面面垂直的性质习题详细答案
- 格式:ppt
- 大小:1.13 MB
- 文档页数:42
1.已知如图, P 平面ABC PA=PB=PC / APB=/ APC=60,/ BPC=90 ° 求证:平面 ABC!平面 PBC线,然后证明直线与另一平面 D,证明AD 垂直平PBC 即可证明:取BC 中点D 连结AD PD •/ PA=PB / APB=60•••△ PAB 为正三角形 同理△ PAC 为正三角形设 PA=a在 RT A BPC 中, PB=PC=a BC= -2a在 A ABC 中 AD= AB 2 BDA D+P[5= —a=a =AP•A APD 为直角三角形即AD 丄DP 又••• AD 丄 BC • AD 丄平面PBC •平面ABCL 平面PBC12 .如图(1)在直角梯形 ABCD 中, AB//CD , AB AD 且AB=AD^ CD=1现以 AD 为一边 向梯形外作正方形 ADEF 然后沿AD 将正方形翻拆,使平面 ADEF 与平面ABCD 互相垂直 如图(2)。
【答案】【解析】要证明面面垂直,要在其呈平面内找一条 垂直即可。
显然 BC 中点(1) 求证平面BDE 平面BEC(2) 求直线BD 与平面BEF 所成角的正弦值。
又在 BCD 中,DB BC 2, DC 2,三边满足勾股定理, BC BD 。
由线面垂直的判定定理即证得结论。
(2)因为DB ,2,只需求出点D 到平面BEF 的距离也是点 A 到平面BEF 的距离,易证出 AD//EF , AD 平面BEF ,由面面垂直的判定定理得平面ABF 平面BEF , ABF 中BF 边上的高就是点 A 到平面BEF 的距离。
根据线面角的定义可求 直线BD与平面BEF 所成角的正弦值。
(1)求证:EF//平面CBD ; (2)求证:平面 CAAC 丄平面CBD . 【答案】(I)略(H )略【解析】(1 )证明:连结 BD 在长方体AC 1中BD// B 1D 1.又 Q E 、F 为棱 AD AB 的中点,/. EF//BD . /• EF//B 1D 1. ................ 4 分又 BD 平面 CB 1D 1, EF 平面 CBD ,: EF//平面 CBD................ 7 分 (2) Q 在长方体 AC 1中,AA 丄平面A B 1C 1D ,而BD 平面ABC D ,「. AA 丄B D .…9分又Q 在正方形 A B C D 中,A C X B 1 D ,: B D 丄平面CAAC . 又Q B 1 D 平面CBD ,:平面 CAAC 丄平面 CBD .……1 4分 4 .如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,AB 2AD 2, BD .3, PD 丄底面 ABCD .【答案】⑴证见解析⑵sinAH 1 BD 2【解析】(1 )由折前折后线面的位置关系得ED平面ABCD ,所以EDBC ,3 •(本小题满分14分)如图,在正方体 ABC B A i BiGD 中,E 、F 为棱 AD AB 的中点. EA 1D 1FBC(i)证明:平面PBC 平面PBD ;【解析】本试题主要是考查了面面垂直的证明和二面角与线面角的求解的综合运用。
乏公仓州月氏勿市运河学校9-5线面、面面垂直的判定与性质根底稳固强化1.(文)(2021·海淀区期末)m 、n 是两条不同的直线,α、β A .假设m ∥α,α∩β=n ,那么m ∥n B .假设m ∥n ,m ⊥α,那么n ⊥α C .假设m ⊥α,m ⊥β,那么α∥β D .假设m ⊥α,m ⊂β,那么α⊥β [答案] A[解析] 选项A 中,直线m 与直线n 也可能异面,因此A 不正确. (理)两条不同的直线m 、n ,两个不同的平面α、β A .假设m ⊥α,n ⊥β,α⊥β,那么m ⊥n B .假设m ∥α,n ∥β,α∥β,那么m ∥n C .假设m ⊥α,n ∥β,α⊥β,那么m ⊥n D .假设m ∥α,n ⊥β,α⊥β,那么m ∥n [答案] A [解析]⎭⎪⎬⎪⎫⎭⎬⎫m ⊥αα⊥β⇒m ∥β或m ⊂β n ⊥β⇒m ⊥n ,故A 正确;如图(1),m ⊥α,n ⊥α满足n ∥β,但m ∥n ,故C 错; 如图(2)知B 错;如图(3)正方体中,m ∥α,n ⊥β,α⊥β,知D 错. 2.(文)(2021·区模拟)设α、β、γ是三个不重合的平面,l①假设α⊥β,β⊥γ,那么α⊥γ;②假设l 上两点到α的距离相等,那么l ∥α;③假设l ⊥α,l ∥β,那么α⊥β;④假设α∥β,l ⊄β,且l ∥α,那么l ∥β.A .①②B .②③C .②④D .③④ [答案] D[解析] 对于①:假设α⊥β,β⊥γ,那么可能α⊥γ,也可能α∥γ.对于②:假设l 上两点到α的距离相等,那么l ∥α,显然错误.当l ⊥α,l ∩α=A 时,l 上到A 距离相等的两点到α的距离相等.③④显然正确.(理)如图,三棱柱ABC -A 1B 1C 1的侧面A 1ABB 1⊥BC ,且A 1C 与底面成45°角,AB =BC =2,那么该棱柱体积的最小值为( )A .4 3B .33C .4D .3[答案] C[解析] 由得平面A 1ABB 1⊥平面ABC 且交线为AB ,故A 1在平面ABC 上的射影D 在AB 上.由A 1C 与底面成45°角得A 1D =DC ,∵BC ⊥AB ,∴当CD 最小即CD =BC 时A 1D 最小,此时V min =12×AB ×BC ×A 1D =12×2×2×2=4.应选C.3.(2021·临漳一中模拟)一个几何体的三视图如下列图,那么这个几何体的体积是( ) A.12 B .3 C.32 D .2[答案] A[解析] 由三视图知,该几何体是一个横放的四棱锥P -ABCD ,其底面ABCD 为直角梯形,AB =1,CD =2,高BC =1,棱锥的高PC =1,∴体积V =13×[12×(1+2)×1]×1=12. 4.(2021·高三调研)如图,在立体图形D -ABC 中,假设AB =CB ,AD =CD ,E 是AC 的中点,那么以下结论正确的选项是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE [答案] C[解析] 要判断两个平面的垂直关系,就需找一个平面内的一条直线与另一个平面垂直.因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC 在平面ABC 内,所以平面ABC⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .所以选C.5.定点A 和B 都在平面α内,定点P ∉α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC .那么,动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点 [答案] B[解析] 连接BC ,∵PB ⊥α,∴AC ⊥PB . 又∵PC ⊥AC ,∴AC ⊥BC .∴C 在以AB 为直径的圆上.应选B.6.(文)(2021·一模)l 、m 是不同的两条直线,α、β A .假设l ⊥α,α⊥β,那么l ∥β B .假设l ∥α,α⊥β,那么l ∥β C .假设l ⊥m ,α∥β,m ⊂β,那么l ⊥α D .假设l ⊥α,α∥β,m ⊂β,那么l ⊥m [答案] D[解析]⎭⎬⎫⎭⎬⎫l ⊥αα∥β⇒l ⊥βm ⊂β⇒l ⊥m . (理)(2021·三模)在正三棱柱ABC -A 1B 1C 1中,假设AB =2,AA 1=1,那么点A 到平面A 1BC 的距离为( ) A.34B.32C.334D.3[答案] B[解析] 解法1:取BC 中点E ,连接AE 、A 1E ,过点A 作AF ⊥A 1E ,垂足为F . ∵A 1A ⊥平面ABC ,∴A 1A ⊥BC , ∵AB =AC .∴AE ⊥BC . ∴BC ⊥平面AEA 1.∴BC ⊥AF ,又AF ⊥A 1E , ∴AF ⊥平面A 1BC .∴AF 的长即为所求点A 到平面A 1BC 的距离. ∵AA 1=1,AE =3,∴AF =32. 解法2:VA 1-ABC =13S △ABC ·AA 1=13×3×1=33.又∵A 1B =A 1C =5,在△A 1BE 中,A 1E =A 1B 2-BE 2=2.∴S △A 1BC =12×2×2=2.∴VA -A 1BC =13×S △A 1BC ·h =23h .∴23h =33,∴h =32.∴点A 到平面A 1BC 距离为32. 7.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,∠ADC =90°,且AA 1=AD =DC =2,M ∈平面ABCD ,当D 1M ⊥平面A 1C 1D 时,DM =________.[答案] 22[解析] ∵DA =DC =AA 1=DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM 为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.8.