六年级数学秋季基础班32次课--时钟问题
- 格式:doc
- 大小:49.50 KB
- 文档页数:4
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人〞分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度〞或者“每分钟走多少小格〞。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟〞,或者是“坏了的钟〞,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走〔3600-30〕/3600个小时,手表又比闹钟快那么它一小时走〔3600+30〕/3600个小时,那么标准时间走1小时手表那么走〔3600-30〕/3600*〔3600+30〕/3600个小时,那么手表每小时比标准时间慢1—【〔3600-30〕/3600*〔3600+30〕/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题时钟问题是研究钟面上时针和分针关系的问题。
钟面的一周分为60分格,当分针走60格时,时针正好走5格,所以时针的速度是分针的5÷60=112,我们可以将分针的速度看成是1格/分,时针就是112格/分。
分针每走60÷(1-560)=56511(分),与时针重合一次。
时钟问题变化多端,也存在着不少的学问。
这里列出一个基本公式:在初始时刻需追赶的格数÷(1-112)=追及时间(分钟)。
其中,1-112为分针每分钟比时针多走的格数,即速度差。
〖经典例题〗例1、如图1,在时钟盘面上,1点45分时的时针与分针之间的夹角是多少?【分析】将时钟盘面分成12个分格,那么在1点45分,分针必落在9这个位置上,而时钟针不在1这个位置上,而是在1和2之间的某个位置上,也就是要求出从1点到1点45分,45分钟的时间时针转过的角度。
时针走60分钟转过360°÷12=30°,那么走45分钟,转过300×4560=22.50。
而且从1点45分时时钟盘面上时针、分针的位置易知,从9点整到13点整之间包含有4个大格。
那么此时时针与分针的夹角是这两部分角度的和:30×4+22.50=142.50。
例2、在10点与11点之间,钟面上时针和分针在什么时刻垂直?【分析】分两种情况进行讨论。
(1)在顺时针方向上分针与时针成270°角:在顺时针方向上当分针与时针成270°时,分针落后时针60×(270÷360)=45(个)格,而在10点整时分针落后时针5×10=50(个)格。
因此,在这段时间内,分针要比时针多走50-45=5(个)格,而每分钟分针比时针多走(1-1 12)个格,因此所用的时间为:5÷(1-112)=5511(分钟)。
(2)在顺时针方向上分针与时针成90°角:在顺时针方向上当分针与时针成90°角时,分针落后时针60÷(90÷360)=15个格,因此在这段时间内,分针要比时针多走50-15=35个格,所以所用的时间为:35÷(1-112)=38211(分钟)。
小学六年级奥数时钟问题(含例题讲解分析和答案)时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为5分。
6511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时 ,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒 【巩固】 小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)篇章重构:时钟问题是一个特殊的圆形轨道上两个指针的追及或相遇问题。
在时钟问题中,我们研究的是时钟的快慢、周期以及时针和分针所成的角度等等。
时钟问题的速度和总路程的度量方式不同于其他行程问题,而是以“每分钟走多少角度”或“每分钟走多少小格”为单位。
对于标准的时钟,整个钟面为360度,上面有12个大格,每个大格为30度,60个小格,每个小格为6度。
分针每分钟走1小格或6度,时针每分钟走1小格或0.5度。
然而,在许多时钟问题中,我们会遇到各种“怪钟”或“坏了的钟”,它们的时针和分针每分钟走的度数与常规的时钟不同,因此需要对不同的问题进行独立的分析。
要将时钟问题视为行程问题,分针快,时针慢,因此分针和时针之间的问题就是追及问题。
在解决时钟的快慢问题时,需要学会十字交叉法。
例如,对于时钟问题,需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65分钟。
下面是例题精讲:例1:XXX有一只手表,他发现手表比家里的闹钟每小时0秒,而闹钟却比标准时间每小时慢30秒。
那么XXX的手表一昼夜比标准时间差多少秒?解析:闹钟每小时只走(3600-30)/3600个小时,而手表每小时走(3600+30)/3600个小时。
因此,标准时间走1小时,手表走(3600-30)/3600*(3600+30)/3600个小时。
手表每小时比标准时间慢1-(3600-30)/3600*(3600+30)/3600=1-/=1/个小时,即四分之一秒。
因此,一昼夜24小时比标准时间慢四分之一乘以24等于6秒。
巩固题1:XXX家有一个闹钟,每小时比标准时间分。
有一天晚上10点整,XXX对准了闹钟,他想第二天早晨6:00起床,他应该将闹钟的铃定在几点几分?解析:从晚上10点到第二天早晨6点,共计8小时。
因为闹钟比标准时间分,所以实际上只需要设置闹钟在标准时间的8小时之前3*8=24分即可。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级数学应用题汇总:时钟问题
小学六年级数学应用题汇总:时钟问题
时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。
时钟问题可与追及问题相类比。
【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。
通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】变通为“追及问题”后可以直接利用公式。
例1、从时针指向4点开始,再经过多少分钟时针正好与分针重合? 解:钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。
每分钟分针比时针多走=11/12格。
4点整,时针在前,分针在后,两针相距20格。
所以分针追上时针的时间为20÷≈22
答:再经过22分钟时针正好与分针重合。
例2、四点和五点之间,时针和分针在什么时候成直角?
解:钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格。
四点整的时候,分针在时针后格,如果分针在时针后与它成直角,那么分针就要比时针多走格,如果分针在时针前与它成直角,那么分针就要比时针多走格。
再根据1分钟分针比时针多走格就可以求出二针成直角的时间。
÷≈6
÷≈38
答:4点06分及4点38分时两针成直角。
例3、六点与七点之间什么时候时针与分针重合?
解:六点整的时候,分针在时针后格,分针要与时针重合,就得追上时针。
这实际上是一个追及问题。
÷≈33
答:6点33分的时候分针与时针重合。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人"分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0。
5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟",或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒。
而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600—30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600—30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600—30)/3600*(3600+30)/3600】=1-14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。
分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时 钟 问 题
月 日 姓 名:
【知识要点】
1.时针与分针位置关系的问题,其实质是一个行程问题。
2.在钟面上,分针走1格时,时针走12
1
格,1大格为30°,1小格
为6°。
3.常用原基本公式: 初始时刻需追赶的格数÷1112⎛⎫-
⎪⎝
⎭=追及时间(分钟);其中,1112⎛⎫
- ⎪⎝⎭
为分针与时针的速度差。
4.时钟问题的基本题型:①求时针与分针的夹角②求时针与分针垂直、重合、反向成一直线时的时间。
【典型例题】
星期天,小李去公园玩,他上午10点10分进去,下午3点50分才出来。
他一共在公园中游玩了多少分钟?
例1. 10点24分时,分针与时针的夹角是多少度?
例2. 现在7点整,什么时候时针与分针第一次重合?第一次反向成一条直线?
例3. 6
例4. 8点几分时,分针与时针的夹角为30度?
随堂小测
姓名:成绩:
1.5点15分,分针与时针的夹角为多少度?
2. 6:15分,分针与时针的夹角为多少度?
3.钟面上在2点至3点间,时针与分针重合时,是什么时刻?
4. 3点几分时,分针与时针正好成一条直线?
条直线?
6. 7点几分时,时针与分针互相垂直?
7. 8点几分时,分针与时针夹角为60°?
★8.双休日,小明和爸爸、妈妈去浦东野生动物园游玩,上午八点多从家出发,临出门时,小明看了墙上的时钟(时钟是准确的),钟面上时针与分针恰好重合,下午2点多,他们回到家里,一进门,小明又看了墙上的时钟,这时他发现钟面上的时针与分针方向相反,正好成一条直线。
问:小明一家上午几点几分离家的?下午几点几分回家的?
课后作业
姓名: 成绩:
1. 3:12时,时针与分针的夹角是多少度?
条直线?
3. 4点几分时,时针与分针互相垂直?
4. 9点几分时,时针与分针夹角为60°?
5.现在是10点,再过多长时间,时针与分针将第一次在一条直线上?
12 6 3 9 10
11
1
2 4 5 7 8 12 6
3 9 10
11
1 2 4 5
7 8
家长签名:。