煤矿采区中部车场设计指导书
- 格式:ppt
- 大小:1.82 MB
- 文档页数:42
矿井采区车场设计方案编制:日期:采区车场设计方案说明一概述伊宁市财荣煤业为0.6Mt/a机械化改造矿井,矿井共分为两个区段进行采煤。
为了满足矿井运输要求,分别布置+646m、+612m两个采区车场和+580m矿井底部车场,二设计步骤1.轨道与轨型2 .道岔选择选择原则:(1)与基本规矩相适应;(2)与基本轨型相适应;(3)与行驶车辆类别相适应;(4)与行车车速相适应道岔选型表3.轨距与线路中心距目前我国矿井采用的标准轨距为600 mm、762 mm和900 mm三种,其中以600 mm、和900 mm轨距最为常见。
1t固定式矿车、3t 底卸式矿车和10t架线电机车均采用600mm轨距。
为了设计和施工方便,双轨线路有1200 mm、1300mm、1400mm、1600mm和1900mm等几中标准中心距。
一般情况下不选用非标准值。
但在双轨曲线巷道(即弯道)中,由于车辆运行时发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。
线路中心距2曲线半径3.线路长度确定空、重车线宜为1.0——1.5倍列车长,此处取1.2倍L=1.2(mn L K)+ NL j式中:L——副井空、重车线,m;m ——列车数目,1列;n——每列车的矿车数,8辆;L K——每辆矿车带缓冲器的长度,缓冲器长取0.3m ;N——机车数,1台;L j——每台机车的长度,m;所以:L=1.2×8×(2+0.3)+4.5=26.58m 取L=20m(2)材料车线有效长度材料车线并列布置在副井空车线一侧长度按列材料车长度确定L=mn L K+ NL j式中:L——材料车线有效长度,m;n c——材料车数,10辆;L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ;N ——机车数,1台;L j ——每台机车的长度,m ;所以: L =10×(2+0.3)+4.5=27.5m 取L=20m4 车场通过能力计算井下采用机车运输时,井底车场年通过能力按下式计算:T Q T N a 15.1 (5-11)式中 N —— 井底车场年通过能力,t ;Q —— 每一调度循环进入井底车场的所有列车的净载煤重,t ;T —— 每一调度循环时间,min ;T a —— 每年运输工作时间等于矿井设计工作日数与日生产时间的乘积,min ;1.15 —— 运输不均衡系数。
矿井采区车场设计方案编制:日期:采区车场设计方案说明一概述伊宁市财荣煤业为0.6Mt/a机械化改造矿井,矿井共分为两个区段进行采煤。
为了满足矿井运输要求,分别布置+646m、+612m两个采区车场和+580m矿井底部车场,二设计步骤1.轨道与轨型钢轨型号选择2 .道岔选择选择原则:(1)与基本规矩相适应;(2)与基本轨型相适应;(3)与行驶车辆类别相适应;(4)与行车车速相适应道岔选型表3.轨距与线路中心距目前我国矿井采用的标准轨距为600 mm 、762 mm 和900 mm 三种,其中以600 mm 、和900 mm 轨距最为常见。
1t 固定式矿车、3t 底卸式矿车和10t 架线电机车均采用600mm 轨距。
为了设计和施工方便,双轨线路有1200 mm 、1300mm 、1400mm 、1600mm 和1900mm 等几中标准中心距。
一般情况下不选用非标准值。
但在双轨曲线巷道(即弯道)中,由于车辆运行时发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。
线路中心距2曲线半径曲线半径选择3.线路长度确定空、重车线宜为1.0——1.5倍列车长,此处取1.2倍 L =1.2(mn L K )+ NL j式中: L ——副井空、重车线,m ; m ——列车数目,1列; n ——每列车的矿车数,8辆;L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ; N ——机车数,1台; L j ——每台机车的长度,m ; 所以: L =1.2×8×(2+0.3)+4.5 =26.58m 取L=20m (2)材料车线有效长度材料车线并列布置在副井空车线一侧长度按列材料车长度确定 L =mn L K + NL j式中: L ——材料车线有效长度,m ; n c ——材料车数,10辆;L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ; N ——机车数,1台; L j ——每台机车的长度,m ; 所以: L =10×(2+0.3)+4.5 =27.5m 取L=20m4车场通过能力计算井下采用机车运输时,井底车场年通过能力按下式计算:TQT N a 15.1 (5-11)式中 N —— 井底车场年通过能力,t ;Q —— 每一调度循环进入井底车场的所有列车的净载煤重,t ; T —— 每一调度循环时间,min ;T a——每年运输工作时间等于矿井设计工作日数与日生产时间的乘积,min;1.15 ——运输不均衡系数。
矿井采区车场设计方案编制:日期:采区车场设计方案说明一概述伊宁市财荣煤业为0.6Mt/a机械化改造矿井,矿井共分为两个区段进行采煤。
为了满足矿井运输要求,分别布置+646m、+612m两个采区车场和+580m矿井底部车场,二设计步骤1.轨道与轨型2 .道岔选择选择原则:(1)与基本规矩相适应;(2)与基本轨型相适应;(3)与行驶车辆类别相适应;(4)与行车车速相适应道岔选型表3.轨距与线路中心距目前我国矿井采用的标准轨距为600 mm、762 mm和900 mm三种,其中以600 mm、和900 mm轨距最为常见。
1t固定式矿车、3t 底卸式矿车和10t架线电机车均采用600mm轨距。
为了设计和施工方便,双轨线路有1200 mm、1300mm、1400mm、1600mm和1900mm等几中标准中心距。
一般情况下不选用非标准值。
但在双轨曲线巷道(即弯道)中,由于车辆运行时发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。
线路中心距2曲线半径3.线路长度确定空、重车线宜为1.0——1.5倍列车长,此处取1.2倍L=1.2(mn L K)+ NL j式中:L——副井空、重车线,m;m ——列车数目,1列;n——每列车的矿车数,8辆;L K——每辆矿车带缓冲器的长度,缓冲器长取0.3m ;N——机车数,1台;L j——每台机车的长度,m;所以:L=1.2×8×(2+0.3)+4.5=26.58m 取L=20m(2)材料车线有效长度材料车线并列布置在副井空车线一侧长度按列材料车长度确定L=mn L K+ NL j式中:L——材料车线有效长度,m;n c——材料车数,10辆;L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ;N ——机车数,1台;L j ——每台机车的长度,m ;所以: L =10×(2+0.3)+4.5=27.5m 取L=20m4 车场通过能力计算井下采用机车运输时,井底车场年通过能力按下式计算:T Q T N a 15.1 (5-11)式中 N —— 井底车场年通过能力,t ;Q —— 每一调度循环进入井底车场的所有列车的净载煤重,t ;T —— 每一调度循环时间,min ;T a —— 每年运输工作时间等于矿井设计工作日数与日生产时间的乘积,min ;1.15 —— 运输不均衡系数。
煤矿车场设计方案Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT矿井采区车场设计方案编制:日期:采区车场设计方案说明一概述伊宁市财荣煤业为a机械化改造矿井,矿井共分为两个区段进行采煤。
为了满足矿井运输要求,分别布置+646m、+612m两个采区车场和+580m 矿井底部车场,二设计步骤1.轨道与轨型2 .道岔选择选择原则:(1)与基本规矩相适应;(2)与基本轨型相适应;(3)与行驶车辆类别相适应;(4)与行车车速相适应3.轨距与线路中心距目前我国矿井采用的标准轨距为600 mm、762 mm和900 mm三种,其中以600 mm、和900 mm轨距最为常见。
1t固定式矿车、3t底卸式矿车和10t架线电机车均采用600mm轨距。
为了设计和施工方便,双轨线路有1200 mm、1300mm、1400mm、1600mm和1900mm等几中标准中心距。
一般情况下不选用非标准值。
但在双轨曲线巷道(即弯道)中,由于车辆运行时发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。