如下列图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足______时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)[答案] DM ⊥PC (或BM ⊥PC 等)(不唯一) [解析]连接AC ,∵四边形ABCD 为菱形, ∴AC ⊥BD , 又∵PA ⊥平面ABCD , ∴PA ⊥BD ,又AC ∩PA =A ,∴BD ⊥平面PAC , ∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC 等)时, 即有PC ⊥平面MBD ,而PC⊂平面PCD,∴平面MBD⊥平面PCD.9.正方体ABCD-A1B1C1D1的棱长为1,E、F、G分别是AB、BC、B1C1①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形;②P在直线FG上运动时,AP⊥DE;③Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;④M是正方体的面A1B1C1D1内到点D和C1距离相等的点,那么M点的轨迹是一条线段.[答案] ②③④[解析]三棱锥A1-ABC的四个面都是Rt△,故①错;P在FG上运动时,PF⊥平面ABCD,∴PF⊥DE,又在正方体ABCD中,E、F为AB、BC中点,∴AF⊥DE,∴DE⊥平面PAF,∴DE⊥PA,故②真;VA-D1QC=VQ-AD1C,∵BC1∥AD1,∴BC1∥平面AD1C,∴无论点Q在BC1上怎样运动,Q到平面AD1C距离都相等,故③真;到点D和C1距离相等的点在经过线段C1D的中点与DC1垂直的平面α上,故点M为平面α与正方体的面A1B1C1D1相交线段上的点,这条线段即A1D1.10.(2021·东城二模)如图,矩形AMND所在的平面与直角梯形MBCN所在的平面互相垂直,MB∥NC,MN ⊥MB.(1)求证:平面AMB∥平面DNC;(2)假设MC⊥CB,求证BC⊥AC.[证明] (1)因为MB∥NC,MB⊄平面DNC,NC⊂平面DNC,所以MB∥平面DNC.因为四边形AMND是矩形,所以MA∥DN.又MA⊄平面DNC,DN⊂平面DNC,所以MA∥平面DNC.又MA∩MB=M,且MA、MB⊂平面AMB,所以平面AMB∥平面DNC.(2)因为四边形AMND是矩形,所以AM⊥MN.因为平面AMND⊥平面MBCN,且平面AMND∩平面MBCN=MN,所以AM⊥平面MBCN.因为BC⊂平面MBCN,所以AM⊥BC.因为MC⊥BC,MC∩AM=M,所以BC⊥平面AMC.因为AC⊂平面AMC,所以BC⊥AC.能力拓展提升11.(文)(2021·一调)如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5,假设规定正(主)视方向垂直平面ACC 1A 1,那么此三棱柱的侧(左)视图的面积为( ) A.455B .25C .4D .2[答案] A [解析]过B 作BE ⊥AC ,垂足为E ,平面B 1BE 交A 1C 1于E 1,那么BE =255,由题意根据三视图的规那么知,几何体的侧视图表示长为255,宽为2的矩形,所以几何体的侧视图的面积为S =255×2=455,应选A.(理)如图,在棱长均为1的三棱锥S -ABC 中,E 为棱SA 的中点,F 为△ABC 的中心,那么直线EF 与平面ABC 所成角的正切值是( )A .2 2B .1 C. 2 D.22 [答案] C[解析] ∵F 为正三棱锥底面中心,∴SF ⊥平面ABC ,∴平面SAF ⊥平面ABC ,∴∠EFA 为EF 与平面ABC 所成的角,易知AE =12,AF =33,又EF =12SA =12, ∴cos ∠FAE =AF 2+AE 2-EF 22AF ·AE =33,∴sin ∠FAE =1-cos 2A =63,∴tan ∠FAE = 2. 由于Rt △SAF 中E 为SA 的中点, ∴∠FAE =∠EFA ,故tan ∠EFA = 2.12.(文)(2021·理,6)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,那么“α⊥β〞是“a ⊥b 〞的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] ①∵α∩β=m ,b ⊂β,α⊥β,b ⊥m ,∴b ⊥α,又∵a ⊂α,∴b ⊥a .②当a ⊂α,a ∥m 时,∵b ⊥m ,∴b ⊥a ,而此时平面α与平面β不一定垂直,应选A.(理)过正方形ABCD 之顶点A 作PA ⊥平面ABCD ,假设PA =AB ,那么平面ABP 与平面CDP 所成二面角的度数为( )A .30°B .45°C .60°D .90°[答案] B[解析] 过P 作直线l ∥AB ,那么l 为二面角的棱,易证∠APD 即为所求. ∵AP =AD ,∠PAD =90°,∴∠APD =45°.13.(2021·联考)四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面PAD ⊥底面ABCD ,△PAD 为正三角形,AB =2AD =4,那么球O 的外表积为________.[答案]643π [解析] 过P 作PE ∥AB 交球面于E ,连接BE 、CE ,那么BE ∥AP ,CE ∥DP , ∴三棱柱APD -BEC 为正三棱柱,∵△PAD 为正三角形,∴△PAD 外接圆的半径为233, ∴球O 的半径R =22+2332=43,∴球O 的外表积S =4πR 2=643π.14.在正三棱锥P -ABC 中,D 、E 分别是AB 、BC 的中点,有以下三个论断:①AC ⊥PB ;②AC ∥平面PDE ;③AB ⊥平面PDE .其中正确论断的序号为________.[答案] ①② [解析]如图,∵D 、E 为AB 、BC 的中点,∴DE ∥AC , ∵AC ⊄平面PDE ,∴AC ∥平面PDE ; 取AC 中点M ,那么由正三棱锥知,PM ⊥AC ,BM ⊥AC ,∴AC ⊥平面PBM ,∵AC ∥DE ,DE ⊥BM ,∴BM ⊥DE .故AB 与DE 不垂直,从而AB ⊥平面PDE ,错误.15.如图,AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,AD =DE =2AB ,且F 是CD 的中点. (1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE . [证明] (1)取CE 的中点P ,连接FP 、BP , ∵F 为CD 的中点, ∴FP ∥DE ,且FP =12DE . 又AB ∥DE ,且AB =12DE , ∴AB ∥FP ,且AB =FP ,∴四边形ABPF 为平行四边形,∴AF ∥BP . 又∵AF ⊄平面BCE ,BP ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为正三角形,∴AF ⊥CD . ∵AB ⊥平面ACD ,DE ∥AB ,∴DE ⊥平面ACD , 又AF ⊂平面ACD ,∴DE ⊥AF .又AF ⊥CD ,CD ∩DE =D ,∴AF ⊥平面CDE . 又BP ∥AF ,∴BP ⊥平面CDE .又∵BP ⊂平面BCE ,∴平面BCE ⊥平面CDE .16.(文)(2021·模拟)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD ⊥CD ,AB ∥CD ,AB =AD =2,CD =4,M 为CE 的中点.(1)求证:BM ∥平面ADEF ; (2)求证:平面BDE ⊥平面BEC .[证明] (1)证明:延长DA 与CB 相交于P , ∵AB =AD =2,CD =4,AB ∥CD ,∴B 为PC 的中点, 又M 为CE 的中点,∴BM ∥EP , ∵BM ⊄平面ADEF ,EP ⊂平面ADEF ,∴BM ∥平面ADEF .(2)证明:由(1)知,BC =12PC =12PD 2+CD 2=22, 又BD =AD 2+AB 2=22,∴BD 2+BC 2=CD 2,∴BD ⊥BC .又平面ADEF ⊥平面ABCD ,ED ⊥AD , ∴ED ⊥平面ABCD ,∴ED ⊥BC , ∵ED ∩BD =D ,∴BC ⊥平面BDE , 又BC ⊂平面BEC ,∴平面BDE ⊥平面BEC .(理)(2021·文,16)如图1,在Rt △ABC 中,∠C =90°,D 、E 分别为AC 、AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由. [分析] (1)利用线面平行判定定理证明(关键证明DE ∥BC ). (2)由平面图形知⎩⎨⎧DE ⊥AD ,DE ⊥CD .折叠后,⎩⎨⎧DE ⊥A 1D ,DE ⊥CD .由线面垂直判定定理证得DE ⊥平面A 1CD ,那么DE⊥A 1F ,又由A 1F ⊥CD ,易证得A 1F ⊥平面BCDE ,那么A 1F ⊥BE .(3)采取先找再证的方法处理.由DA 1=DC 联想到等腰三角形底边上的中线是底面边上的高,可取A 1C 中点,再由“中点找中点〞原那么取A 1B 中点Q ,证明A 1C ⊥平面DEQ (利用(2)中的DE ⊥平面A 1DC 这一结论).