公开课三年级数学上册集合.
- 格式:ppt
- 大小:3.22 MB
- 文档页数:6
新人教版三年级数学上册公开课《数学广角──集合》教学设计一、教学目标(一)知识与技能1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、教学诊断“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。
集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。
而本节课所要学的是含有重复部分的集合图,学生是第一次接触。
教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。
教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。
教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。
对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
三、教学重难点教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备多媒体课件、小白板、练习题卡五、教学过程(一)巧用对比,初悟“重复”1.观察与比较(课件出示图片)第一组;父与子(1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?第一种:无重复情况。
数学广角—集合一、教学目的:1.在具体情境中,使学生感受集合的思想,感知集合圈的产生过程。
2..能借助直观图,利用集合的思想方法解决简单的实际问题,从而感受到数学与生活之间的相互联系。
3 .培养学生合作学习的意识和提出问题的能力,积累相应的活动能力。
4.培养学生善于观察、勤于思考的学习习惯,提高学习数学的兴趣。
三、教学重难点:1.重点:初步利用集合思想解决简单的实际问题。
2.难点:对重叠部分的理解。
四、主要教具:课件,自制模型。
五、教学过程:(一)联系生活,激情导入。
1.故事一:师:老师想简单的问题想考考大家:老师到401班做调查,爱吃肉的请举手,有5个人举手,爱吃鱼的请举手,有3个人举手,刚刚举手的同学站起来,你们猜一猜有多少人站起来?生:8个师:为什么?生:爱吃肉有5人加上爱吃鱼有3人合起来一共有8人。
5+3=8(人)(学生边说教师边板书)师:在数学上我们可以把爱吃肉的5人放在一个圆圈里就形成了爱吃肉的集合,爱吃鱼的5人放在一个圆圈里就形成了爱吃鱼的集合,今天老师将带大家一起来探讨有关集合的知识。
(二)自主探究,获取新知。
思考:5+3在什么情况下等于7。
(生思考回答)故事二:师:5+3真的等于7.来听一听老师的故事:老师到402班做调查,爱吃肉的请举手,有5个人举手,爱吃鱼的请举手,有3个人举手,刚刚举手的同学站起来,这时站起来有7人,这是怎么回事?思考一下有想法的请举手悄悄告诉老师。
生1:有一个人忘记站起来了生2:老师数错了。
生3:有一个人既爱吃肉又爱上吃鱼。
……………………请学生上台摆圆片既爱吃肉又爱上吃鱼的同学,应该贴在哪里呢?学生分组讨论,将讨论结果画在学习单上。
小组代表汇报情况。
【有需要的话,提示:小圆片要贴在两个集合里,可移动集合圈的位置】.讨论结束,请学生上台操作。
(学生将两个集合圈交叉,把蓝圆贴在中间交叉的位置)师:为什么要使两个集合圈交叉?(手指交叉位置)这个地方是两个集合()的地方?生:重合/重复师:换个接近的词表达,“重叠部分”请另外一个学生完整说出各部分所代表的的含义。
课题:《集合》(人教版三年级上册)教学目标:1、让学生经历集合图的产生过程,理解集合图的意义,体会集合图的好处,学会利用集合的思想方法来思考问题。
2、使学生会借助直观图,利用集合的思想方法解决简单的实际问题,培养学生用不同的方法解决问题的意识。
3、利用生活事例让学生感受到数学与生活的密切联系,进一步树立学数学用数学的意识。
学情分析:“集合”是教材专门安排来向学生介绍一种重要的数学思想方法的。
集合思想是数学中最基本的思想,虽然学生在计数和计算的学习中,已经接触过集合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。
学生在早期学习数学时就已经开始运用集合的思想方法。
如:分类的思想与方法,再如:一年级时接触过这样题:“有一列小朋友,从前数明明排第5,从后数明明排第3,这一列有几人?”对于“重复的人数要减去”,学生是有经验的,能够列式解答。
