 (36)参考文献 (37)致谢 (38)第1章概述1.1 立论依据及研究的目的意义水平井用于提高油气井的产量和提高采收率的试验开始于二十世纪的二十年代末。
油藏油水两相渗流特征研究
油藏油水两相渗流是指在地下油气储层中,油和水两种不同相的流体同时存在并相互渗透的现象。
这是油田开发和管理中一个重要的研究领域,涉及到油藏工程、地质学、岩石力学等多个学科。
以下是对油藏油水两相渗流特征的一些常见研究方向:
1.相对渗透率:相对渗透率描述了油和水在不同饱和度下的相对
渗透能力。
这是一个关键参数,影响着两相流体在储层中的分
布和产量。
2.渗流模型:渗流模型是描述油藏中流体运移的数学模型。
对于
油水两相渗流,常用的模型包括相对渗透率模型、饱和度模型
等。
这些模型有助于理解油水两相在储层中的行为。
3.油水界面移动:研究油水界面的移动对于了解油藏中油水分布
的动态变化至关重要。
这涉及到界面稳定性、渗流速度等方面
的研究。
4.相分离:在一些情况下,油藏中的油水两相可能发生相分离现
象,即油和水在储层中形成分散相或分层。
研究相分离的机制
和影响对于油田开发策略的制定具有重要意义。
5.渗透调整技术:为了提高油田的采收率,一些调整油水相对渗
透性的技术被广泛研究,如水驱、聚合物驱等。
这些技术有助
于优化油藏中两相渗流的性能。
6.地质特征影响:地质特征,如岩性、孔隙结构等,对油水两相
渗流也有着显著的影响。
研究这些地质特征对渗流行为的影响,
可以为油藏管理提供更准确的信息。
以上只是油藏油水两相渗流特征研究的一些方向,实际上这个领域非常复杂,需要综合考虑地质、物理、化学等多方面因素。
研究这些特征有助于更有效地开发和管理油田资源。