[解析] (1)证明:因为D 、E 分别为AC 、AB 的中点, 所以DE ∥BC .又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB . (2)证明:由得AC ⊥BC 且DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD . 所以DE ⊥平面A 1DC .而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F . 又因为A 1F ⊥CD ,所以A 1F ⊥平面BCDE . 所以A 1F ⊥BE .(3)线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下:如图,分别取A 1C 、A 1B 的中点P 、Q ,那么PQ ∥BC . 又因为DE ∥BC ,所以DE ∥PQ , 所以平面DEQ 即为平面DEP . 由(2)知,DE ⊥平面A 1DC , 所以DE ⊥A 1C .又因为P 是等腰直角三角形DA 1C 底边A 1C 的中点, 所以A 1C ⊥DP . 所以A 1C ⊥平面DEP . 从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .[点评] 1.此题考查了线面平行,线面垂直的判定定理,性质定理,折叠问题,存在性问题等. 2.对于折叠问题,关键是看清折叠前后各量的变化与不变(包括长度、角度、位置关系等),对于存在性问题,一般采取先找再证(取特例)的方法解决.1.(2021·高三年级调研测试)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,BD =2AD =4,AB =2DC =2 5.(1)求证:BD ⊥平面PAD ; (2)求三棱锥A -PCD 的体积.[解析] (1)证明:在△ABD 中,由于AD =2,BD =4,AB =25,∴AD 2+BD 2=AB 2.∴AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面PAD . (2)过P 作PO ⊥AD 交AD 于O .又平面PAD ⊥平面ABCD ,∴PO ⊥平面ABCD . ∵△PAD 是边长为2的等边三角形,∴PO = 3. 由(1)知,AD ⊥BD ,在Rt △ABD 中, 斜边AB 边上的高为h =AD ×BD AB =455. ∵AB ∥DC ,∴S △ACD =12CD ×h =12×5×455=2. ∴V A -PCD =V P -ACD =13S △ACD ×PO =13×2×3=233.2.(2021·豫东、豫北十所名校联考)如下列图的七面体是由三棱台ABC -A 1B 1C 1和四棱锥D -AA 1C 1C 对接而成,四边形ABCD 是边长为2的正方形,BB 1⊥平面ABCD ,BB 1=2A 1B 1=2.(1)求证:平面AA 1C 1C ⊥平面BB 1D ;(2)求二面角A -A 1D -C 1的余弦值.[解析] 因为BB 1⊥平面ABCD 且ABCD 是边长为2的正方形,所以以B 为原点建立如下列图的空间直角坐标系B -xyz ,那么有A (2,0,0),B (0,0,0),C (0,2,0),D (2,2,0),A 1(1,0,2),B 1(0,0,2),C 1(0,1,2).(1)证明:∵BB 1→·AC →=(0,0,2)·(-2,2,0)=0,BD →·AC →=(2,2,0)·(-2,2,0)=0,∴BB 1→⊥AC →,BD →⊥AC →,∴BB 1⊥AC ,BD ⊥AC ,∵BB 1与DB 是平面BB 1D 内的两条相交直线.∴AC ⊥平面BB 1D ,又AC ⊂平面AA 1C 1C ,∴平面AA 1C 1C ⊥平面BB 1D .(2)AA 1→=(-1,0,2),AD →=(0,2,0),A 1C 1→=(-1,1,0),A 1D →=(1,2,-2).设n =(x 1,y 1,z 1)为平面A 1AD 的一个法向量,那么n ·AA 1→=-x 1+2z 1=0,n ·AD →=2y 1=0,于是y 1=0,取z 1=1,那么x 1=2,n =(2,0,1).设m =A 1C 1→=-x 2+y 2=0,m ·A 1D →=x 2+2y 2-2z 2=0,可得3y 2=2z 2,取z 2=3,那么x 2=y 2=2,m =(2,2,3). ∴cos 〈m ,n 〉=m ·n |m ||n |=75×17=78585, 由图知二面角A -A 1D -C 1为钝角,所以其余弦值为-78585. 3.(2021·一模)四棱锥A -BCDE 的正视图和俯视图如下,其中俯视图是直角梯形.(1)假设正视图是等边三角形,F 为AC 的中点,当点M 在棱AD 上移动时,是否总有BF 丄CM ,请说明理由;(2)假设AB =AC ,平面ABC 与平面ADE 所成的锐二面角为45°,求直线AD 与平面ABE 所成角的正弦值.[解析] (1)总有BF ⊥CM ,理由如下:法一:取BC 的中点O ,连接AO ,由俯视图可知,AO ⊥平面BCDE ,CD ⊂平面BCDE ,所以AO ⊥CD .又CD ⊥BC ,所以CD ⊥平面ABC ,故CD ⊥BF .因为△ABC 为正三角形,F 是AC 的中点,所以BF ⊥AC .又AC ∩CD =D ,故BF ⊥平面ACD ,因为CM ⊂平面ACD ,所以BF ⊥CM .法二:取BC 的中点O ,连接AO ,由俯视图可知,AO ⊥平面BCDE ,取DE 中点H ,连接OH ,OH ⊥BC , 以OC 、OH 、OA 分别为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz .那么A (0,0,3),B (-1,0,0),C (1,0,0),D (1,2,0),可求得F (12,0,32), 设点M 的横坐标为x ,可求得点M (x,2x ,3(1-x ))那么BF →=(32,0,32),CM →=(x -1,2x ,3(1-x )), BF →·CM →=32(x -1)+32·3(1-x )=0, 故BF ⊥CM .(2)建系同上,设A (0,0,a ),(a >0),可得ED →=(2,1,0),AD →=(1,2,-a ),设平面ADE 的法向量为m =(x 1,y 1,z 1),那么m ·ED →=0,m ·AD →=0,可得⎩⎨⎧ 2x 1+y 1=0,x 1+2y 1-az 1=0,取x 1=1,y 1=-2,z 1=-3a, 可得m =(1,-2,-3a). 又平面ABC 的法向量为n =(0,1,0),所以cos 〈m ,n 〉=-25+9a 2,由题设平面ABC 与平面ADE 所成的锐二面角为45°,可得25+9a 2=22,解得a =3, 设平面ABE 的法向量为p =(x 2,y 2,z 2),又BA →=(1,0,3),BE →=(0,1,0),故p ·BA →=0,p ·BE →=0,∴⎩⎨⎧ x 2+3z 2=0,y 2=0,取x 2=3,那么z 2=-1,可得p =(3,0,-1),cos 〈AD →,p 〉=AD →·p |AD →|·|p |=232×8=64. 设直线AD 与平面ABE 所成角为α,那么sin α=|cos 〈AD →,p 〉|=64. 4.(2021·十二校联考)如下列图,四棱锥P -ABCD 的底面是梯形,且BA ⊥AD ,CD ⊥AD ,CD =2AB .PA ⊥底面ABCD ,E 为PC 的中点.PA =AD =AB =1.(1)证明:EB ∥平面PAD ;(2)求直线BD 与平面PDC 所成角的大小.[解析](1)证明:取PD 的中点Q ,连接EQ ,AQ ,那么QE ∥CD ∥AB ,且QE =12CD =AB , 故四边形ABEQ 是平行四边形.故EB ∥AQ .又AQ ⊂平面PAD ,EB ⊄平面PAD ,故EB ∥平面PAD .(2)∵CD ⊥AD ,PA ⊥CD ,∴CD ⊥平面PAD .∵AQ ⊂平面PA ,∴AQ ⊥CD .又可得AQ ⊥PD ,故AQ ⊥平面PCD .又BE ∥AQ ,故BE ⊥平面PDC .所以∠BDE 为BD 与平面PDC 所成的角,由题意易知Rt △BDE 中,BE =AQ =12PD =22,BD =2, ∴∠BDE =30°.即直线BD 与平面PDC 所成角为30°.。
第六节面面关系(一)平行(二)垂直―。
____ 1 ——ACB=90 , AC=BC= 2AA1, D 是棱1.如图,三棱柱ABC —A1B1C1中,侧棱垂直底面,/AA1的中点(I )证明:平面BDC平面BDC(n )平面BDC1分此棱柱为两部分,求这两部分体积的比A1D2.12012高考江西文19](本小题满分12分)如图,在梯形ABCD中,AB //CD, E, F是线段AB上的两点,且DE^AB, CFXAB ,AB=12 , AD=5 , BC=4 后,DE=4.现将△ ADE , △ CFB 分别沿 DE, CF折起,使A, B两点重合与点G,得到多面体CDEFG.(1)求证:平面DEGL平面CFG;(2)求多面体CDEFG的体积。
3.如图,已知空间四边形. ______ .中,BC AC,AD BD , E是AB的中点。