线路中心距2曲线半径3.线路长度确定空、重车线宜为——倍列车长,此处取倍L=(mn L K)+ NL j式中:L——副井空、重车线,m;m ——列车数目,1列;n——每列车的矿车数,8辆;L K——每辆矿车带缓冲器的长度,缓冲器长取0.3m ;N——机车数,1台;L j ——每台机车的长度,m ;所以: L =×8×(2+)+ = 取L=20m (2)材料车线有效长度材料车线并列布置在副井空车线一侧长度按列材料车长度确定L =mn L K + NL j式中: L ——材料车线有效长度,m ;n c ——材料车数,10辆;L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ; N ——机车数,1台; L j ——每台机车的长度,m ;所以: L =10×(2+)+ = 取L=20m4车场通过能力计算井下采用机车运输时,井底车场年通过能力按下式计算:TQT N a 15.1(5-11)式中 N —— 井底车场年通过能力,t ;Q —— 每一调度循环进入井底车场的所有列车的净载煤重,t ; T —— 每一调度循环时间,min ;T a —— 每年运输工作时间等于矿井设计工作日数与日生产时间的乘积,min ;—— 运输不均衡系数。
采矿学课程设计中部车场一、课程目标知识目标:1. 让学生理解中部车场在采矿工程中的重要作用及其结构组成;2. 掌握中部车场的矿石运输、提升及通风等基本工作原理;3. 了解中部车场的安全技术措施和环境保护要求。
技能目标:1. 培养学生运用采矿学原理分析和解决中部车场实际问题的能力;2. 提高学生设计合理的中部车场布局和设备选型的能力;3. 培养学生进行中部车场安全风险评估和预防的能力。
情感态度价值观目标:1. 培养学生热爱采矿事业,树立为我国采矿事业贡献力量的信念;2. 增强学生的安全意识、环保意识和团队协作精神;3. 引导学生关注采矿行业的发展趋势,提高对新技术、新工艺的学习兴趣。
课程性质分析:本课程属于采矿学领域,以中部车场为研究对象,结合实际工程案例,注重理论与实践相结合。
学生特点分析:学生为高中年级,具备一定的采矿学基础知识,具有较强的求知欲和动手能力。
教学要求:1. 结合教材,深入浅出地讲解中部车场相关知识;2. 注重培养学生的实际操作能力和分析解决问题的能力;3. 强调课程目标的实现,关注学生的学习成果。
二、教学内容1. 中部车场概述- 介绍中部车场在采矿工程中的地位与作用;- 阐述中部车场的结构组成及其功能。
2. 中部车场工作原理- 矿石运输系统:涵盖矿石的装载、运输、卸载等过程;- 提升系统:讲解矿石从地下到地面的提升过程及设备;- 通风系统:分析中部车场的通风要求及通风设备。
3. 中部车场设计与设备选型- 布局设计:讲解中部车场的布局原则,分析不同布局优缺点;- 设备选型:根据矿石特性、生产规模等选择合适的设备。
4. 中部车场安全技术与管理- 安全风险评估:分析中部车场可能存在的安全隐患,提出预防措施;- 安全管理:介绍中部车场的安全管理制度及实施要点。
5. 环境保护与绿色开采- 环保要求:阐述中部车场在环境保护方面的法律法规及标准;- 绿色开采:探讨中部车场实现绿色开采的措施及发展趋势。
矿井设计采区中部车场设计(一)设计依据某采区是近距离开采煤层群,轨道上山按真倾斜布置在煤层群的底板岩石中,倾角10°,向采区石门甩车。
轨道上山与区段石门均铺设600mm 轨距的线路,轨型22kg/m ,采用1t 矿车单钩提升,每钩提升三个矿车,要求甩车存车线设双轨高、低道。
斜面线路布置采用一次回转方式。
(二)斜面线路连接系统各参数计算:1)由于是辅助提升,两组道岔均选用ZDK622-3-15(左)道岔,道岔参数: α1=α2=14°26´06" , a 1=a 2=3400 , b 1=b 2=2800斜面线路一次回转角=1α18°26´06";二次回转角"12'523621︒=+=ααδ一次回转角水平投影角=︒︒==)10tan "06'2618tan arctan()tan tan arctan('11βαα18°41´59"二次回转角水平投影角"30173710cos "12'5236tan cos )tan(arctan''21︒=︒︒=+=βααδ一次伪倾斜角"55'289)10sin "06'2618arcsin(cos )sin arcsin(cos 0︒=︒⋅︒=⋅='βαβ二次伪倾斜角"06'597)10sin "12'5236arcsin(cos )sin arcsin(cos ︒=︒⋅︒=⋅=''βδβ2斜面平行线路联接点各参数计算斜面平行线路连接点各参数,设计采用中间人行道,线路中心距S 定为1900mm ,为简化,斜面连接点线路中心距取与S 同值,斜面连接点半径取9000mm.5700"06'2618cot 1900cot 2=︒*=⋅=αs B14602"06'2618tan*90002tan211=︒=⋅=αR T716014605700L 1=+=+=T B6008"06'2618sin 1900sin 2=︒==αsm2.