2018精选版数学建模讲座(校内讲座)-精心整理
- 格式:ppt
- 大小:697.50 KB
- 文档页数:48
专题讲座初中数学建模思想的策略研究一、什么是数学建模?1.1 数学建模( Mathematical Modeling )是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下:( 1 )、普通高中数学课程标准 [4] 中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容 .( 2 )、叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling) 就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“ 规律” 建立起变量、参数间的确定的数学问题( 也可称为一个数学模型 ) ,求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。
两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。
数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。
处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。
这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。
什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”( Mathematic Model )是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。
广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。
本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。
数学建模知识讲座精品教案模板精选一、教学内容本节课选自高中数学教材《数学建模》第四章第一节,详细内容主要围绕数学建模的基本概念、建模过程、模型类型及其在现实生活中的应用进行讲解。
通过学习,使学生了解数学建模的重要性,掌握基本的建模方法和技巧。
二、教学目标1. 知识与技能:了解数学建模的基本概念,掌握建模过程,学会运用不同的模型类型解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的团队协作和沟通能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,增强学生运用数学知识为社会服务的意识。
三、教学难点与重点教学难点:数学建模过程的理解和运用,不同模型类型的识别和应用。
教学重点:数学建模的基本概念,建模方法和技巧。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
五、教学过程1. 实践情景引入:通过展示现实生活中的实际问题,让学生感受数学建模的重要性,激发学习兴趣。
2. 知识讲解:(1)数学建模的基本概念;(2)数学建模的过程;(3)数学建模的模型类型;(4)数学建模在现实生活中的应用。
3. 例题讲解:讲解经典数学建模案例,引导学生分析问题、建立模型、解决问题。
4. 随堂练习:让学生分组讨论,针对实际问题建立数学模型,并给出解决方案。
六、板书设计1. 数学建模基本概念2. 数学建模过程3. 数学建模模型类型4. 数学建模应用案例七、作业设计1. 作业题目:针对课后习题,选择一道数学建模题目进行解答。
2. 答案要求:详细阐述解题过程,包括问题分析、模型建立、求解方法等。
八、课后反思及拓展延伸1. 反思:本节课学生对于数学建模概念的理解程度,以及在实际问题中的应用能力。
2. 拓展延伸:鼓励学生在课后查找相关资料,了解更多数学建模案例,提高自身建模能力。
同时,组织学生参加数学建模竞赛,提高实践操作能力。
重点和难点解析:1. 教学难点与重点的识别;2. 例题讲解的详细程度;3. 随堂练习的设计与实施;4. 作业设计的深度与广度;5. 课后反思及拓展延伸的实际操作。