求证:(1) AB 平面CDE;(2)平面CDE 平面ABC。
4.如图,在正方体ABCD ABQ1D1中,E是AA1的中点.(1)求证:A1C//平面BDE;(2)求证:平面A1AC 平面BDE .5.已知四棱锥P—ABCD ,底面ABCD 是菱形, DAB 60 , PD 平面ABCD , PD=AD ,点E为AB中点,点F为PD中点.(1)证明平面PEDL平面PAB;(2)求二面角P—AB—F的平面角的余弦值第六节面面关系答案(一)平行 (二)垂直1 .【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题^【解析】(I )由题设知 BC± CC i ,BC±AC, CC 1 AC C , BC 面 ACC 1A 1,又・ DC 1 面 ACC 1A ,•一 DC 1 BC ,由题设知 A 1DC 1 ADC 450, /. CDC 1=900,即 DC 1 DC ,又 DC BC C , DC 1L 面 BDC , DC 1 面 BDC 1,,面 BDC ,面 BDC 1 ;1121 (n)设棱锥B DACC 1的体积为V 1, AC =1,由题意得,V 1 = — —— 11=—,3 22由三棱柱ABC A 1B 1C 1的体积V =1 ,・♦・平面BDC 1分此棱柱为两部分体积之比为 1:1.2 .【解析】(1)由已知可得 AE=3 , BF=4,则折叠完后 EG=3 , GF=4 ,又因为EF=5,所以可得EG GFEG ,即EG 面CFG 所以平面DEG ,平面CFG.••• (V V 1):V 1=1:1, 又因为CF 底面EGF ,可得CF过G 作GO 垂直于EF , 侑CC1 12二 S 正方形DECF GO -55 — 3 3 53.证明:(1) BC AC CEAE BE GO 即为四棱锥 G-EFCD20AB 的高,所以所求体积为同理, AD AE BD BEDE AB又「 CE DE EAB 平面CDE(2)由(1)有AB平面CDE又「 AB 平面ABC ,,平面CDE 平面ABC4 .证明:(1)设 AC BD 0,E 、O 分别是AA 、AC 的中点,AC // EO又 BD AC , AC 1AAA, BD 平面 A i AC , BD 平面 BDE , 平面 BDE平面A i AC5 . (1)证明:连接BD.AB AD, DAB 60 , ADB 为等边三角形. E 是AB 中点, AB DE.PD 面 ABCD, AB 面 ABCD , AB PD.DE 面 PED, PD 面 PED, DE PD D, AB 面 PED.AB 面 PAB, 面PED 面 PAB.(2)解: AB 平面 PED, PE 面 PED, AB 连接 EF, EF PED, AB EF.PEF 为二面角P —AB —F 的平面角.设 AD=2,那么 PF=FD=1, DE=V 3. 在 PEF 中,PE J7,EF 2, PF 1,即二面角P —AB —F 的平面角的余弦值为 27.14又AC 平面BDE , EO 平面BDE ,A i C //平面 BDE⑵••• AA 平面 ABCD , BD平面 ABCD , AA 1 BDcos PEF(17) 2 22 1 5J ; 2 2.7 14PE.。
2023高考数学复习专项训练《面面垂直的判定》一、单选题(本大题共12小题,共60分)1.(5分)已知A={ x|3a−1<x<2a+3},B={ x|x2−x−2⩽0},A⊆B,则a的取值范围为()A. { a|a⩽−12} B. { a|a⩽12或a⩾0}C. { a|a⩾4}D. { a|a⩽0或a⩾4}2.(5分)定义:设函数f(x)的定义域为D,如果[m,n]⊆D,使得f(x)在[m,n]上的值域为[m,n],则称函数f(x)在[m,n]上为“等域函数”,若定义域为[1e,e2]的函数g(x)= c x(c>0,c≠1)在其定义域的某个区间上为“等域函数”,则实数c的取值范围为()A. [2e2,1e) B. [2e2,1e]C. [e2e2,e1e] D. [e2e2,e1e)3.(5分)设x、y∈R,则“x≥2且y≥2”是“x2+y2≥4”.()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件4.(5分)命题p:关于x的不等式ax2+ax−x−1<0的解集为(−∞,−1)∪(1a,+∞)的一个充分不必要条件是().A、a⩽−1B、a>0C、−2<a<0D、a<−2A. a⩽−1B. a>0C. −2<a<0D. a<−25.(5分)函数y=loga (2x−3)+√22(a>0且a≠1)的图像恒过定点P,且点P在幂函数f(x)的图像上,则f(4)=()A. 2B. 12C. 14D. 166.(5分)设ab>0,下面四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a−b|;④|a+b|>|a|−|b|;正确的是()A. ①和②B. ①和③C. ①和④D. ②和④7.(5分)已知ΔABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2<a 2,且cos 2A −3sin A +1=0,则sin (C −A)+√32cos (2A −B)的取值范围为 ( )A. (−12,−√34) B. (−12,−√34] C. [0,√34] D. (−23,−12) 8.(5分)函数y =x 2+ln |x|的图象大致为( )A. B.C.D.9.(5分)已知函数f(x)=x 1−|x|(x ∈D),有下列四个结论:①对任意x ∈D ,f(−x)+f(x)=0恒成立;②对任意m ∈(0,1),方程|f(x)|=m 有两个不相等的实数根; ③存在函数g(x)使得g(x)的图象与f(x)的图象关于直线y =x 对称; ④对任意k ∈(1,+∞),函数g(x)=f(x)−kx 在D 上有三个零点. 则上述结论中正确的个数为()A. 1B. 2C. 3D. 410.(5分)已知函数f (x )的定义域为R ,f (x +2)为偶函数,f (2x +1)为奇函数,则( )A. f (−12)=0B. f (−1)=0C. f (2)=0D. f (4)=011.(5分)已知定义在R 上的奇函数f(x),且当x ∈[0,+∞)时,f(x)单调递增,则不等式f(2x +1)+f(1)⩾0的解集是()A. (−∞,1)B. (−1,+∞)C. [−1,+∞)D. (−∞,1]12.(5分)已知集合A ={x|1<x <3},集合B ={x|log 2(x +1)⩽2},则A ∪B =()A 、{x|1<x <3}B 、{x|x ⩽3}C 、{x|−1<x <3}D 、{x|1−<x ⩽3} A. {x|1<x <3} B. {x|x ⩽3} C. {x|−1<x <3}D. {x|1−<x ⩽3}二 、填空题(本大题共5小题,共25分)13.(5分)函数f(x)=x−1x中,若f(x)=0,则x=__________.14.(5分)某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则只参加物理小组的有__________人,同时参加数学和化学小组的有__________人.15.(5分)写出一个同时具有下列性质①②③的函数f(x): ______ .①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.16.(5分)已知函数f(x)满足以下条件:①在R上单调递增;②对任意x1,x2,均有f(x1)⋅f(x2)=4f(x1+x2),则f(x)的一个解析式为 ______.17.(5分)已知等式sin230°+sin230°+sin30°⋅sin30°=34sin220°+sin240°+sin20°⋅sin40°=34sin210°+sin250°+sin10°⋅sin50°=34请你写出一个具有一般性的等式,使你写出的等式包含了已知的等式,这个等式是______.三、解答题(本大题共6小题,共72分)18.(12分)已知集合A={x|1⩽x−1⩽4},B={x|−2<x⩽3},C={x|2a−1< x<2a+1}.(1)若x∈C是“x∈A”的充分条件,求实数a的取值范围;(2)若(A∩B)⊆C,求实数a的取值范围.19.(12分)已知函数f(x)=√3sinx+mcosx(m∈R).(Ⅰ)若m=1,求f(π12)的值;(Ⅰ)若m=√6,且f(x)=0,求tan2x.20.(12分)立德中学高一年级共有200名学生报名参加学校团委与学生会组织的社团组织.据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有多少人?21.(12分)已知sin(α−β)=12,sin(α+β)=13.(1)证明:tanα+5tanβ=0;(2)计算:tan(α−β)−tanα+tanβtan2α·tan(α−β)的值.22.(12分)在①两个相邻对称中心的距离为π2,②两条相邻对称轴的距离为π2,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解.