确定竖曲线的相对位置1.)取高道平均坡度 G i = 11‰ , 9473arctan '''==G G i r取低道平均坡度 D i = 9‰ ,6503arctan '''==D D i r 取低道竖曲线半径9000R D = 暂取高道竖曲线半径20000R G = 高道竖曲线各参数30903.57"06518*200003.57K 15482"06518tan *200002tan 3074)9473sin "55'289(sin 20000)sin (sin 272)"55'289cos 9473(cos 20000)cos (cos "065189473"55289''''''=︒︒=︒⋅==︒=⋅=='''-︒=+'⋅==︒-'''=-=︒='''-︒=-=G G G p GG G G G G G G G G G R R T r R L r R h r ββββββ低道竖曲线各参数15703.57"51'599*90003.577872"51599tan *90002tan 1564)6503sin "55289(sin *9000)sin (sin 123)"55289cos 6530(cos *9000)cos (cos "515996503"55289''''''''=︒︒=︒⋅==︒=⋅=='''+︒=+⋅==︒-''='-=︒='''+︒=+=D D D DD D D D D D D D D D R K R T r R L r R h r ββββββ2.)最大高低差H 的计算由于是辅助提升,存车线长度按2车考虑,每钩车提1t 矿车3辆,故高低道存车线长度不小于2*3*2+2*0.4=12800。
摘要:采区中部车场是煤矿井下采区生产系统的一个重要组成部分,设计是否紧凑合理、操作方便、行车顺畅、工程量省,是衡量中部车场设计好坏的重要标志。
关键词:车场高低道转弦甩车场0引言中部车场对于矿车直接进入采区的中、小型矿井而言非常关键。
它的设计和布局对矿采设备、矸石、材料区的输送以及矿山的生产能力、最终的经济效益有直接影响。
中部车场多种多样。
一般情况下,矿区中部车场的设计和布局除了考虑矿区所在地的地理条件以外,还与采取的生产能力、巷道布局等因素有关。
1确定相关参数1.1首先确定车场形式:目前,中小型煤矿多采用甩车式车场,吊桥式车场应用范围比较局限。
从车场形式来看,甩车式车场类型较多。
比如甩入石门式、甩入绕道式、甩入平巷式。
这三种设计主要依据甩入位置来划分。
除此之外,还有依照起坡线路数量来划分的单、双道起坡车场,以及按甩车方向分类的单、双向车场;在车场布局过程中,设计人员应该根据围岩特点、巷道之间的相互关系以及车场的通过能力等,筛选合适的车场形式。
1.2选择道岔形式与型号。
道岔有上山部分以及车场存车线上两种形式。
设计单开式上山道叉,而中部车场可以是单开道岔,也可能是渡线道岔,但是需要提前了解其型号、形式,以便科学计算其参数。
通常可采用5号辙岔号、轨型为22kg/m。
1.3竖曲线的曲率半径R。
竖曲线的曲率半径R有三个可选项,即R=9m/R=12m/R=15m。
新发煤矿由于生产能力有限,且采用主提升轨道,因此宜采用9m的曲率半径。
1.4高低道坡度。
高道连接空车存车线,用以下放料车和空车。
坡度过小的高道无法使料车自溜至既定位置,须配备人力推车,作业方式繁琐;坡度过大的高道极易使高底道摘挂钩位置错开,不仅不便于现场作业,反而会制造很多麻烦。
低道连接重车存车线,用以提载车。
其作用是在自重的作用下下滑至挂钩位置,降低劳动强度的同时提升工作效率。
这一环节的技术要点是在自溜的同时尽量避免挂钩过低影响排水造成积水。
此外,还应该适当调整高道与低道之间的高差,以免高差过大拖延挂钩的卸除速度。
