第3章 弹性地基梁理论
- 格式:ppt
- 大小:1.44 MB
- 文档页数:48
地下建筑结构第3章弹性地基梁理论
崔振东副教授IAEG, FICDM, FICCE cuizhendong@
中国矿业大学岩土工程研究所
3.3 按温克尔假定计算短梁z3.3.2 荷载引起的附加项
3.3.2 荷载引起的附加项(1)集中荷载P 引起的附加项
3.3.2 荷载引起的附加项(2)力矩荷载M 引起的附加项
3.3.2 荷载引起的附加项
(3)分布荷载q 引起的附加项
如视x 为常数,则d(x-u)=-d u
代入
a. 梁上有一段均布荷载的附加项
,0==du
dq q q
b. 梁上有一段三角形分布荷载的附加项
()3
4334,x x q du dq x u x x q q −Δ−=−−Δ=
c. 梁的全跨布满均布荷载的附加项
布满梁的全跨时,
当均布荷载q
=0,并且任一截面的坐标距
则x
3
x永远小于或等于x4。
d. 梁的全跨布满三角形荷载的附加项
当三角形荷载
=0,并且任一截面的坐标距
则x
3
x永远小于或等于
= =
(1)查双曲线三角函数K
=。
第3章 弹性地基梁的计算计算基础梁常用的三种假设: (1)地基反力按直线分布的假定; (2)文克尔假定;(3)地基为弹性半无限体(或弹性半无限平面)的假定。
3.1按文克尔假定计算基础梁的基本方程1. 弹性地基梁的挠度曲线微分方程根据文克尔假定,地基反力用下式表达。
Ky =σ (3-1) 式中,σ-任一点的地基反力(kN/m 2)y -相应点的地基沉陷量(m )K -弹性压缩系数(kN/m 3)梁的角变,位移、弯矩、剪力及荷载的正方向均如图中所示。
推导出基础梁的挠度曲线微分方程。
图3-1从弹性地基梁中取出微段,根据平衡条件∑y =0,得 (dQ Q +)-Q +dx x q )(-dx σ=0 化简后变为)(x q dx dQ-=σ (3-2) 再根据∑M =0,得M -(M +dM )+(dQ Q +)dx +2)(2)()(22dx dx x q σ-=0 整理并略去二阶微量,则得dx dM Q =(3-3) 由式(3-2)和式(3-3),知)(22x q dx Md dx dQ -==σ (3-4)若不计剪力对梁挠度的影响,则由材料力学中得dx dy =θdx d EJM θ-== 22dx y d EJ - (3-5)33dx y d EJ dx dM Q -== 将式(3-5)代人式(3-4),并应用式(3-1),则得)(44x q Ky dx yd EJ +-= (3-6) 令 α=44EJ K(3-7) 代入式(3-6),得)(444444x q K y dx y d αα=+ (3-8)式中α叫做梁的弹性标值。
式(3-8)就是弹性地基梁的挠度曲线微分方程。
为了便于计算,在上式中用变数x α代替变数x ,二者有如下的关系:)()()(x d dy dxx d x d dy dx dy αααα== (3-9) 将上式代入式(3-9),则得)(44)(44x q K y x d y d αα=+ (3-10)2. 挠度曲线微分方程的齐次解解的一般形式为:x x sh C x x sh C x x ch C x x ch C y ααααααααsin cos sin cos 4321+++= (3-11) 在上式中引用了2x x e e x sh ααα--=, 2xx e e x ch ααα-+=3.2按文克尔假定计算短梁1. 初参数和双曲线三角函数的引用图示一等截面基础梁,设左端有位移0y ,角变0θ、弯矩0M 和剪力0Q ,它们的正方向如图中所示。