问题:函数f(x)=cos(ωx+φ)(ω>0,0<φ<π2)的图象过点(0,12),且满足________,当α∈(0,π2)时,f(α2)=−√22,求sinα的值.23.(12分)已知函数f(x)=ax−2b x 2+1是定义在[−1,1]上的奇函数,且f(1)=1.(1)求a ,b 的值;(2)判断函数f(x)的单调性并用定义加以证明;(3)求使f(m −1)+f(2m −1)<0成立的实数m 的取值范围. 四 、多选题(本大题共5小题,共25分) 24.(5分)下列说法正确的是()A. “a >1”是“1a <1”的充分不必要条件B. 命题“∀x >1,x 2<1”的否定是“∃x <1,x 2⩾1”C. “x >1”是“(x −1)(x +2)>0”的必要条件D. 设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件 25.(5分)设a >1,b >1且ab −(a +b)=1,那么( )A. a +b 有最小值2+2√2B. a +b 有最大值2+2√2C. ab 有最小值3+2√2D. ab 有最大值1+√226.(5分)已知x ,y ∈R ,x >0,y >0,且x +2y =1.则下列选项正确的是()A. 1x +1y 的最小值为4√2 B. x 2+y 2的最小值为15 C.x−2y x 2+y 2>1D. 2x+1+4y ⩾427.(5分)已知M 、N 均为实数集R 的子集,且N ∩∁R M =∅,则下列结论中正确的是( )A. M ∩∁R N =∅B. M ∪∁R N =RC. ∁R M ∪∁R N =∁R MD. ∁R M ∩∁R N =∁R M28.(5分)已知函数f(x)=2cos (ωx +ϕ)(ω>0,|ϕ|<π2)的图象上,对称中心与对称轴x =π12的最小距离为π4,则下列结论正确的是( )A. f (x )+f (5π6−x)=0 B. 当x ∈[π6,π2]时,f (x )⩾−√3C. 若g(x)=2cos2x ,则g (x −π6)=f (x )D. 若sin 4α−cos 4α=−45,α∈(0,π2),则f (α+π4)的值为4−3√35答案和解析1.【答案】C;【解析】解:由题意知B ={ x |−1⩽x ⩽2}, (1)A =∅时,3a −1⩾2a +3,解得a ⩾4,满足题意;(2)A ≠∅时,a <4,由A ⊆B ,即有{2a +3⩽2,解得{a ⩽−12,可得a ∈∅; 综上,a ⩾4. 故选:C.分别讨论A 是否为空集,结合集合的关系,可得a 的不等式组,解不等式可得所求范围. 此题主要考查集合关系中的含参问题,注意对集合A 分空集和不是空集2种情况进行讨论,属于较易问题.2.【答案】D;【解析】解:由题意得,函数g(x)的图象与直线y =x 在[1e ,e 2]上有两个交点,即方程c x =x 在[1e,e 2]上有两个不等实根,即lnc =lnx x在[1e ,e 2]上有两个不等实根.设函数ℎ(x)=lnx x(1e⩽x ⩽e 2),ℎ′(x)=1−lnx x 2,当1e⩽x <e 时,ℎ′(x)>0,函数ℎ(x)单调递增; 当e <x ⩽e 2时,ℎ′(x)<0,函数ℎ(x)单调递减. 所以ℎ(x)在x =e 处取得极大值,也是最大值,为ℎ(e)=1e .又ℎ(1e )=−e,ℎ(e 2)=2e 2, 故2e 2⩽lnc <1e ,解得e 2e 2⩽c <e 1e.故选:D.由题意可得函数g(x)的图象与直线y =x 在[1e ,e 2]上有两个交点,即lnc =lnx x在[1e ,e 2]上有两个不等实根.构造函数,通过导数求函数的最值与区间端点值,数形结合求解即可.此题主要考查了导数的新定义问题,考查转化思想,属于中档题.3.【答案】A; 【解析】略4.【答案】null; 【解析】此题主要考查了一元二次不等式的解法,充分必要条件的应用,属于中档题. 先根据命题p 成立的充要条件,求出a 的取值范围,然后根据充分不必要条件的定义结合各选项可得答案.解:由题意命题p 即(ax −1)(x +1)<0的解集为(−∞,−1)∪(1a ,+∞),即充要条件为{a <0−1⩽1a ,解得a ⩽−1,因为(−∞,−2)⫋(−∞,−1]所以a <−2是a ⩽−1的一个充分不必要条件, 故选D.5.【答案】B; 【解析】此题主要考查了对数的恒过定点问题以及幂函数的解析式和求值,属于基础题.将定点代入幂函数解析式,可得a ,进而可求f(4).解:可知函数y =log a (2x −3)+√22(a >0且a ≠1)的图象恒过定点P(2,√22), 令幂函数为f(x)=x a ,代入P 点坐标, 可得√22=2a ,则a =−12, f(x)=x −12, 则f(4)=4−12=12.故选B.6.【答案】C;【解析】此题主要考查了不等式与绝对值不等式,根据ab >0,逐项判断即可得到答案.解:∵ab >0,∴a 、b 同号,∴ |a +b|>|a|,|a +b|=|a|+|b|,∴①④正确,故选C.7.【答案】A; 【解析】此题主要考查了二倍角公式,解三角形,以及三角恒等变换等内容,需要学生熟练掌握并巧妙变换.由题意,利用二倍角公式将cos2A −3sin A +1=0化成关于sin A 的一元二次方程,解出sin A 的值,利用cos A <0求出A 的取值;将A 的值和B =π−A −C 代入并化简,可以得到关于C 的三角函数,利用三角函数单调性求出值域,即所求.解:因为cos2A −3sin A +1=0, 所以1−2sin2A −3sin A +1=0, 所以sin A =12或−2(舍), 又因为cos A <0, 所以A =5π6, 所以sin (C −A)+√32cos (2A −B)=sin (C −5π6)+√32cos [2×−(π−5π6−C)]=sin (C −5π6)+√32sin C =−12cos C , 又因为C ∈(0,π6), 所以cos C ∈(√32,1), 所以−12cos C ∈(−12,−√34) .故选A.8.【答案】A;【解析】此题主要考查了函数图象的识别,关键是掌握函数的奇偶性和函数的单调性和函数值的变化趋势,属于基础题.先求出函数为偶函数,再根据函数值的变化趋势或函数的单调性即可判断. 解:∵f(−x)=x 2+ln |x|=f(x), ∴y =f(x)为偶函数,∴y =f(x)的图象关于y 轴对称,故排除B ,C , 当x >0时,y =x 2+ln x 为增函数,故排除D. 故选A .9.【答案】C;【解析】解:①函数的定义域是{x|x ≠±1},f(−x)+f(x)=−x 1−|−x|+x 1−|x|=0,故①正确;②y =|f(x)|=|x1−|x||={x x−1,x >1x 1−x ,0<x <1−x1+x,−1<x <0−x x+1,x <−1,函数的图象如图所示:y =m 与函数图象有2个交点,故②正确;③设函数g(x)上的任一点为P(x,y)关于y =x 的对称点为(y,x)在函数f(x)上, 则x =y 1−|y|,当y >0时,y =xx+1,当y ⩽0时,y =x 1−x,当x =2时,y =23或y =−2,存在一个x 对着两个y 的值,所以不存在函数g(x)使得g(x)的图象与f(x)的图象关于直线v =x 对称,故③不正确; ④x1−|x|−kx =0,当x =0时,满足方程,所以方程的一个实数根是x =0,当x ≠0时,k =11−|x|,|x|=1−1k ,当k >1时,1−1k >0,x =±(1−1k ),),所以函数有3个零所以满足方程g(x)=f(x)−kx=0的有三个实数根据0,±(1−1k点,故④正确.故正确的个数有3个.故选:C.①根据解析式计算f(−x)+f(x)=0;②画出函数y=|f(x)|的图象,由图象的交点个数判断实数根的个数;③假设存在函数g(x)满足条件,再根据函数的定义,判断选项;④根据f(x)−kx=0,求方程的实数根的个数,再判断定义域上的零点个数.此题主要考查函数的图象和性质,零点,重点考查数形结合分析问题的能力,推理能力,属于中档题型.10.【答案】B;【解析】本题是对函数奇偶性和周期性的综合考查,属于拔高题.推导出函数f(x)是以4为周期的周期函数,由已知条件得出f(1)=0,结合已知条件可得出结论.解:因为函数f(x+2)为偶函数,则f(2+x)=f(2−x),可得f(x+3)=f(1−x),因为函数f(2x+1)为奇函数,则f(1−2x)=−f(2x+1),所以,f(1−x)=−f(x+1),所以,f(x+3)=−f(x+1)=f(x−1),即f(x)=f(x+4),故函数f(x)是以4为周期的周期函数,因为函数F(x)=f(2x+1)为奇函数,则F(0)=f(1)=0,故f(−1)=−f(1)=0,其它三个选项未知.故选B.11.【答案】C;【解析】此题主要考查综合运用函数的单调性与奇偶性解不等式,属于中档题.解:因为函数在[0,+∞)上是增函数,且函数是奇函数,所以函数在(−∞,0)上是增函数,函数在x=0处连续,所以函数在R上是增函数,又f(−1)=−f(1),所以不等式可化为f(2x+1)⩾−f(1)=f(−1),所以2x+1⩾−1,解得x⩾−1,即不等式的解集为[−1,+∞).故选C.12.【答案】null;【解析】解:集合A={x|1<x<3},集合B={x|log2(x+1)⩽2}={x|−1<x⩽3},则A∪B={x|−1<x⩽3}.