矿井采区中部车场设计说明书指导教师评语设计成绩:指导老师签名:年月日车场分类按地点,分:采区上、中、下部车场按服务对象,分:主提升甩(平)车场;辅助提升甩(平)车场。
按线路布置,分:单道起坡甩(平)车场;双道起坡甩(平)车场。
有关规定和要求一、采区车场设计依据与要求(一)、有关规定l.《煤矿安全规程》的规定1)在双轨运输巷道中2列列车车体的最突出部分之间的距离,采区装载点不得小于0.7m,矿车摘挂钩地点不得小于lm。
(《煤矿安全规程》2005版第23条)2)使用绞车提升的倾斜井巷上端,必须有足够的过卷距离。
过卷距离根据巷道倾角、设计载荷、最大提升速度和实际制动力等参量计算确定,并有1.5倍的备用系数。
3)串车提升的各车场必须设有信号硐室及躲避硐;运人斜井各车场设有信号和候车硐室,候车室具有足够的空间。
2.《煤矿矿井采区车场和硐室设计规范》的规定1)采区车场和硐室的设计,应根据采区巷道布置、采区生产能力和服务年限、运输方式和矿车类型、地质构造和围岩性质、煤尘、瓦斯及水文情况等因素进行全面考虑确定。
2)采区车场和硐室应根据围岩情况尽量布置在稳定岩层或煤层内。
3)采区车场巷道断面形状应根据围岩情况确定,可为半圆拱形,跨度较大时视围岩情况也可采用三心拱形。
应优先选择锚喷支护,当锚喷支护有困难时,也可采用其他支护方式。
4)采区上、中、下部车场摘挂钩段人行道布置应符合下列规定:①单道布置时应设两侧人行道;②双道布置时应设中间人行道及一侧人行道。
中部车场的一侧人行道可设在低道侧,下部车场的一侧人行道可设在高道侧;③中间人行道宽度不得小于1.0m;④一侧或两侧人行道宽度:从道渣面起1.6m高度内,不得小于0.8m;⑤非摘挂钩地点的巷道断面应符合《煤放矿井巷道断面及交岔点设计规范》的有关规定。
5)采区车场信号硐室和躲避硐规定:①上部平车场应设信号硐室,信号硐室设在分车道岔人行道侧;②上部车场为甩车场和中部车场应设信号硐室和躲避硐。
第三章采区车场设计第一节窄轨线路一、轨道与轨型轨道运输是煤矿井下主要运输方式,矿井轨道由铺设在巷道底板上的道床、轨枕、钢轨和联接件等组成。
钢轨的型号简称轨型,以每m长度的质量(kg/m)表示。
窄轨线路的轨型有15、22、30、38和43kg/m等5种。
窄轨线路中心距有600mm、762mm和900mm 3种,使用时根据矿井生产能力大小和矿井运输方式选用。
大型矿井一般选用900mm轨距,使用3t、5t矿车;中、小型矿井多选用600mm轨距,使用1t、3t矿车。
新设计矿井轨型按表3—1选用。
除了上述规定外,《煤矿运输安全质量标准化评分表》中规定;运行7t及其以上机车、3t及以上矿车、采区运输重量超过15t(包括平板车重量)及以上设备时线路轨型不低于30kg/m,卡轨车、齿轨车和胶轮车运行线路轨型不低于22kg/m。
表3—1 新设计矿井轨型选用表二、道岔1.道岔类别道岔是使车辆由一条线路上转到另一条线路上的装置,它是由尖轨、辙叉、转辙器、道岔曲轨、护轮轨和基本轨所组成,道岔的结构如图3—1所示。
1—尖轨;2—辙叉;3—转辙器;4—道岔曲轨;5—护轮轨;6—道岔基本轨图3—1 道岔结构常用道岔有单开道岔、对称道岔、渡线道岔3种,单开道岔和渡线道岔又有左向和右向之分(在平面线路上沿顺时针方向分出时为右向,沿逆时针方向分出时为左向)。
井下常用道岔有3号、4号、5号。
每种型号的道岔又配备了4m、6m、9m、12m、15m、20m、25m、30m、40m、50m、70m等11种曲线半径;渡线道岔和对称道岔按不同轨距和道岔类型,配备有1300mm、1400mm、1500mm、1600mm、1700mm、1800mm、1900mm、2200mm和2500mm等9种线路间距。
道岔手册中所列型号均为右向道岔,如ZDK622—4—12末注明左右,均为右向道岔。
右向道岔的分岔线在行进方向(由a→b)的右侧。
左向道岔必须在尾数后注上(左)字,如:ZDK622—4—12(左),岔线在行进方向(由a→b)的左侧。
采区中部车场课程设计一、课程目标知识目标:1. 学生能够理解采区中部车场的基本概念和组成部分;2. 学生能够掌握采区中部车场的主要功能及其在煤炭生产中的作用;3. 学生能够了解采区中部车场的安全操作规程和相关法律法规。
技能目标:1. 学生能够运用所学的知识,分析采区中部车场的运行原理;2. 学生能够根据实际情况,设计合理的采区中部车场布置方案;3. 学生能够运用绘图软件,绘制采区中部车场的示意图。
