第六章油水两相
- 格式:ppt
- 大小:2.34 MB
- 文档页数:68
学校代码:11414学号:B0202080油-水两相管流流动规律研究(申请中国石油大学工学博士学位论文)学科专业:油气储运工程研究方向:多相管流及油气田集输技术研究生:姚海元指导教师:宫敬教授2005年7月Study on Oil-Water Two PhasePipe FlowDissertation Submitted toChina University of PetroleumIn partial fulfillment of the requirementsFor the degree ofDoctor of EngineeringByYao,HaiyuanOil & Gas Storage and TransportationDissertation SupervisorGong, Jing (Professor)2005.7独创性声明我呈交的学位论文是在导师指导下个人进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得其他学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
特此声明。
声明人(签名):年月日关于论文使用授权的说明本人完全了解中国石油大学有关保留、使用学位论文的规定,即:学校有权保留送交学位论文的复印件,允许学位论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存学位论文。
特此说明。
说明人(签名):指导教师(签名):年月日摘要油-水两相流动是普遍存在于石油、石化工业中的一个现象。
然而,由于油-水两相流动的复杂性,目前,国内、外学者对油-水两相流的认识还很不清楚,其研究进展相当缓慢。
尤其是对于稠油-水两相管流流动规律的研究,所进行的这方面的实验很少,还存在相当大的空白,从而制约了油-水两相管流理论的进一步完善。
双液相(油-水)相分离工艺及设备综述1 油水两相分离方法概述油类物质在水中的存在形式多种多样,受水体的性质、水中所含的表面活性剂和电解质等物质的影响而有所不同。
含油污水中的油主要以上浮油、分散油、乳化油、溶解油、固体附着油五种状态存在[1][2]。
(1)上浮油:以连续相的油膜飘浮在水面,油珠颗粒较大,一般大于l00μm,进入水体的油份大部分以上浮油形式存在;(2)分散油:粒径为10-100μm的微小油珠悬浮在水相中。
分散油不稳定会聚并形成较大的油珠,往往变成上浮油,也可能进一步转化成乳化油;(3)乳化油:粒径小于10μm的极微细的油珠,往往因水中含有表面活性剂使油珠形成稳定的乳化液,因而较难处理。
油水乳化液可分为2种类型:一种是以油为分散相,水作为连续相,称为水包油型乳状液,以O/W型表示;另一种是以水为分散相,油作为连续相,称为油包水型乳状液,以W/O型表示[3]。
乳液中分散相的液滴大小通常在10-7~10-5m;(4)溶解油:以分子状态或化学方式分散于水中,油滴直径比乳化油粒径还要细,有时可小到几纳米。
油份和水形成均相体系,非常稳定,很难用普通的方法去除;(5)固体附着油:吸附于污水中固体颗粒表面的油。
浮油状态的油滴易形成油膜浮在污水表面,在工业上往往采用集油管和刮油器能够方便地除去。
分散油在水中的含量也不可忽视,因为其粒径较大,可以采用一些方法使其聚结并加以去除。
乳化油和溶解油粒径很小且存在形式较为稳定,通过常规的分离方法很难将其聚结分离,因此开发处理乳化油和溶解油的工艺是当前研究的重点所在。
不同的油水混合液需要不同的分离方法,常见的有物理法、化学法、物理化学法及生物法四类[4]。
1.1 物理法(1)重力沉降分离法重力沉降技术主要利用油水两相的密度差异使混合液中的油与水分离,用于去除粒径大于60μm的较大油滴和废水中的大部分固体颗粒。
