发动机与液力变矩器
- 格式:ppt
- 大小:1.43 MB
- 文档页数:15
液力变矩器作用液力变矩器是一种机械传动装置,由泵轮、涡轮和导向叶片组成。
它的作用是将发动机产生的转矩通过液体传递到车辆的传动系统中,从而实现车辆的运动。
一、液力变矩器的构成1.泵轮泵轮是液力变矩器中的一个重要部件,它由几十个弯曲叶片组成。
当发动机启动时,泵轮开始旋转,并通过离合器与发动机相连。
当泵轮旋转时,它会将油液吸入并向外喷出,从而形成一个液体环流。
2.涡轮涡轮是另一个重要部件,它与泵轮相对应。
当泵轮旋转时,它会使油液流过导向叶片并进入涡轮中心。
这时,油液会被旋转起来,并带着能量向外喷出。
3.导向叶片导向叶片是用于控制油流方向和速度的零件。
它们位于泵轮和涡轮之间,并通过调整其位置来改变油流方向和速度。
二、液力变矩器的工作原理液力变矩器的工作原理非常简单。
当发动机启动时,泵轮开始旋转,并将油液吸入。
这时,导向叶片会将油液引导到涡轮中心,并使其旋转起来。
涡轮旋转时,它会带着能量向外喷出,并通过传动轴将能量传递到车辆的传动系统中。
同时,由于油液的粘性和泵轮和涡轮之间存在一定的距离,因此在传输能量的过程中会产生一定的滑动损失。
这种滑动损失可以通过调整导向叶片的位置来减小。
三、液力变矩器的优点1.平稳性好由于液力变矩器采用了流体传输能量的方式,因此它具有非常好的平稳性。
无论是启动还是行驶过程中,都可以保证车辆运行平稳。
2.起步顺畅由于泵轮和涡轮之间存在一定距离和滑动损失,因此在起步阶段可以提供更大的扭矩输出。
这使得车辆可以更快地加速并顺畅地起步。
3.适应性强由于液力变矩器可以通过调整导向叶片的位置来改变油流方向和速度,因此它可以适应不同的工作条件和驾驶习惯。
这使得车辆可以在不同的路况下更加灵活地运行。
四、液力变矩器的缺点1.能量损失大由于液力变矩器采用了流体传输能量的方式,并且存在一定的滑动损失,因此它的能量损失比较大。
这使得车辆在行驶过程中需要消耗更多的燃料。
2.效率低由于液力变矩器存在一定的滑动损失和能量损失,因此它的效率比较低。
液力变矩器匹配分析方法摘要:发动机与自动液力变矩器配合后,可以看做是一个新的动力源,其配合程度,直接影响车辆动力经济性能。
本文针对平原和高原两个环境下,发动机不同表现情况下,发动机特性对液力变矩器进行匹配分析作出了总结。
本文适合用于以内燃机(汽油或柴油)为动力装置的 M1 类和 N1 类车辆。
关键词:平原工况;高原工况;输入特性曲线;输出特性曲线1术语和定义下列术语和定义适用于本文。
转速比 i speed ratio:液力变矩器涡轮转速 nW 与泵轮转速 nB 之比。
变矩比 K torque ratio:液力变矩器涡轮转矩TW 与泵轮转矩TB 之比。
转矩系数 torque factor:液力变矩器转矩T 与其几何参数(有效直径 D)、油液密度及转速 n 的关系。
传动效率transmissionefficiency:液力变矩器输出功率 PW 与输入功率 PB 之比。
原始特性 primary characteristic:液力变矩器的变矩比 K 、传动效率及转矩系数随转速比 i 变化的特性。
2液力变矩器匹配分析2.1发动机与液力变矩器匹配要求1)液力变矩器平原工况符合匹配原则;a)为使车辆在起步时获得最大扭矩,液力变矩器起步工况的负荷抛物线应在发动机最大净扭矩点附近;b)为使车辆具有良好的动力性,要求液力变矩器在整个工作范围内能充分利用发动机的功率,液力变矩器最高效率工况处于发动机额定功率点附近;c)为使车辆具有良好的燃油经济性,这就要求液力变矩器与发动机共同作用范围处于发动机最低燃油消耗率附近。
