人教版【学案】 分式的乘方运算
- 格式:doc
- 大小:143.11 KB
- 文档页数:3
第十五章分式);乘;式与数有一样的混合运算顺序:先,_________________________________________________________________________一、要点探究探究点1:分式的乘除混合运算想一想:有理数的乘、除混合运算顺序是怎样的?类比有理数的乘、除混合运算,你能归纳出分式的乘、除混合运算吗?议一议:马小虎学习了分式的乘、除运算后,做了一道下面的家庭作业,李教师想请你帮他批改一下.请问下面的运算过程对吗?然后请你给他提出恰当的建议!222(3)443x x x x x -÷+•-++222(3)(2)3x x x x -=÷+•-+22x =-要点归纳:①乘除运算属于同级运算,应按照先出现的先算的原那么,不能交换运算顺序; ②当除写成乘的形式时,灵活的应用乘法交换律和结合律可起到简化运算的作用; ③结果必须写成整式或最简分式的形式 试一试:计算dd c c b b a 1112⨯÷⨯÷⨯÷等于( ) 2 B.2222dc b a C.bcd a 2 典例精析例1:计算:a -1a +2·a 2-4a 2-2a +1÷1a 2-1.方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法那么把除法变成乘法;(2)进展约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点2:分式的乘方想一想:类比分数的乘方运算,你能计算以下各式吗?2a b ⎛⎫= ⎪⎝⎭ ,3a b ⎛⎫= ⎪⎝⎭ ,10a b ⎛⎫= ⎪⎝⎭. 要点归纳:分式的乘方,就是把分子分母分别乘方,即(ab )n = .典例精析例2:以下运算结果不正确的选项是( )课堂探究教学备注配套PPT 讲授〔见幻灯片3〕〔见幻灯片5-10〕〔见幻灯片11-20〕乘除混合运算先将除法统一成乘法,再按从左至右的顺序计算,假设有括号要先算括号里面的.乘方、乘除 混合运算 先乘方、再乘除,含有多项式时,通常应先分解因式,能约分的要先约分,再计算.分式化简求值的 方法(1)先把所给式子化简成最简分式或整式的形式,再将字母的值代入化简后的式子;(2)假设题目中给出自主取数值代入求值时,要注意所选取的数值一定要使原分式有意义,即所取数值要使所给式子的分母及除数________0.1.计算:22()ab ab 的结果为〔 〕. A. b B. a C. 1 D.1b2. 3.计算:⎛⎫ ⎪ ⎪ ⎪⎝⎭ 322213() ;x x y y ÷-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭223222 () .y x y x z y x ·÷--4.计算:222296344.1644x x x x x x x x-+-++÷⋅---5.先化简22222412()21--+÷-+-a a a aa a a a ,然后选取一个你喜欢的数作为a 的值代入计算.当堂检测。
2020年人教版八年级上册全册课时导学案15.2.1分式的乘除导学案(3)学习目标理解分式乘方的运算法则,熟练地进行分式乘方的运算.学习重难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.学习过程一、复习引入根据乘方的意义和分式乘法的法则计算:(1)2)(b a =⋅b ab a=( ) (2) 3)(b a =⋅b a ⋅b a b a=( )(3)4)(b a =⋅b a ⋅b a b a b a⋅=( )n b a )(=⋅b a ⋅⋅⋅⋅b a b a =b b b a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n nb a ,即n b a )(=n nb a .(n 为正整数)二、探究新知归纳分式乘方的法则____________________________ 例1 ,计算(1)22)32(c b a - (2)23332)2(2)(a c d a cd b a •÷-三、巩固练习1, 教材练习22,判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b -(3)3)32(x y -=3398x y (4)2)3(b x x -=2229b x x -3,计算(1)22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷n 个 n 个(4)23322)()(z x z y x -÷- (5))()()(422xy x y y x -÷-⋅-(6)232)23()23()2(ay x y x x y -÷-⋅-(7) )()()(2232b a a b a ab b a -⋅--⋅-4,计算 (1) 332)2(a b - (2) 212)(+-n b a (3)4234223)()()(c a b a c ba c ÷÷(4)42232)()()(a bc ab c c b a ÷-⋅- (5)22233)()()3(x y x y y x y x a +-÷-⋅+5,已知:432z y x ==,求22232z y x xz yz xy ++-+的值;6,(1)若111312-++=--x N x M x x试求N M ,的值2)已知121)12)(1(45---=---x B x A x x x 试求A 、B 的值7,先化简后求值 1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a四、课堂小结1、本节课你的收获是什么?小结1.注重备课。