常用设备包括重力沉降罐、隔油池、压力斜板沉降罐等。
该类方法设备结构简单,易操作,除油效果稳定,但对溶解性油类或乳化油是不适用的。
油藏油水两相渗流特征研究油藏油水两相渗流特征研究指的是对具有油水两种相的地下储层中流体运移过程进行分析和研究,以解析油藏中油水相间的相互作用及其对油藏开发和生产的影响。
下面将从原理、特征及影响等方面进行详细介绍,以期更好地理解油藏油水两相渗流特征。
首先,油藏油水两相渗流的原理是基于多相流理论。
地下油藏中油水两相存在共存,每个相都受到渗流过程中的岩石孔隙结构和岩石表面张力等影响。
油水两相的运动会相互干扰,从而影响油藏的开采效果。
油相的渗流受到表面张力的作用,而水相的渗流则受到毛细力的影响。
同时,油水两相之间的界面张力也会影响两相之间的相互转化和流体的分布。
其次,油藏油水两相渗流的特征体现在以下几个方面。
首先,油藏中油水相的分布会受到岩石孔隙结构的限制,不同的孔隙尺度和孔隙连通程度会导致油水相分布的非均匀性。
其次,两相渗流会存在于不同的渗流状态中,包括饱和渗流、非饱和渗流和混相渗流等。
不同的渗流状态会导致两相的流动特征和渗透能力有所不同。
最后,油水两相会发生相间的运移,即油相和水相会在渗流过程中相互转化。
这种相间运移会影响油藏中的渗流行为和生产动态,对油气开发产生重要影响。
最后,油藏油水两相渗流的特征对油气开发和生产有着重要的影响。
首先,了解和研究油藏油水两相渗流特征可以帮助评估储层的物理性质和渗流能力,为开发方案的制定和调整提供依据。
其次,油藏中油水两相的相互作用与运动对油气的产出和采收率有着重要的影响。
通过深入研究油藏中油水两相渗流的特征,可以优化开采方案,提高采收率,减少技术和经济风险。
此外,还可以通过研究油藏中的油水两相渗流特征来评估油藏的剩余储量和可采储量,为资源评价和油气储量估算提供依据。
综上所述,油藏油水两相渗流特征研究对油气开发和储层评价具有重要作用。
通过对油藏中油水两相渗流的原理、特征及其影响进行深入研究,可以更好地理解油藏中油水相的相互作用和运动规律,为优化油气开发方案以及评估油藏剩余储量提供科学依据。
中国工程热物理学会多相流学术会议论文编号:086098 油水两相流流型特性研究吕宇玲,何利民,罗小明(中国石油大学(华东)储运与建筑工程学院,山东东营 257061)(Tel: 0546-8390736, Email: lyl8391811@)摘要:油水两相流流型是油水两相流的研究基础,本文通过自制环状电导探针、摄像和照相等方法,同步采集了持液率、压力、压差等信号,结合摄影图片来识别和划分了流型。
通过研究所采集信号的特征发现,在本研究中油水两相流的流型可分为两大类共六种流型:分层流、混合界面分层流、O/W&W 分散流、O/W分散流、W/O&O/W混合流和W/O分散流,并绘制了油水两相流流型图。
关键词:多相流;油水两相流;流型;划分0 前言油水两相流广泛存在于石油的开采和运输过程中,只有充分掌握油水两相流的流动特性,才能保证设备安全、经济地运行。
油水两相流的流型是油水两相流和油气水三相流的研究基础,近年来,一些学者针对油水两相流流型进行了大量的研究,通常采用可视观察、照相、高速摄像、电导探针、电阻探针及γ射线密度计等测试手段来采集流型的特征。
从国内外发展来看,除Simmons&Azzopardi[1]和Lovick&Angeli[2]流型图外,其它研究者的流型图均包括:分层流(ST)、混合界面分层流(ST&MI)、水层上部水包油分散流(D O/W&W)、水包油分散流(O/W)、油包水和水包油混合流(D W/O&D O/W)及油包水分散流(W/O)。
此外,在Nadler&Mewes[3]和Simmons&Azzopardi[1]流型图中包括水层上部油包水分散流(D W/O&W),Soleimani[4]和Angeli&Hewitt[5,6]流型图中包括油层上部油包水分散流(D W/O&O)。