集合数学思想方法不仅有着广泛的应用,而且是今后进一步学习数学的基础。
这一数学思想的引入为培养学生的逻辑思维能力提供了良好的素材。
在今后的学习经常运用到维恩图表示关系,如:三角形的分类、各种四边形关系等。
都是让学生在体会运用上解决实际问题,为今后学习奠定基础。
教学重点:感知体验集合图的产生过程,初步感受它的意义;用集合的思想方法解决简单的实际问题。
教学难点:理解直观图中各部分的意义,借助直观图解决简单的实际问题。
教学过程一、情景引入,感受新知(1)播放课件:理发师的困惑?某理发师正在给客人理发,就听一声门响,“叔叔,我和爸爸要剃头”,又一声门响,“师傅,给我和我父亲剃个头”。
这时,理发师抬起头一看他很纳闷?师提问:你们猜猜理发师为什么纳闷啊?期待生成:学生纷纷猜测,可能回答“我认为是他该给几个人理发?”或是“该用什么顺序给他们理发?”(2)揭示原因:师:为什么是三个人?真有同学猜对了!可为什么是三个人?鼓励学生积极表述。
人教版数学三年级上册集合公开课教案(优选3篇)〖人教版数学三年级上册集合公开课教案第【1】篇〗数学广角集合教学目标:1、在具体情境中使学生感受集合的思想,感知集合图的产生过程。
2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3、渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
教学重点:让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
教学难点:对重叠部分的理解。
教学准备:课件教学过程:一、开门见山,引入新课1.导入:课间,同学们都喜欢什么样的运动?看,三(1)班选拔了一部分喜欢运动的同学参加学校的运动会(出示例1),那么我们能算出参加这两项比赛共有多少人吗?二、组织活动,探究新知1、同学们,你们都做了哪些运动?2、老师调查其中一个小组的体育爱好情况:第三小组喜欢踢毽子的有哪些同学?(假设7人)喜欢跳绳的有哪些同学?(假设8人)有没有两样都喜欢的?(假设3人)3、老师在讲台的两边分别画了两个圈:左边黄色的圈表示喜欢踢毽子的,右边红色的圈表示喜欢跳绳的。
4、现在请第三小组踢毽子的同学到左边黄色的圈内集合;请喜欢跳绳的同学到右边红色的圈内集合。
我们看看他们怎么站?5、问题出在哪儿呢?谁有好的建议以指导他们站到他们该站的位置?6、接下来请大家拿出纸和笔,想一想,画一画,写一写,怎样能使别人一看就知道喜欢踢毽子的有哪些同学,喜欢跳绳的有哪些同学,两样都喜欢的有哪些同学?同时还方便我们数人数?7、谁愿意展示一下你的想法?(适时肯定学生合理的想法。
)在100多年前,英国有一位名叫韦恩的逻辑学家,用一个图很方便地解决了我们今天遇到的这个问题。
让老师来展示给大家看。
8、这种图是韦恩最早发明的,所以就以他的名字命名,叫韦恩图。
利用韦恩图,既能表示重复的部分,又能方便统计总数。
接下来,如果要用算式表示喜欢踢毽子和跳绳的一共有多少人,又该是怎样的呢?9、刚才同学们交流了很多算法,你觉得哪种比较容易理解。
新人教版三年级数学上册公然课《数学广角──会合》教课方案一、教课目的(一)知识与技术.适量让学生亲历会合思想方法的形成过程,初步理解会合知识的意义。
.让学生借助直观图理解会合图中每一部分的含义,经过语言的描绘和计算的方法,能解决简单的重复问题。
(二)过程与方法经过察看、操作、实验、沟通、猜想等活动,让学生在合作学习中感知会合图形成过程,领会会合图的长处,能直观看出重复部分,解决生活中的问题。
(三)感情态度与价值观体验个体与小组合作研究相联合的学习过程,养成勤动脑,乐思虑、巧运用的学习习惯,同时在这个过程中感觉数学与生活的亲密联系,领会数学的价值。
二、教课诊疗“会合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段会合思想教课。
会合思想关于三年级学生来说其实不陌生,在过去的题型中有过接触,不过无心识形成一些简单解决问题的方法。
而本节课所要学的是含有重复部分的会合图,学生是第一次接触。
教材中的例1第1页经过统计表的方式列出参加踢毽子竞赛和跳绳竞赛的学生名单,而总人数其实不是这两项参赛的人数之和,进而引起学生的认知矛盾。
教材中是利用会合图(韦恩图)把这两项竞赛人数的关系直观地表示出来,进而帮助学生找到解决问题的方法。
教材要求不过让学生经过生活中简单理解的题材去初步领会会合思想,可以用自己的方法解决问题,为后继学习打下必需的基础。