故选:D.求出集合A,集合B,利用并集定义能求出A∪B.此题主要考查集合的运算,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.13.【答案】1或-1;【解析】略14.【答案】5;8;【解析】此题主要考查运用集合间的关系确定元素个数问题以及venn图的运用,属于基础题.把集合间的关系利用方程表示出来,再解方程即可.解:由条件知,每名同学至多参加两个小组,故不可能出现一名同学同时参加数学、物理、化学小组,因为参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,所以只参加物理的有15−6−4=5人.设同时参加数学和化学小组的人数有x人,则只参加数学的有26−6−x=20−x,只参加化学的有13−4−x=9−x.又总人数为36人,即20−x+x+6+4+5+9−x=36,所以44−x=36,解得x=8.即同时参加数学和化学小组的人数有8人,15.【答案】f(x)=x2;【解析】此题主要考查了幂函数的求导公式,奇函数的定义及判断,考查了计算能力,属于基础题.函数f(x)=x 2,f(x 1x 2)=(x 1x 2)2=x 12x 22=f(x 1)f(x 2)满足①,求出导函数,可判断满足②③.解:f(x)=x 2时,f(x 1x 2)=(x 1x 2)2=x 12x 22=f(x 1)f(x 2);当x ∈(0,+∞)时,f′(x)=2x >0;f′(x)=2x 是奇函数. 故答案为:f(x)=x 2.16.【答案】f (x )=2x+2;【解析】解:因为函数f(x)满足对任意x 1,x 2,均有f(x 1)⋅f(x 2)=4f(x 1+x 2), 故考虑基本初等函数中的指数函数, 又f(x)在R 上单调递增, 则指数函数的底数大于1,所以f(x)的一个解析式为f(x)=2x+2. 故答案为:f(x)=2x+2.由条件②,考虑为基本初等函数中的指数函数,再利用单调性,即可得到答案. 此题主要考查了基本初等函数性质的理解与应用,指数函数性质的理解与应用,考查了逻辑推理能力,属于基础题.17.【答案】si n 2α+si n 2(60°-α)+sinα•sin (60°-α)=34;【解析】解:等式的右边为常数34,等式左边的两个角之和为60°,故由归纳推理可知,满足条件的一个结论可以是:sin 2α+sin 2(60°−α)+sinα⋅sin(60°−α)=34.故答案为:sin 2α+sin 2(60°−α)+sinα⋅sin(60°−α)=34.根据两个等式的特点,确定角和角之间的关系,然后利用归纳推理归纳出结论. 此题主要考查归纳推理的应用,根据归纳推理,先从条件中确定等式的规律是解决此类问题的基本思路,属于基础题.18.【答案】解:(1)集合A={x|1≤x -1≤4}={x|2≤x≤5},C={x|2a-1<x <2a+1}, ∵x ∈C 是“x ∈A”的充分条件,∴{2a +1≤52a −1≥2,解得32≤a ≤2, ∴实数a 的取值范围是[32,2];(2)∵集合A={x|1≤x -1≤4}={x|2≤x≤5},B={x|-2<x≤3},C={x|2a-1<x <2a+1}, ∴A∩B={x|2≤x≤3},(A∩B )⊆C ,∴{2a −1<22a +1>3,解得1<a <32, ∴实数a 的取值范围是(1,32).;【解析】(1)求出集合A ,利用x ∈C 是“x ∈A ”的充分条件,列出不等式组,由此能求出实数a 的取值范围;(2)利用交集定义求出A ∩B ,利用(A ∩B)⊆C ,列出不等式组,由此能求出实数a 的取值范围.此题主要考查集合的运算,考查充分条件、子集、交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.19.【答案】解:(Ⅰ)若m=1,则函数f (x )=√3sinx+cosx=2sin (x+π6), ∴f (π12)=2sin π4=√2.(Ⅱ)∵m=√6,f (x )=√3sinx+√6cosx=0, ∴√3sinx-=-√6cosx ,∴tanx=-√2, ∴tan2x=2tanx 1−tan 2x =2√2.;【解析】(Ⅰ)由题意,利用两角和差的三角公式化简函数f(x)的解析式,从而得到f(π12)的值.(Ⅰ)先由题意求得tanx 的值,再利用二倍角的正切公式,计算tan2x 的值. 此题主要考查两角和差的三角公式,二倍角的正切公式,属于基础题.20.【答案】解:由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有103+120-200=23人,所以同时参加这2个社团的最多有103名学生,最少有23名学生.; 【解析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 此题主要考查集合的应用,考查运算求解能力,属于基础题.21.【答案】解:(1)证明:由条件sin(α−β)=12,sin(α+β)=13, 即sinαcosβ−cosαsinβ=12,sinαcosβ+cosαsinβ=13, 解得sinαcosβ=512,cosαsinβ=−112,可得tanαtanβ=-5, 从而可得tanα=-5tanβ,tanα+5tanβ=0得证.(2)由tan(α−β)=tanα−tanβ1+tanαtanβ,可得tanα-tanβ=tan (α-β)(1+tanαtanβ),∴原式=tan(α−β)−tanα+tanβtan 2αtan(α−β)=tan(α−β)−tan(α−β)(1+tanαtanβ)tan 2αtan(α−β)=−tan(α−β)·tanαtanβtan 2αtan(α−β)=−tanβtanα=15.;【解析】(1)由题意,把所给条件利用两角和差的三角公式展开,化简可得结论. (2)由题意,把两角差的正切公式展开变形,代入要求的式子化简,可得结论. 此题主要考查两角和差的三角公式的应用,同角三角函数的基本关系,属于中档题.22.【答案】解:由函数f(x)=cos(ωx +φ)的图象过点(0,12),得f(0)=cosφ=12, 又因为0<φ<π2,所以φ=π3,在①②③三个条件中任选一个,可知最小正周期T =π, 根据T =2π|ω|, 得ω=2,所以f(x)=cos(2x +π3), 由f(α2)=−√22,得cos(α+π3)=−√22, 由α∈(0,π2),得α+π3∈(π3,5π6),所以sin(α+π3)=√1−cos 2(α+π3)=√22, sinα=sin[(α+π3)−π3]=sin(α+π3)cos π3−cos(α+π3)sin π3 =√22×12−(−√22)×√32=√2+√64. ;【解析】此题主要考查三角恒等变换和三角函数的图象和性质,属于中档题. 先由f(0)=12求出φ,由三个条件中任选一个,可知最小正周期T =π,得ω=2,求出f(x) ,结合条件以及同角三角函数关系求得sin(α+π3),再利用两角差的正弦公式即可求解.23.【答案】null; 【解析】(1)由奇函数的性质可得f(0)=0,可求得b 的值,再由f(1)=1可求得a 的值,从而可得a ,b 的值;(2)f(x)在[−1,1]上是增函数,利用增函数的定义即可证明;(3)根据函数的奇偶性与单调性将不等式转化为关于m 的一次不等式,求解即可. 此题主要考查函数奇偶性与单调性的综合,考查不等式的解法,考查转化思想与运算求解能力,属于中档题.24.【答案】AD;【解析】解:对于A :当“a >1”时“1a <1”成立,反之不成立,故“a >1”是“1a <1”的充分不必要条件,故A 正确;对于B :命题“任意x >1,都有x 2<1”的否定是“存在x >1,使得x 2⩾1”故B 不正确; 对于C :x >1,则(x −1)(x +2)>0,但由(x −1)(x +2)>0,不能推出x >1,故“x >1”是“(x −1)(x +2)>0”的充分不必要条件,故C 不正确;对于D :设a ,b ∈R ,则“a ≠0”推不出“ab ≠0”,由“ab ≠0”能够推出“a ≠0”,故“a ≠0”是“ab ≠0”的必要不充分条件,故D 正确. 故选:AD.直接利用充分条件和必要条件,命题的否定,简易逻辑中的相关知识的应用判断A 、B 、C 、D 的结论此题主要考查的知识要点:充分条件和必要条件,命题的否定,简易逻辑,主要考查学生的运算能力和数学思维能力,属于基础题.25.【答案】AC;【解析】解:∵a >1,b >1, ∴ab =1+(a +b)⩽(a+b 2)2(当且仅当a =b >1时,取等号),即(a +b)2−4(a +b)−4⩾0且a +b >2, ∴a +b ⩾2+2√2,∴a +b 有最小值2+2√2,即选项A 正确,B 错误;由ab −(a +b)=1,得ab −1=a +b ⩾2√ab (当且仅当a =b >1时,取等号), 即ab −2√ab −1⩾0且ab>1, ∴ab ⩾3+2√2,∴ab 有最小值3+2√2,即选项C 正确,D 错误. 故选:AC . 由(a +b)⩽(a+b 2)2,可推出a +b 的最小值;由a +b ⩾2√ab ,可推出ab 的最小值.该题考查基本不等式的应用,熟练掌握基本不等式的各种变形是解答该题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.26.