Angeli等人[6]把水平管中油水两相流的流型分为:波状分层流(SW),混合界面波状分层流(SWD),三层流(3L),分层混合流(SM),完全分散或混合流(M)。
油藏油水两相渗流特征研究
油藏油水两相渗流是指在地下油气储层中,油和水两种不同相的流体同时存在并相互渗透的现象。
这是油田开发和管理中一个重要的研究领域,涉及到油藏工程、地质学、岩石力学等多个学科。
以下是对油藏油水两相渗流特征的一些常见研究方向:
1.相对渗透率:相对渗透率描述了油和水在不同饱和度下的相对
渗透能力。
这是一个关键参数,影响着两相流体在储层中的分
布和产量。
2.渗流模型:渗流模型是描述油藏中流体运移的数学模型。
对于
油水两相渗流,常用的模型包括相对渗透率模型、饱和度模型
等。
这些模型有助于理解油水两相在储层中的行为。
3.油水界面移动:研究油水界面的移动对于了解油藏中油水分布
的动态变化至关重要。
这涉及到界面稳定性、渗流速度等方面
的研究。
4.相分离:在一些情况下,油藏中的油水两相可能发生相分离现
象,即油和水在储层中形成分散相或分层。
研究相分离的机制
和影响对于油田开发策略的制定具有重要意义。
5.渗透调整技术:为了提高油田的采收率,一些调整油水相对渗
透性的技术被广泛研究,如水驱、聚合物驱等。
这些技术有助
于优化油藏中两相渗流的性能。
6.地质特征影响:地质特征,如岩性、孔隙结构等,对油水两相
渗流也有着显著的影响。
研究这些地质特征对渗流行为的影响,
可以为油藏管理提供更准确的信息。
以上只是油藏油水两相渗流特征研究的一些方向,实际上这个领域非常复杂,需要综合考虑地质、物理、化学等多方面因素。
研究这些特征有助于更有效地开发和管理油田资源。
毫微米级水平上油水两相流动的研究油水两相流动是我们生活中经常遇到的现象,在工业制造和生产中也有广泛应用。
毫微米级水平上的油水两相流动是一种常见的微观现象,具有重要的应用价值和科学意义。
因此,毫微米级水平上油水两相流动的研究备受重视。
一、背景油水两相流动是指油和水等液体在同一介质中混合或分布的运动状态。
毫微米级水平上油水两相流动已成为许多领域的研究热点,如分离技术、电力、化工、冶金等。
其中,分离技术是当前最为热门的领域之一。
随着现代科技的发展,人们对油水两相流动的研究越来越深入,也发现它的复杂性和不确定性。
因此,深入研究毫微米级水平上油水两相流动的机理和特性对于实现高效分离和清洁能源的开发具有重要意义。
二、存在的问题毫微米级水平上油水两相流动涉及复杂的物理机制和相互作用过程,存在诸多问题。
其中,最主要的问题是液滴在流动过程中的聚集和沉降现象,这极大的影响了油水的混合和分离过程。
另外,饱和水膜的形成、粘附现象以及液体与表面的相互作用等也是研究的难点。
三、研究进展目前,毫微米级水平上油水两相流动的研究主要基于数值模拟和实验观测。
利用数值模拟方法可以模拟出流体在微细结构上的运动状态和特征,提供了研究所需的定量数据。
实验观测则是对数值模型验证,可以直观地展现油水两相流动的形态和特征,发现一些未被模型覆盖的现象。
近年来,新的实验方法和技术的不断发展和应用,为毫微米级水平上油水两相流动的研究带来了新的思路和方法。
例如,梯度纳米孔膜、微纳米电极阵列和激光荧光等技术的应用均为该领域的研究带来了新的突破。
四、研究意义毫微米级水平上油水两相流动涉及诸多领域,具有广泛的应用价值。
研究毫微米级油水两相流动的机理和规律,探究液滴聚集、沉降行为等动力学特性,有助于更好地解决分离和净化问题。
在环保和能源领域,研究毫微米级油水两相流动所产生的表面张力变化和液滴的相互作用,不仅可以为清洁能源策略提供依据,还可以帮助人们更好地了解环境问题的本质。