关于教师应依据学生特色,适量让学生亲历会合图的形成过程,不用拔高要求,指引学生理解会合图各部分的意义,培育学生应用会合思想解决实质问题的能力,初步感觉会合思想的巧妙与作用。
三、教课重难点教课要点:认识会合图的产生过程,利用会合的思想方法解决有重复部分的问题。
教课难点:理解会合图的意义,会解决简单重复问题。
四、教课准备多媒体课件、小白板、练习题卡五、教课过程(一)巧用对照,初悟“重复”.察看与比较(课件出示图片)(第一组;父与子1)提出问题:有2个爸爸2个儿子,一共有几个人?如何列式计算?第2页第一种:无重复状况。
三年级数学集合公开课今天,我们来聊聊三年级的数学集合公开课!哎呀,数学这门学科,很多小朋友一听就开始打瞌睡,其实里面有好多有趣的东西哦,咱们一起探讨探讨吧!集合是什么呢?想象一下,老师在黑板上画了一个大圈,圈里面装满了各种各样的小球。
有红色的、蓝色的、绿色的,这些小球就代表了一个集合。
简单来说,集合就是把一些东西放在一起,像把苹果和香蕉放在一起,我们叫它“水果集合”。
哈哈,是不是觉得有点意思?我们看看集合的特点。
你知道吗?集合里的东西是不能重复的,就像你去超市买水果,苹果买了一斤,回来不能再放一斤苹果在同一个袋子里。
要么把它们放在不同的袋子,要么就得心里默默想着,嘿,我有很多苹果。
这样说起来,集合就像是个独特的派对,每个成员都有自己的身份,谁也不能重复哦!不过,有时候我们会看到空集合,嘿嘿,想象一下,没东西的派对,那可真是冷清得不行!然后,集合还有些有趣的操作,比如并集、交集。
并集就像是把两个派对合并,大家一起嗨起来!想想看,如果你们班有10个喜欢足球的小朋友,而邻班也有10个喜欢足球的小朋友,你们一起玩,就是20个小伙伴的大聚会啦!再说交集,交集就像是只邀请那些双方面都喜欢的朋友,比如说你和邻班一起玩,你们只邀请那些既喜欢足球又喜欢篮球的小伙伴,嘿,真是精致的选择啊!说到这,可能有小朋友开始觉得有点难,没关系,老师会用生活中的例子来让大家更好理解。
有一天,小明和小红一起去游乐场,小明喜欢玩过山车,小红则爱上了旋转木马。
我们就可以把小明喜欢的项目放进一个集合,小红喜欢的项目放进另一个集合,这样就能看到他们的喜好有啥重叠!哇哦,这样的集合是不是有点像朋友之间的默契呢?老师会带领大家进行一些小活动,大家把自己最喜欢的玩具放在一起,形成一个集合!哎呀,这个时候大家肯定会发现,有的小朋友喜欢的是汽车,有的小朋友喜欢的是洋娃娃。
真是五花八门,各种各样!而且还可以讨论一下,哪几样是重复的,大家能不能一起分享呢?这样的互动特别好,能让每个小朋友都参与进来。
人教版数学三年级上册集合公开课教案(精选3篇)〖人教版数学三年级上册集合公开课教案第【1】篇〗教学目标:1.使学生理解集合的含义,知道常用集合及其记法;2.使学生初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。
教学重点:集合的含义及表示方法。
教学过程:一、问题情境1.情境.新生自我介绍:介绍家庭、原毕业学校、班级。
2.问题.在介绍的过程中,常常涉及像家庭、学校、班级、男生、女生等概念,这些概念与学生相比,它们有什么共同的特征二、学生活动1.介绍自己;2.列举生活中的集合实例。
3.分析、概括各集合实例的共同特征.三、数学建构1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素。
2.元素与集合的关系及符号表示:属于,不属于。
3.集合的表示方法:另集合一般可用大写的拉丁字母简记为集合A、集合B。
4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R。
5.有限集,无限集与空集.6.有关集合知识的历史简介。
四、数学运用1.例题.例1 表示出下列集合:(1)中国的直辖市;(2)中国国旗上的颜色。
小结:集合的确定性和无序性例2 准确表示出下列集合:(1)方程x2―2x-3=0的解集;(2)不等式2-x0的解集;(3)不等式组的解集;(4)不等式组 2x-1-33x+10的解集。
解:略小结:(1)集合的表示方法列举法与描述法;(2)集合的分类有限集⑴,无限集⑵与⑶,空集⑷例3 将下列用描述法表示的集合改为列举法表示:(1){(x,y)| x+y = 3,x N,y N }(2){(x,y)| y = x2-1,|x |2,x Z }(3){y| x+y = 3,x N,y N }(4){ x R | x3-2x2+x=0}小结:常用数集的记法与作用。