二次规划
- 格式:ppt
- 大小:1.40 MB
- 文档页数:30
9.2.4 二次规划问题9.2.4.1 基本数学原理如果某非线性规划的目标函数为自变量的二次函数,约束条件全是线性函数,就称这种规划为二次规划。
其数学模型为:其中,H, A,和Aeq为矩阵,f, b, beq, lb, ub,和x为向量。
9.2.4.2 相关函数介绍quadprog函数功能:求解二次规划问题。
语法:x = quadprog(H,f,A,b)x = quadprog(H,f,A,b,Aeq,beq,lb,ub)x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval] = quadprog(...)[x,fval,exitflag] = quadprog(...)[x,fval,exitflag,output] = quadprog(...)[x,fval,exitflag,output,lambda] = quadprog(...)描述:x = quadprog(H,f,A,b) 返回向量x,最小化函数1/2*x'*H*x + f'*x ,其约束条件为A*x <= b。
x = quadprog(H,f,A,b,Aeq,beq)仍然求解上面的问题,但添加了等式约束条件Aeq*x = beq。
x = quadprog(H,f,A,b,lb,ub)定义设计变量的下界lb和上界ub,使得lb <= x <= ub。
x = quadprog(H,f,A,b,lb,ub,x0)同上,并设置初值x0。
x = quadprog(H,f,A,b,lb,ub,x0,options)根据options参数指定的优化参数进行最小化。
[x,fval] = quadprog(...)返回解x处的目标函数值fval = 0.5*x'*H*x + f'*x。
二次规划基本介绍二次规划(Quadratic Programming,简称QP)是数学规划的一种特殊形式,它的目标函数是二次函数,约束条件是线性函数。
在实际应用中,二次规划被广泛应用于经济学、运筹学、工程学等领域,具有重要的理论和实际意义。
二次规划的一般形式可以表示为:$$\begin{aligned}\min_{x} \quad & \frac{1}{2} x^T Q x + c^T x \\\text{s.t.} \quad & Ax \ge b \\&Cx=d\end{aligned}$$其中,$x$是优化变量,$Q$是一个对称正定的矩阵,$c$、$b$、$d$都是列向量,$A$、$C$是约束矩阵。
在约束条件中,$Ax \ge b$表示一组不等式约束,$Cx = d$表示一组等式约束。
二次规划的优化目标是寻找满足约束条件的$x$,使得目标函数最小。
目标函数由两部分组成,一部分是二次项,一部分是线性项,其中$Q$是二次项的系数矩阵,$c$是线性项的系数向量。
由于$Q$是一个对称正定矩阵,所以二次项是凸的,使得问题具有良好的性质。
二次规划的解法有多种方法,以下介绍其中两种常用的方法:内点法和激活集方法。
内点法是一种迭代求解二次规划问题的方法。
它通过将二次规划问题转化为一系列等价的线性规划问题来求解。
在每一次迭代中,内点法通过将问题的方向限制在可行域的内部,逐渐逼近最优解。
使用内点法求解二次规划问题的一个优点是,可以在多项式时间内找到最优解,尤其适用于大规模的问题。
激活集方法是一种基于约束的求解方法。
它通过不断修改约束条件,从而求解二次规划问题。
在每一次迭代中,激活集方法选取一个子集,称为“激活集”,包含满足等式约束、不等式约束等的约束条件。
然后通过解析方法或数值方法求解这个子问题,得到对应的最优解。
该方法的优点是,可以很好地处理不等式约束和等式约束,并且收敛性良好。
除了内点法和激活集方法,还有其他的求解方法,如:序列二次规划、信赖域算法、光滑方法等。
二次规划问题的一个解法及几点注记二次规划问题是指在线性规划模型中,目标函数和约束条件均为二次函数的问题。
常见的解法有坐标下降法和半正定性法。
下面是关于二次规划问题的一个解法(坐标下降法)及几点注记。
解法:坐标下降法是一种求解二次规划问题的迭代算法。
基本思路是不断地求解当前点的搜索方向,然后在这个方向上移动,直到找到最优解为止。
具体步骤如下:1.设定初始点 x0,并求出当前点的目标函数值 f(x0)。
2.求解当前点 x0 的搜索方向 d0。
3.设定步长 t,求出下一个点 x1 = x0 + t * d0。
4.求出下一个点 x1 的目标函数值 f(x1),并与当前点 x0的目标函数值 f(x0) 进行比较。