第六章 油水两相渗流理论基础油气运移理论认为储层原为水所饱和,而油是在后来的某一时间才运移来的。
迄今为止,人们还没有发现孔隙空间中绝对不含水的油气藏。
地层固有水饱和度称为原生水或间隙水饱和度。
仅这些水的存在,除了减少储存烃类物质的孔隙空间外,也构成了孔隙空间中的多相(至少两相)流体体系。
另外,诸多大油区成功经验表明,起源于19世纪下叶的注水采油能够显著提高原油最终采收率,这一技术在20世纪40年代之后蓬勃发展,由注水所引起的多相渗流问题一直被国内外研究者重视,并相继取得了一系列成果。
在理论上,Richards (1931)最先开始了未饱和土壤中毛管束气—液两相流动的研究,之后Wyckoff 和Botset (1936)在研究未饱和土壤中气—液两相渗流时,首先提出了相对渗透率的概念。
Muskat 和Merese (1937)运用相对渗透率的概念先将Darcy 定律推广到了多相流体渗流之中。
诚如Scheidegger (1972)所说,Darcy 定律的这种推广只能有条件的成立,即相对渗透率不受渗流系统的压力和速度影响,而只是流体饱和度的单值函数(Muskat 假设)。
Leverett (1939,1941)、Leverett 和Lewis (1941)、Buckley 和Leverett (1942)相继完成了孔隙介质二相驱替机理。
关于二相或者三相流动的细观研究成果几乎都是基于Leverett 等人的理论推广而进行的。
在宏观渗流方面,主要贡献者有Perrine (1956)、Martin(1959) 、Weller(1966)、Raghavan (1976)、Aanonsen (1985)、Chen (1987)、Al-Khalifah (1987)、B φe (1989)、Camacho-V 和Standing (1991)、Thompson (1995)等,主要成果有P-M 近似模型、拟压力模型、拟压力拟时间模型及压力平方模型等。
油水两相流油水比例计算哎,说到油水两相流油水比例计算,这事儿可真不是闹着玩的。
你想想,这可是关系到石油开采效率的大问题。
不过,别急,咱们慢慢来,用大白话聊聊这事儿。
首先,得明白啥叫油水两相流。
简单来说,就是油和水在管道里一起流动。
这俩家伙,一个轻一个重,一个滑一个黏,要让它们和谐共处,可得费点心思。
咱们的目标,就是算出这油和水的比例,好让工程师们调整设备,提高效率。
好了,说正事儿。
咱们得先有个测量工具,比如流量计。
这玩意儿能测出油和水各自的流量。
不过,这还不够,咱们还得知道油和水的密度。
为啥呢?因为同样的体积,油和水的重量可不一样。
所以,得用密度来换算成重量。
接下来,就是计算了。
咱们可以用个简单的公式:油水比例 = (油的流量× 油的密度) / (油的流量× 油的密度 + 水的流量× 水的密度)。
这公式看着复杂,其实挺简单。
就是把油的流量和密度相乘,再除以油和水的总流量和密度的乘积。
举个例子,假设油的流量是100立方米/小时,密度是0.8克/立方厘米;水的流量是200立方米/小时,密度是1.0克/立方厘米。
那油水比例就是(100 × 0.8)/(100 × 0.8 + 200 × 1.0)= 0.33。
也就是说,油占33%,水占67%。
不过,这事儿还没完。
你得知道,油和水的流动状态会影响比例。
有时候,它们会分层流动,有时候又会混合。
这就需要用到更复杂的模型和算法了。
不过,这些就留给工程师们去头疼吧。
总之,油水两相流油水比例计算,听起来高大上,其实也就是那么回事儿。
关键是得有准确的数据,然后用个简单的公式一算,就能得出结果。
不过,这结果可关系到石油开采的效率,所以一点儿也不能马虎。
最后,别忘了,这事儿得经常做。
因为油井里的油水比例是会变化的,得随时调整设备,才能保证效率。
所以,这油水比例计算,虽然简单,但也挺重要的。
咱们今天就聊到这儿,下次再聊别的。