情感态度价值观目标:1. 培养学生对煤炭生产中采区中部车场的兴趣,激发学习热情;2. 增强学生的安全意识,使其认识到遵守操作规程的重要性;3. 培养学生的团队协作精神,提高沟通与协作能力。
课程性质:本课程为煤矿生产技术课程,旨在让学生深入了解采区中部车场的相关知识,为今后从事煤炭生产工作打下基础。
学生特点:学生为初中年级,具备一定的物理和数学基础,但对煤矿生产技术了解较少,需要从实际操作和案例入手,激发学习兴趣。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以实际案例为引导,培养学生的动手操作能力和解决问题的能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续课程的学习和实际工作打下坚实基础。
二、教学内容1. 采区中部车场概述- 车场的定义与功能- 车场在煤炭生产中的地位与作用2. 采区中部车场的结构与组成- 车场的布局类型- 车场的主要设备与设施3. 采区中部车场的运行原理- 车场的运输流程- 车场的调度方法4. 采区中部车场的安全操作规程- 相关法律法规- 安全操作注意事项5. 采区中部车场布置方案设计- 设计原则与方法- 车场布置方案的优化6. 车场示意图绘制- 绘图软件的使用- 车场示意图的绘制技巧教学内容安排与进度:第1周:采区中部车场概述第2周:采区中部车场的结构与组成第3周:采区中部车场的运行原理第4周:采区中部车场的安全操作规程第5周:采区中部车场布置方案设计第6周:车场示意图绘制教材章节:第1章 煤矿生产概述第2章 矿井运输与提升第3章 采区中部车场三、教学方法为了提高教学效果,激发学生的学习兴趣和主动性,本章节将采用以下多样化的教学方法:1. 讲授法:通过生动的语言和形象的表达,向学生传授采区中部车场的基本概念、运行原理和布置方案设计等理论知识。
矿井采区车场设计方案编制:日期:采区车场设计方案说明一概述伊宁市财荣煤业为0.6Mt/a机械化改造矿井,矿井共分为两个区段进行采煤。
为了满足矿井运输要求,分别布置+646m、+612m两个采区车场和+580m矿井底部车场,二设计步骤1.轨道与轨型钢轨型号选择2 .道岔选择选择原则:(1)与基本规矩相适应;(2)与基本轨型相适应;(3)与行驶车辆类别相适应;(4)与行车车速相适应道岔选型表3.轨距与线路中心距目前我国矿井采用的标准轨距为600 mm、762 mm和900 mm三种,其中以600 mm、和900 mm轨距最为常见。
1t固定式矿车、3t底卸式矿车和10t架线电机车均采用600mm轨距。
为了设计和施工方便,双轨线路有1200 mm、1300mm、1400mm、1600mm 和1900mm等几中标准中心距。
一般情况下不选用非标准值。
但在双轨曲线巷道(即弯道)中,由于车辆运行时发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。
线路中心距2曲线半径曲线半径选择3.线路长度确定空、重车线宜为1.0——1.5倍列车长,此处取1.2倍L=1.2(mn L K)+ NL j式中:L——副井空、重车线,m;m ——列车数目,1列;n——每列车的矿车数,8辆;L K——每辆矿车带缓冲器的长度,缓冲器长取0.3m ;N——机车数,1台;L j ——每台机车的长度,m ;所以: L =1.2×8×(2+0.3)+4.5 =26.58m 取L=20m (2)材料车线有效长度材料车线并列布置在副井空车线一侧长度按列材料车长度确定L =mn L K + NL j式中: L ——材料车线有效长度,m ;n c ——材料车数,10辆;L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ; N ——机车数,1台; L j ——每台机车的长度,m ;所以: L =10×(2+0.3)+4.5 =27.5m 取L=20m 4 车场通过能力计算井下采用机车运输时,井底车场年通过能力按下式计算:TQ T N a 15.1 (5-11)式中 N —— 井底车场年通过能力,t ;Q —— 每一调度循环进入井底车场的所有列车的净载煤重,t ; T —— 每一调度循环时间,min ;T a —— 每年运输工作时间等于矿井设计工作日数与日生产时间的乘积,min ;1.15 —— 运输不均衡系数。