2)高原工况下,车辆能够正常行驶: a)车辆满载时,在高原干砂路面25%坡度道路上能正常行驶。
b)车辆在原地打转向起步工况,能正常起步。
c)发动机失速点必须大于涡轮增压器开始工作点(一般不小于2000rpm)。
2.2发动机与液力变矩器共同工作特性2.2.1资料输入——发动机参数输入表a)发动机万有特性数据;b)发动机高原工况外特性数据;——液力变矩器特性数据表;——整车参数输入表——液力助力转向泵功率消耗图2.2.2绘制输入特性曲线1)将发动机平原转矩外特性和高原转矩外特性分别乘以85%,然后画出发动机特性图;2)在液力变矩器的原始特性曲线上,选取特征工况(起步工况转速i0=0;效率大于75%的高效区宽度端转速比i1=0.58、i2=0.9;偶合工况转速比iM=0.85;最大转矩工况imax=0.6。
维普资讯 ・44・2rO一机械科学与技术M.—s。
第l卷6{M一)一一)(/(I1~≥M≥M.≥ ^(54)fo.一H≤{H一")(一n)(一/H…L【1rO≤n.…≤,H≤… M(64);一(一M11)(.M一/06)M06.M.06.MM(74)43多目标模糊优化问题求解.该多目标模糊优化问题常转化为求解如下的单目标模糊优化问题。
FidnmaxX一(,,,l2asf..()焉0XNjX)((一12,,5,34・)(;l23,.)0≤ 1式中,为辅助变量;。
x)(g(=12345.,.,)为式(34)~(7给出的模糊约束条件。
4)为解上式,采用最优水平裁集将其转化为非模糊优化问题。
可限于篇幅・解模型在此求略去。
问题变为普通优化问题,采用相应方法求解。
该可传动系统参数的多目标模糊优化的处理同上。
I01Dl0l0H200锄?0。
3910400e00lD20}00620fⅧ …【1『=捌5算倒某集装箱叉车,一1tG一2tI]=3khEg]=02.Q2.2…v0m/,ro.0f=00.nt.2[一=0O,.2[]=005r=06m。
.2,.563QK,10ⅣH一18W1k=20rmi,一=00/n70・m0N按本文模型,目标函数取相同重要程度,到:且得发动机:液力变矩器:353K=28YJ7o,n.,一09.1维普资讯 第3期邓斌:渡力叉车发动机与液力变矩器的匹配及传动系缱参数的优化・45・2发动机与液力变矩器的共同工作输入特性和输出特性分别如图1图2示。
、所传动系统参数为:S一3q=17.1:91/n.t,.6I2mirz=15rmii=5...1.4ri62/n48=76。
lZ34S6789参GinLuaZrt.doyacTaraotHyrdnmi考文献PrmeesOpiztnSaatrtmiai.AEppr705oae757王彩毕,宋连天.模榴论方法学.北京;中国建筑工业出版杜,9818黄宗益.薛瑞祺,阎以诵.工程矾槭C.AD上海:同济大学出版杜.9119陆植.叉车设计.北京机槭工业出艇杜,9119凌忠社.车用液力变矩器的选择与匹配.叉起重运输机槭.981)218(2;~9胡修章.车用柴油机的废气捧放及其与液力变矩器匹配的关系.工程机械.91】)2 ̄318(0:40孙大刚,请文农,杜涛,李刚.液力机饿传动式重型汽车传动比的优选.建筑机械.955:019()】~I4王彩华,朱煜东.多目标优化模蝴解法中目标权重的处理方法.重庆大学学报.9()9~912l6:2795于光远.程软设计理论.京:工北科学出敝社+9219OpiztnoohMacigadPaaeesornmisotmiaifBtthnnrmtrfTassinoSseoyruicvtrFokitytmfrHdalcExaaorlfDegBinn(otwetJatniest—egu603)SuhsioogUnvriyChnd101Alta ̄Thlojcuzpimdlfbtthnewenegnnyruioqecn ̄r ̄semutbetfzyotmumoeohmacigbtenieadhdaltruo.locvrenaatrftassinssefrhdaeecvtrfrltipeetdIhsmoe。