第十五章 分式= . );乘,(1)(-a 2)=a 4;(2)(a )=a 3;(3)(2a )=2a 3;(4)(x +y )=x 2+y22.填空:23(a b - 3.计算:(x 2y )2÷四、我的疑惑_一、要点探究探究点1想一想:议一议:你帮他批改一下.22(3)44x x x ÷+-+要点归纳:试一试:计算a 2÷A.a 2B.2222dc b a C.bcd a 2D.其他结果例1:计算:a -1a +2·a 2-4a 2-2a +1÷1a 2-1.方法总结分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;(2)进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点2:分式的乘方想一想:类比分数的乘方运算,你能计算下列各式吗?2a b ⎛⎫= ⎪⎝⎭ ,3a b ⎛⎫= ⎪⎝⎭ ,10a b ⎛⎫= ⎪⎝⎭. 要点归纳:分式的乘方,就是把分子分母分别乘方,即(a b)n= .例2:下列运算结果不正确的是( )A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b 2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3D .(-x n y 2n )n =x 2ny3n方法总结:分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.例3:计算:(1)(-x 2y )2·(-y 2x )3·(-1x)4;b2. 5.先化简222412()21--+÷-+-a a a aa a a a ,然后选取一个你喜欢的数作为a 的值代入计算.。
第2课时 分式的乘方一、教学目标:1、理解分式乘方的运算法则2、熟练地进行分式乘方的运算3.渗透类比转化的数学思想方法.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、教学过程1、课堂引入计算下列各题:(1)2)(b a =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a b a =( )(3)4)(b a =⋅b a ⋅b a b a ba ⋅=( ) [提问]由以上计算的结果你能推出nb a)((n 为正整数)的结果吗?2、例题讲解例5.计算(1) 332)2(a b - (2)4234223)()()(c a ba cb ac ÷÷ [分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.3、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(ab -=2249a b -(3)3)32(xy -=3398x y (4)2)3(b x x -=2229b x x - 2.计算 (1) 22)35(y x (2)332)23(c b a - (2)32223)2()3(x ay xy a -÷ (3)23322)()(z x zy x -÷- (4))()()(422xy x y y x -÷-⋅- (5)232)23()23()2(ayx y x x y -÷-⋅-4、小结 谈谈你的收获5、布置作业6、板书设计四、教学反思:作者留言:非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。
课题:15.2.1.3分式的乘方课型:新授课 主备人: 审核人:班级: 姓名: 使用时间:一、课前小测计算:(1)103326423020)6(25ba c c ab b ac ÷-÷ (2) 222244(4)2x xy y x y x y ++÷-+二、学习目标展示1、理解分式乘方的运算法则;2、熟练地进行分式乘方的运算;3、会进行分式的乘法、除法、乘方的混合运算三、目标导学及释标根据下面的导学内容,自学课本活动一、请同学们完成以下整式的乘方运算(1)22)2(b a - (2)33)(cb (3)n ab )((n 是正整数)活动二、分式的乘方运算法则1、根据乘方的意义和分式乘法法则,计算下列各题:(1)2)(ba =⋅b a b a =( ) (2)、3)(b a =⋅b a ⋅b a b a =( ) (3)4)(b a =⋅b a ⋅b a b a ba ⋅=( ) [思考]:由以上计算的结果你能推出nb a)((n 为正整数)的结果吗?写下你的推导过程:2、=nb a )( ( )归纳:分式乘方要把分子、分母 乘方 思考: =n nba ( ) 3、完成:(1)、3)32(- (2)、32)(b a - (3)、 22)35(y x (4)、332)23(c b a -活动三、分式的乘法、除法、乘方的混合运算1、学习课本完成(1)、32223)2()3(xay xy a -÷ (2)、)()()(422xy x y y x -÷-⋅-【归纳】:分式的乘法、除法、乘方的混合运算顺序与数的混合运算一样,先 ,再四、当堂检测计算:(1)23322)()(z x zy x -÷- (2)232)23()23()2(ay x y x x y -÷-⋅-先化简,再求值:(b a ab +22)3÷2223)(b a ab -·[)(21b a -]2,其中a=-21,b=32化简:(3x y z )2·(xz y )·(2yz x)3等于( ) A 、232y z xB 、xy 4z 2C 、xy 4z 4D 、y 5z 如果(32a b )2÷(3a b)2=3,那么a 8b 4等于( ) A 、6 B 、9 C 、12 D 、81五、小结:这节课你学会了什么?你完成本节课的学习目标了吗?_____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________。