【答案】BD;【解析】解:对于A :已知x ,y ∈R ,x >0,y >0,且x +2y =1,所以1x +1y =x+2y x+x+2y y=1+3+2y x+xy ⩾4+2√2,当且仅当x 2=2y 2等号成立,故A 错误;对于B :x 2+y 2=(1−2y)2+y 2=5y 2−4y +1=5(y −25)2+15,当y =25时,最小值为15;故B 正确;对于C :当x =12,y =14时,x−2yx 2+y 2>1不成立,故C 错误;对于D :2x+1+4y =2x+1+22y ⩾2√2x+2y+1=4,当且仅当y =12时,等号成立,故D正确.故选:BD.直接利用不等式的性质和基本不等式的应用判断A、B、C、D的结论.此题主要考查的知识要点:不等式的性质,基本不等式的应用,主要考查学生的运算能力和数学思维能力,属于中档题.27.【答案】BD;【解析】解:因为N∩∁R M=∅,所以N⊆M,所以M∩∁R N≠∅,选项A错误;M∪∁R N=R,选项B正确;∁R M∪∁R N=∁R N,选项C错误;∁R M∩∁R N=∁R M,选项D正确.故选:BD.根据题意知N⊆M,利用交集、并集和补集的定义,判断正误即可.此题主要考查了集合的定义与运算问题,也考查了推理与判断能力,是基础题.28.【答案】BD;【解析】此题主要考查了余弦函数的图象及性质,同角三角函数关系及两角差的余弦公式,属于中档题.根据对称中心与对称轴的最小距离求出周期T,得到ω=2,再根据对称轴方程求出ϕ=−π6,再根据余弦函数的图象及性质对四个选项一一判断即可,选项D先利用同角三角函数关系及二倍角公式化简,再求出f(α+π4).解:由题有T=π,则ω=2,又由对称轴x=π12可得,2×π12+ϕ=kπ,k∈Z,又|ϕ|<π2,则ϕ=−π6,故f(x)=2cos(2x−π6),对于A,因为f(x)+f(5π6−x)=2cos(2x−π6)+2cos(53π−2x−π6)=2cos(2x−π6)−2sin2x=2cos2x cosπ6+2sin2x sinπ6−2sin2x=√3cos2x−sin2x则f(x)+f(5π6−x)=0错误,故A选项不正确.对于B,x∈[π6,π2],则2x−π6∈[π6,5π6],则f(x)∈[−√3,√3],故B选项正确;对于C,f(x)=2cos2(x−π12),应将g(x)=2cos2x的图象向右平移π12个单位,故C选项错误.对于D,sin4α−cos4α=−cos2α=−45,且α∈(0,π2),则2α∈(0,π),故cos2α=45,sin2α=35,而f (α+π4)=2cos (2α+π3)=cos 2α−√3sin 2α=4−3√35,故D 选项正确; 故选BD .。
面面垂直证明例题(最终定稿)第一篇:面面垂直证明例题数学面面垂直例题例4答案:例8答案:取AC的中点为O,连接OP、OB。
AO=OC,PA=PC,故PO垂直AC第二篇:怎么证明面面垂直怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面然后转化成一条直线垂直于另一个平面内的两条相交直线也可以运用两个面的法向量互相垂直。
这是解析几何的方法。
证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB在面ABCD内的射影=>PB垂直AC.PD 垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD垂直面ACE 2 1利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。
2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分线线垂直分为共面与不共面。
不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。
方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。
2.公理4(平行公理)。
3.线面平行的性质。
4.面面平行的性质。
5.垂直于同一平面的两条直线平行。
8.6.3 平面与平面垂直第2课时 平面与平面垂直的性质一、选择题1.设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得l β⊥,l α⊂ 可得αβ⊥2.如图所示,在平行四边形ABCD 中,AB BD ⊥,沿BD 将ABD △折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为( )A .1B .2C .3D .4【答案】C【解析】 ∵面ABD ⊥面BCD ,AB ⊥BD ,∴AB ⊥面BCD ,又AB ⊂面ABC ,∴面ABC ⊥面BCD ,同理,面ACD ⊥面ABD.故四面体ABCD 中互相垂直的平面有3对.3.如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A .一条线段B .一条直线C .一个圆D .一个圆,但要去掉两个点【答案】D【解析】 因为平面PAC ⊥平面PBC ,AC ⊥PC ,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC ⊥平面PBC.又因为BC ⊂平面PBC ,所以AC ⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.4.已知平面α⊥平面β,n αβ=,点A α∈,A n ∉,直线AB n ,直线AC n ⊥,直线m α,m β,则下列四种位置关系中,不一定成立的是( )A .AB m ∥B .AC m ⊥ C .AB β∥D .AC β⊥【答案】D【解析】如图所示:由于//m α,//m β,n αβ=,所以//m n ,又因为//AB n ,所以//AB m ,故A 正确, 由于AC n ⊥,//m n ,所以AC m ⊥,故B 正确,由于//AB n ,n β⊂,AB 在β外,所以//AB β,故C 正确;对于D ,虽然AC n ⊥,当AC 不一定在平面α内,故它可以与平面β相交、平行,不一定垂直,所以D 不正确;故答案选D5.(多选题)给定下列四个命题:A.若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;B.若一个平面经过另一个平面的垂线,则这两个平面相互垂直;C.垂直于同一直线的两条直线相互平行;D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④【答案】BD【解析】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故A 错误;由平面与平面垂直的判定可知B 正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故C 错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故D 正确.综上,真命题是BD. 故选:BD6.(多选题)如图所示,在直角梯形BCEF 中,90CBF BCE ︒∠=∠=,,A D 分别是,BF CE 上的点,AD BC ∥,且22AB DE BC AF ===(①).将四边形ADEF 沿AD 折起,连接,,BE BF CE (②).在折起的过程中,下列说法中正确的是( )A .AC 平面BEFB .,,,BC E F 四点不可能共面C .若EF CF ⊥,则平面ADEF ⊥平面ABCDD .平面BCE 与平面BEF 可能垂直【答案】ABC【解析】选项A 中,连接AC ,取AC 的中点O ,BE 的中点M ,连接,MO MF ,MO DE 且12MO DE =, 而AF DE ∥且12AF DE =,所以AF MO 且AF MO =所以四边形AOMF 是平行四边形,所以AC FM ∥,而AC ⊄平面BEF ,FM⊂平面BEF ,所以AC 平面BEF , 所以A 正确;选项B 中,设,,,B C E F 四点共面,因为BC AD ∥,BC ⊄平面ADEF ,AD ⊂平面ADEF ,所以BC ∥平面ADEF ,而BC ⊂平面BCEF ,平面BCEF平面ADEF EF =, 所以BC EF ∥,所以AD EF ,这与已知相矛盾,故B C E F ,,,四点不可能共面,所以B 正确;选项C 中,连接,CF DF ,在梯形ADEF 中,易得EF FD ⊥,又EF CF ⊥,,FD CF ⊂平面CDF ,FDCF F =,所以EF ⊥平面CDF而CD ⊂平面CDF ,所以CD EF ⊥,而CD AD ⊥,,EF AD ⊂平面ADEF ,且EF 与AD 必有交点,所以CD ⊥平面ADEF ,因为CD ⊂平面ABCD ,所以平面ADEF ⊥平面ABCD ,所以C 正确;选项D 中,延长AF 至G ,使得AF FG =,连接,BG EG , AD AF ⊥,AD AB ⊥,,AF AB ⊂平面ABF ,AF AB A ⋂=,所以AD ⊥平面ABF ,而BC AD ∥,所以BC ⊥平面ABF ,因为BC ⊂平面BCE ,所以平面BCE ⊥平面ABF ,过F 作FN BG ⊥于N ,FN ⊂平面ABF ,平面BCE 平面ABF BG =,若平面BCE ⊥平面BEF ,则过F 作直线与平面BCE 垂直,其垂足在BE 上,故前后矛盾,所以D 错误.