自动变速器的液力变矩器的作用及工作原理液力变矩器是自动变速器的重要组成部分,它的作用是将发动机输出
的转速和转矩转化为适合车轮的运动状态,实现汽车的行驶。
液力变矩器
是一种基于液体流体的转矩变换机构,利用高速旋转的液体空气混合物来
传递发动机的动力。
液力变矩器主要由泵轮、涡轮及液力传动液体组成。
发动机的动力被
传递到泵轮上,泵轮将动力转化为流体动能,推动液体流入涡轮,涡轮受
到液体的冲击力使其旋转,并将液体的动能转化为机械能,推动车轮。
液
力变矩器的变矩特性可以实现汽车行驶时的启动、变速、车速调节等功能。
液力变矩器的工作原理是基于液体的运动学原理。
当液体流过两个叶
轮时,液体产生的动量和作用力使得叶轮具有旋转动量。
泵轮叶片的转动
驱动液体流经涡轮叶片的尖端,从而产生巨大的液体压力,涡轮受到液体
压力挤压变形,因而产生强烈的涡流和涡旋。
涡流作用于涡轮的叶片,使
得涡轮中的液体分别流动,产生对车轮的驱动力,实现了汽车的运动。
简述液力变矩器的工作原理液力变矩器是一种常用于传动系统中的液压机构,其主要功能是将发动机的动力传输给变速器,以实现车辆的行驶。
液力变矩器的工作原理是利用液体的动能来进行动力传递,并调节转速和变矩。
液力变矩器由泵轮、涡轮和液力偶合器组成。
泵轮由发动机通过传动轴带动转动,而涡轮与变速器相连,用于输出动力。
液力偶合器充当了泵轮与涡轮之间的传递介质,使其能够通过液体的动能将动力传递下去。
在液力变矩器中,液体的动能传递是通过涡轮和泵轮之间相互作用的过程实现的。
当发动机启动时,液力变矩器的泵轮开始旋转,并将液体抛出,形成一个液体环流。
这个液体环流通过涡轮,使涡轮开始旋转。
涡轮上有许多扇叶,当液体环流经过涡轮上的扇叶时,液体的动能被吸收,从而转动涡轮。
液力变矩器中的液体环流不仅由泵轮驱动,同时也通过通过涡轮的转动产生的动力传递回泵轮,形成一个闭合的循环。
这种液体环流的闭合和动能的传递,使得发动机的动力通过液体传递到变速器,实现车辆的运动。
液力变矩器不仅可以传递动力,还能够调节转速和变矩。
当汽车需要快速起步或加速时,液力变矩器的工作原理通过液体环流的作用,能够增加输出动力和转矩,从而实现高速传动。
当车辆需要减速或停止时,液力变矩器通过减少液体环流的作用,降低输出动力和转矩,从而实现减速和停止。
液力变矩器的调速和变矩功能是通过调节液力偶合器的结构和液体的流量来实现的。
液力偶合器的结构和扇叶的形状可以调节液体环流的速度和方向,从而实现转速和转矩的调节。
同时,液体的流量也可以通过液力偶合器的结构来调节,进一步实现对转速和转矩的控制。
总结一下,液力变矩器通过液体的动能来实现动力传递,并通过液力偶合器的结构和液体的流量来调节转速和变矩。
其工作原理包括液体环流的形成和闭合、液体环流的动能传递以及液力偶合器的结构和液体流量的调节。
液力变矩器在传动系统中具有重要的作用,能够实现高效的动力传递和精确的转速调节。
液力变矩器的组成及各部分作用
液力变矩器是一种使用液体传递动力的机械设备,由输入轴、驱动叶轮、驱动分度轮、助力叶轮、泵轮、输出轴及外壳等部分构成。
各部分作用如下:
1. 输入轴:由发动机输出动力,通过输入轴带动液力变矩器工作。
2. 式样轮或驱动叶轮:由输入轴通过轴承支撑,通过同步干涉产生静压力,把驱动经由过程液力作用传递给次要轴。
3. 助力叶轮:它是驱动叶轮和驱动分度轮之间的中间接口,它起到很好的中转作用。
4. 泵轮:它是液力变矩器的泵,通过动力在液体中制造离心泵涡,同时把液体送到高压边。
5. 驱动分度轮:它是次要轴的动力部分,与泵轮通过液体产生离心力耦合。
通过静压作用将高压边的动力传递到低压边。
6. 输出轴:输出液力变矩器的工作功率,把变化后的转矩传递给传动系统。
7. 外壳:液力变矩器的主体部分,它不仅固定着各个部位,同时也承受着被传递出来的转矩。
同时,外壳也是液体流动的通道,起到润滑冷却的作用。
液力变矩器的工作原理
液力变矩器是一种通过液压传动实现扭矩调速和转矩传递的装置。
它由一对涡轮组成,即驱动轮和传动轮。
驱动轮连接到发动机的输出轴上,传动轮连接到传动系统中。
液力变矩器内部充满了液体——液力传动介质,通常是液力传动油或水。
液力变矩器的工作原理基于液体的动能转换。
当发动机启动时,发动机的输出轴带动驱动轮快速旋转,导致液力传动介质产生旋转的离心力。
这个离心力使液力传动介质周围生成涡流,向外边缘流动。
涡流在传动轮的叶片上形成涡旋,并推动传动轮旋转。
通过这种内部环流传导,在液力的作用下,动力从驱动轮传递到传动轮。
液力变矩器通过利用液体的黏性和流动特性实现扭矩调速。
当扭矩需求较小时,液力变矩器会使液力传动介质通过特殊构造的涡轮引导,降低耗能,从而减小扭矩输出。
而在扭矩需求增加时,液力变矩器会通过调整液力传动介质流动的方式,增加黏性,以增加扭矩输出。
此外,液力变矩器还具有液力传动储能的功能。
当发动机急速加速或减速时,液力变矩器内部的液力传动介质会储存一部分液体能量,在发动机速度与传动系统速度重新匹配时释放,从而保护发动机和传动系统的稳定性。
总结来说,液力变矩器通过利用液力传动介质的动能转换和液体的黏性特性,实现扭矩调速和传递。
它在汽车、重型机械和
船舶等领域广泛应用,在保证传动系统稳定性的同时,提供了较宽的扭矩输出范围。
简述液力变矩器的工作原理液力变矩器(Hydraulic Torque Converter)是一种利用液力传递力矩的装置,广泛应用于各种机械设备和车辆中,如汽车、船舶、起重机等。
液力变矩器通过液体的静压力和动力转换产生驱动力和加速扭矩,从而实现动力传递和变速的功能。
下面将详细介绍液力变矩器的工作原理。
液力变矩器由三个主要部件组成:泵轮(pump impeller)、涡轮(turbine impeller)和导向叶片组(stator)。
液力变矩器的工作原理可以分为三个阶段:涡流阶段(Torque Phase)、过渡阶段(Stall Phase)和轴向转动阶段(Acceleration Phase)。
1.涡流阶段(Torque Phase):在涡流阶段,发动机中的转动动力通过传动轴传递给液力变矩器的泵轮。
泵轮旋转产生离心力,使工作液体由泵轮中心向边缘流动,并向外界形成一个旋转的涡流区。
在该涡流区中,工作液体与涡轮叶片接触,产生一个相反的涡流方向。
由于涡轮上的涡流方向与泵轮的涡流方向相反,涡轮受到一个阻碍旋转的力矩。
该旋转涡流的力矩正是液力变矩器实现加速转动的原理。
2.过渡阶段(Stall Phase):当涡流阶段的涡流产生足够大的力矩时,涡轮开始转动。
转动的涡轮将工作液体重新引导回泵轮,形成一个封闭的液体环流,进入到下一阶段。
在此阶段中,液力变矩器起到传递转动力矩和承载转动负载的作用。