分式的乘方教学目标理解分式乘方的运算法则,熟练地进行分式乘方的运算.重点难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.3.认知难点与突破方法讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算 2)(b a ⋅b a b a b b a a ⋅⋅22b a ,3)(b a ⋅b a ⋅b a b a b b b a a a ⋅⋅⋅⋅33b a ,……顺其自然地推导可得: n b a )(⋅b a ⋅⋅⋅⋅b a b a b b b a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅n n b a ,即n b a )(=n nb a . (n 为正整数)归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.教学过程一、例、习题的意图分析1.教科书例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.2.教科书例5中像第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样像第(2)题这样的分式的乘除与乘方的混合运算,也应相应地增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.二、课堂引入计算下列各题:(1)2)(b a ⋅b a b a ( ) (2) 3)(b a ⋅b a ⋅b a b a ( )(3)4)(b a ⋅b a ⋅b a b a b a ⋅( )[提问]由以上计算的结果你能推出nb a )((n 为正整数)的结果吗?三、例题讲解(教科书)例5.计算n 个n 个 n 个 n 个[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.四、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(ab=252ab(2)2)23(ab-=2249ab-(3)3)32(xy-=3398xy(4)2)3(bxx-=2229bxx-2.计算(1)22)35(yx(2)332)23(cba-(3)32223)2()3(xayxya-÷(4)23322)()(zxzyx-÷-5))()()(422xyxyyx-÷-⋅-(6)232)23()23()2(ayxyxxy-÷-⋅-五、课后练习计算:(1)332)2(ab-(2)212)(+-nba(3)4234223)()()(cabacbac÷÷(4))()()(2232baabaabba-⋅--⋅-六、答案四、1. (1)不成立,23)2(ab=264ab(2)不成立,2)23(ab-=2249ab(3)不成立,3)32(xy-=33278xy-(4)不成立,2)3(bxx-=22229bbxxx+-2. (1)24925yx(2)936827cba-(3)24398yxa-(4)43zy-(5)21x (6)2234x y a五、(1) 968a b -- (2) 224+n b a (3)22a c (4)b b a +。
第2课时 分式的乘方【学习目标】1. 通过观察、归纳、类比、猜想、获得分式乘方的运算法则;2.能熟练地进行分式乘方的运算。
【学习重点】熟练地进行分式的乘除混合运算和分式乘方的运算.【学习难点】对乘方运算性质的理解和运用。
【知识准备】1、目前为止,幂的运算法则都有什么?(1)a m ·a n =__________; (2) a m ÷a n =__________;(3)(a m )n =__________; (4)(ab)n =___________;2、计算(1))(x y y x x y -⋅÷ (2) )21()3(43xy x y x -⋅-÷【自习自疑】1.计算: ①2)32(②2)43(-③ 3)21( ④4)21(-我想问: 请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决。
等级 组长签字【自探】【探究一】根据乘方的意义和,计算下列各题:(1)2)(b a =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a ba =( ) (3)4)(b a =⋅b a ⋅b a b a ba ⋅=( ) 由以上计算的结果你能推出n ba )((n 为正整数)=______________________? 归纳出分式乘方的法则__________________________________________.【探究二】单个分式的乘方(1)323)23(c b a - (2) 2232⎪⎭⎫ ⎝⎛-c b a【探究三】分式的乘除、乘方的混合运算(1)32223)2()3(xay xy a -÷ (2))()()(422xy x y y x -÷-⋅-(3))()()(2232b a ab a ab b a -⋅--⋅-【探究四】化简求值先化简代数式()()222222b a b a ab b a b a b a b a +-÷⎪⎪⎭⎫ ⎝⎛+---+ 然后请你自取一组a 、b 的值 代入求值.【自测自结】1、判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)2)3(bx x -=2229b x x -2.计算⑴ 222()_____x y-=. ⑵ 42m n÷22()m n -·3m n =________.3.计算⑴ 23()x y ÷22()x y - ⑵ 2()x y xy -÷3()x y xy -4. 化简a b bb a a b a b a a ⋅+÷--222242)()(通过本节课的学习,你有哪些收获?还有哪些困惑呢?。