故选:ABC.二、填空题7.如图,四面体P ABC -中,13PA PB ,平面PAB ⊥平面ABC ,90ACB ∠=︒,86AC BC ,,则PC _______.【答案】13【解析】取AB 的中点E ,连接,PE EC .因为90,8ACB AC ,6BC =,所以10AB =,所以5CE =. 因为13PA PB ,E 是AB 的中点,所以,12PEAB PE . 因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PE ⊂平面PAB ,因为CE ⊂平面ABC ,所以PE CE ⊥.在Rt PEC ∆中,2213PC PE CE .8.如图所示,A B C D ,,,为空间四点,在ABC 中,2AB AC BC ===,ADB 以AB 为轴运动,当平面ADB ⊥平面ABC 时,CD =________.【答案】2.【解析】取AB 的中点E ,连接DE CE ,.因为ADB △是等边三角形,所以DE AB ⊥.当平面ADB ⊥平面ABC 时,因为平面ADB ⋂平面ABC AB =,且DE AB ⊥,所以DE ⊥平面ABC ,故DE CE ⊥.由已知可得1DE EC ==,在Rt DEC △中,2CD ==.9.平面α⊥平面β,l αβ=,n β⊂,n l ⊥,直线m α⊥(m ,n 是两条不同的直线),则直线m 与n 的位置关系是______.【答案】//m n【解析】解:因为平面α⊥平面β,l αβ=,n β⊂,n l ⊥,由面面垂直的性质可得n α⊥,又m α⊥,所以//m n .故答案为://m n10.已知PA ⊥正方形ABCD 所在的平面,垂足为A ,连接PB ,PC ,PD ,则平面PAB ,平面PAD ,平面PCD ,平面PBC ,平面ABCD 中,互相垂直的平面有 对.【答案】5【解析】,,PA ABCD PAB ABCD PAD ABCD ⊥∴⊥⊥平面平面平面平面,又,,,CD AD PADABCD AD CD PAD ⊥=∴⊥平面平面平面PCD PAD ∴⊥平面平面,同理,平面PAB ⊥平面PAD ,平面PBC ⊥平面PAB ,所以互相垂直的平面共有5对.三、解答题11.已知P 是ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC AC ⊥.【答案】证明见解析【解析】如图,在平面PAC 内作AD PC ⊥于点D ,∵平面PAC ⊥平面PBC ,平面PAC 平面PBC PC =,AD ⊂平面PAC ,且AD PC ⊥,AD ∴⊥平面PBC ,又BC ⊂平面PBC ,AD BC ∴⊥.PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,AD PA A =,,AD PA ⊂平面PAC ,BC ∴⊥平面PAC ,又AC ⊂平面PAC ,BC AC ∴⊥.12.如图,三棱锥P ABC -中,已知ABC 是等腰直角三角形,90ABC ︒∠=,PAC 是直角三角形,90PAC ︒∠=,平面PAC ⊥平面ABC .求证:平面PAB ⊥平面PBC .【答案】证明见解析【解析】证明 ∵平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,又PAC 是直角三角形,所以PA AC ⊥, PA ∴⊥平面ABC .又BC ⊂平面ABC ,PA BC ∴⊥.AB BC ⊥,AB PA A ⋂=,AB 平面PAB ,PA ⊂平面PAB , BC ∴⊥平面PAB .又BC ⊂平面PBC ,故平面PAB ⊥平面PBC .。
线、面间的垂直关系(习题)例题示范例1:如图,在四棱锥S-ABCD中,底面ABCD是矩形,且SA⊥底面ABCD,过点A作AE⊥SB于点E,再过点E作EF⊥SC于点F.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.思路分析:(1)考虑证明线线垂直的思考角度,转化为线面垂直,首先确定线面目标,以SC为线,转化为证明SC⊥平面AEF.然后,结合题目条件EF⊥SC,只需证明AE⊥SC,同样转化为线面垂直,易得AE⊥平面SBC,整合条件进行证明.(2)证明线线垂直,考虑证明线面垂直,确定线面目标,转化为证明AG⊥平面SDC,由(1)得AG⊥SC,只需证明AG⊥CD,同样转化为线面垂直,证明CD⊥平面SAD,整合条件进行证明.解题过程:(1)证明:∵SA⊥平面ABCD,∴SA⊥BC,∵AB⊥BC,且SA AB=A,∴BC⊥平面SAB,∴BC⊥AE,又∵AE⊥SB,且SB BC=B,∴AE⊥平面SBC,∴AE⊥SC,又∵EF⊥SC,且AE EF=E,∴SC⊥平面AEF,∴AF⊥SC.(2)∵SA⊥平面ABCD,∴SA⊥CD,∵CD⊥AD,且SA AD=A,∴CD⊥平面SAD,∴CD⊥AG,由(1)得SC⊥平面AEF,∴SC⊥AG,又∵CD SC=C,∴AG⊥平面SDC,∴AG⊥SD.例2:如图,在四棱锥E -ABCD 中,底面ABCD 是正方形,AC ,BD 相交于点O ,EC ⊥底面ABCD .(1)求证:BD ⊥AE .(2)若2AB CE =,则在线段OE 上是否存在点G ,使CG ⊥平面BDE ?若存在,求出EG OE 的值;若不存在,请说明理由.思路分析:(1)考虑证明线线垂直的思考角度,转化为线面垂直,确定线面目标,以BD 为线,转化为证明BD ⊥平面ACE ,已知BD ⊥AC ,只需证明BD ⊥EC ,结合题目条件EC ⊥底面ABCD ,整合条件进行证明.(2)结合(1)中结论,利用线面垂直的性质定理得,平面ACE ⊥平面BDE ,再利用面面垂直的性质定理,只需满足CG ⊥交线OE 即可.解题过程:(1)∵EC ⊥底面ABCD ,∴EC ⊥BD ,由底面ABCD 是正方形得,AC ⊥BD ,又AC EC =C ,∴BD ⊥平面ACE ,∴BD ⊥AE .(2)存在,理由如下:如图,取OE 的中点G ,连接CG ,在四棱锥E -ABCD 中,AB =2CE ,22OC =AB =CE ,∴CG ⊥OE ,由(1)得,BD ⊥平面ACE ,又BD ⊂平面BDE ,∴平面ACE ⊥平面BDE ,∵平面ACE 平面BDE =OE ,CG ⊥OE ,CG ⊂平面ACE ,∴CG ⊥平面BDE .故在线段OE 上存在点G ,使CG ⊥平面BDE ,由G 为OE 的中点得,12EG OE =.巩固练习1.设b,c,m是空间的三条不同直线,α,β,γ是空间的三个不同平面,给出下列命题:①若b⊥m,c⊥m,则b∥c;②若b⊥α,c⊥α,则b⊥c;③若m∥α,α⊥β,则m⊥β;④若β∥α,γ⊥β,则γ⊥α.其中正确的是_______________.(填写序号)2.如图,在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,垂足为H,则B1H与平面AD1C的位置关系是()A.垂直B.平行C.斜交D.以上都不对第2题图第3题图3.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,MD=NB=1,则下列结论不正确的是()A.MC⊥AN B.CD⊥CNC.平面CMN⊥平面AMN D.平面ACN⊥平面BMN 4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,若正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,则m+n=()A.8B.9C.10D.115.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC ,等边三角形ABD以AB为轴转动,当平面ABD⊥2平面ABC时,CD的长为__________.第5题图第6题图6.如图,在直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,F 是线段AA1上一点,当CF⊥平面B1DF时,AF的长为_______.7.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC,BD相交于点O,PO⊥平面ABCD,PA=AB,E,F,G分别是PO,AD,AB的中点.求证:(1)PC⊥BD;(2)PC⊥平面EFG.8.如图,已知P是△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于点E,AF⊥PC于点F.求证:(1)平面PBC⊥平面PAB;(2)PC⊥平面AEF.9.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点.(1)求证:A1C⊥平面BDC1;(2)过点E构造一条线段,使之与平面BDC1垂直,并证明你的结论.【参考答案】1.④2.A3.C4.A5.26.a或2a7.证明略.8.证明略.9.(1)证明略;(2)取BD的中点O,连接EO,则EO即为满足条件的线段,证明略.。