3.轴向转动阶段(Acceleration Phase):一旦涡轮开始转动,液力转换器就进入了轴向转动阶段,同时涡轮的旋转速度也开始加速。
液体在泵轮和涡轮之间的流动变得更加强烈,通过液流的不断加速转换能量,并继续传递转动力矩。
在此阶段中,液力变矩器将转动的动力传递给驱动轴,实现机械设备或车辆的加速。
总结起来,液力变矩器的工作原理是利用液体的静压力和动力转换产生驱动力和加速扭矩。
通过涡流阶段、过渡阶段和轴向转动阶段的连续工作,液力变矩器实现了动力传递和变速的功能。
液力变矩器工作原理
液力变矩器是一种利用液体传动力和转矩的装置。
它的工作原理主要有以下几个方面:
1. 回转运动:液力变矩器内部由两个相互嵌套的螺旋桨组成,一个称为泵轮,另一个称为涡轮。
泵轮和涡轮之间有一个密封的螺纹连接。
当发动机输出动力传递到泵轮时,泵轮会以高速旋转,将工作液体(通常是液体)分散到涡轮周围的密封螺纹空间中。
2. 工作液体传动力:当工作液体进入螺纹空间后,由于泵轮的旋转动力,工作液体会形成离心力,使其产生高速运动。
这种高速运动形成的动能会传递给涡轮上,使涡轮也以相对高速旋转。
3. 转矩传递:通过涡轮的高速旋转,液体会迫使涡轮与驱动轴相互连接,并将转动力传递给驱动轴。
这样一来,液力变矩器就可以实现将发动机的动力传递到车辆的驱动轴上。
4. 变矩效应:液力变矩器还具有自动变矩的特性。
在低速行驶或启动时,液力变矩器的工作液体会产生充分的转矩,使车辆具备足够的起步动力。
而在高速行驶时,液力变矩器的工作液体会流经特殊设计的螺纹空间,减小转矩传递的能力,从而减小发动机的负载。
总体来说,液力变矩器利用液体的运动和动能传递的原理,实
现了发动机动力的传递和转矩的变化,提高了车辆的行驶性能和平稳性。
液力变矩器速差计算公式液力变矩器是一种利用液体动力学原理来传递扭矩的装置。
它广泛应用于汽车和工程机械中,是一种重要的动力传动装置。
液力变矩器的速差计算公式是衡量其工作效率和传动质量的重要指标之一。
本文将介绍液力变矩器速差的计算公式,并探讨其对液力变矩器性能的影响。
液力变矩器的速差计算公式可以表示为:速差 = (输出轴转速 - 输入轴转速) / 输入轴转速其中,输出轴转速是通过液力变矩器传递的轴上的转速,输入轴转速是液力变矩器的输入轴上的转速。
速差计算公式可以帮助我们了解液力变矩器的传动效率和能量损失情况。
液力变矩器速差的大小对液力变矩器的性能产生重要影响。
当液力变矩器速差较小时,传递的扭矩较大,传动效率较高。
速差越小,传输的扭矩损失就越少,液力变矩器的效率也就越高。
因此,减小液力变矩器速差是提高其传动效率的重要途径。
液力变矩器速差的大小受多种因素影响。
首先是液力变矩器的设计结构。
液力变矩器内部具有多个转子和定子,它们的设计参数会影响液力变矩器的速差大小。
设计时应合理选择转子和定子的形状、数量和位置,以减小速差。
其次是液力变矩器的工作状态。
液力变矩器与发动机通过连杆相连,泵轮由发动机带动,涡轮由传动轴带动。
当发动机和传动轴转速不一致时,就会产生速差。
因此,调整发动机和传动轴的转速可以控制液力变矩器的速差大小。
最后是液力变矩器的质量和维护状态。
质量较好的液力变矩器内部配件制造精良,摩擦阻力小,速差较小。
定期进行液力变矩器的检查、维护和更换部件,可以有效减少液力变矩器的速差。
综上所述,液力变矩器速差计算公式是衡量液力变矩器工作效率的重要指标。
通过正确的设计、合理的调整和有效的维护,我们可以降低液力变矩器的速差,提高其传动效率。
这对于提高汽车和工程机械的性能和节约能源都具有重要意义。
因此,我们应重视液力变矩器速差的计算和控制,以提高液力变矩器的传动质量和性能。