5.若 f(x1) < f(x0),则接下来以 x1 为当前点,重复步骤 2-5;若 f(x1) ≥ f(x0),则退出迭代。
注记:1.坐标下降法的关键在于如何求解当前点的搜索方向d0。
一般来说,当前点的搜索方向 d0应该是当前点的二次梯二次规划问题的一个解法及几点注记:继续上文:注记:1.坐标下降法的关键在于如何求解当前点的搜索方向d0。
一般来说,当前点的搜索方向 d0应该是当前点的二次梯度的负方向,即 d0 = -∇2f(x0)。
2.坐标下降法的收敛速度取决于步长 t的取值。
常用的方法有常数步长法和自适应步长法。
常数步长法是指固定步长t,而自适应步长法是指根据当前点的目标函数值变化情况来调整步长 t。
3.坐标下降法的收敛性是指随着迭代次数的增加,目标函数的值会逐渐降低。
但是,坐标下降法并不能保证收敛到全局最优解,只能保证收敛到局部最优解。
4.坐标下降法的迭代次数一般较多,但是每次迭代的计算量较小,因此坐标下降法适用于线性规划问题规模较大的情况。
希望这些内容能为你的学习提供帮助!。
序列二次规划算法SQP算法的主要思想是通过逐步逼近的方式,将原问题转化为一系列的线性规划子问题。
每次迭代时,SQP算法都会求解一个局部的线性规划子问题,并将子问题的解作为迭代点。
然后,算法根据子问题的解进行更新,直到找到全局的最优解。
SQP算法的一般步骤如下:1.初始化变量:选取一个合适的初始点作为初始解。
2.解决线性规划子问题:根据当前的迭代点,构建一个线性规划子问题,求解得到迭代点的更新方向。
3.更新迭代点:根据更新方向和步长的选择策略,更新迭代点,并计算目标函数的值和约束条件的违反程度。
4.判断终止条件:检查目标函数的值和约束条件的违反程度是否满足停止准则,如果满足,则终止算法;否则,返回步骤2继续迭代。
在SQP算法中,线性规划子问题的构造是核心步骤之一、线性规划子问题的目标是最小化一个近似函数,这个近似函数由当前的迭代点的下降方向和目标函数的近似二次项组成,并添加了一些松弛变量以处理约束条件。
SQP算法的优点是能够处理具有非线性约束和二次约束的问题。
由于每次迭代时都解决一个线性规划子问题,所以算法收敛速度较快,尤其是在问题的约束条件属于线性和凸的情况下。
然而,SQP算法也存在一些局限性。
首先,算法对初始解的依赖性较高,不同的初始解可能会导致不同的收敛结果。
其次,算法对约束条件的可行性要求较高,对于存在强约束条件的问题,算法可能难以找到可行解。
为了克服这些局限性,研究人员提出了一些改进的SQP算法。
例如,引入了信赖域方法来解决不可行问题;采用了变尺度策略来解决初始解选择问题;引入了正则化技术来处理约束条件的松弛。
总之,序列二次规划算法是一种求解二次规划问题的有效方法。
它通过逐步逼近的方式,在每次迭代中求解一个线性规划子问题,并根据子问题的解进行更新,最终找到全局最优解。
然而,算法在一些特定情况下可能存在局限性,需要结合其他方法进行改进。
二次规划问题二次规划(Quadratic Programming,QP)是指在一定约束条件下,优化一个二次目标函数的数学问题。
它是数学规划(Mathematical Programming)中的一种重要分支,广泛应用于工程、经济、金融等领域。
二次规划问题的一般形式如下:minimize f(x) = (1/2)*x^T*Q*x + c^T*xsubject to: Ax ≤ bAx = blx ≤ x ≤ ux其中,x 是一个 n 维向量,Q 是一个 n×n 矩阵,c 是一个 n 维向量,A 是一个 m×n 矩阵,b 是一个 m 维向量,lx 和 ux 分别是 x 的下界和上界。
二次规划问题具有以下特点:1. 目标函数是一个二次函数,有一个二次项、一个一次项和一个常数项。
2. 约束条件是线性的,可以是等式约束或者不等式约束。
3. 决策变量是一个向量,需要满足一定的边界条件。
解决二次规划问题有多种方法,常用的有凸优化、KKT 条件和梯度法等。
在工程领域,二次规划问题经常出现在优化设计、控制系统和信号处理等方面。
例如,在机械设计中,可以使用二次规划问题来优化零件的尺寸和形状,以实现最小体积和质量。
在控制系统中,可以使用二次规划问题来设计最优控制器的参数,以实现系统的最佳响应和稳定性。
在信号处理中,可以使用二次规划问题来估计信号的频率、幅度和相位,以实现最佳的信号采样和重构。
总之,二次规划问题是一种重要的数学工具,能够解决许多实际问题。
通过优化目标函数,可以得到满足约束条件的最优解,提高系统的性能和效益。
随着计算机技术的发展和数学优化算法的改进,二次规划问题的求解越来越高效和可靠,为工程、经济和金融领域的决策提供了有力支持。