当前位置:文档之家› 联合概率分布:离散与连续随机变量

联合概率分布:离散与连续随机变量

联合概率分布:离散与连续随机变量
联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case

In the following,X and Y are discrete random variables.

1.Joint distribution(joint p.m.f.):

?De?nition:f(x,y)=P(X=x,Y=y)

?Properties:(1)f(x,y)≥0,(2)

x,y

f(x,y)=1

?Representation:The most natural representation of a joint discrete distribution is as

a distribution matrix,with rows and columns indexed by x and y,and the xy-entry

being f(x,y).This is analogous to the representation of ordinary discrete distributions

as a single-row table.As in the one-dimensional case,the entries in a distribution matrix

must be nonnegative and add up to1.

2.Marginal distributions:The distributions of X and Y,when considered separately.

?De?nition:

?f X(x)=P(X=x)=

y

f(x,y)

?f Y(y)=P(Y=y)=

x

f(x,y)

?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y)

can be obtained from the distribution matrix as the row sums and column sums of the

entries.These sums can be entered in the“margins”of the matrix as an additional

column and row.

?Expectation and variance:μX,μY,σ2

X ,σ2

Y

denote the(ordinary)expectations and

variances of X and Y,computed as usual:μX=

x

xf X(x),etc.

https://www.doczj.com/doc/2910206450.html,putations with joint distributions:

?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))=

(x,y)∈R

f(x,y).

?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))=

x,y

u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)=

x,y

xf(x,y).

4.Covariance and correlation:

?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance

of X and Y),ρ=ρ(X,Y)=Cov(X,Y)

σXσY

(Correlation of X and Y)

?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1

?Relation to variance:Var(X)=Cov(X,X)

?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).)

1

5.Independence of random variables:

?De?nition:X and Y are called independent if the joint p.m.f.is the product of the individual p.m.f.’s:i.e.,if f(x,y)=f X(x)f Y(y)for all values of x and y.

?Properties of independent random variables:

If X and Y are independent,then:

–The expectation of the product of X and Y is the product of the individual expectations:E(XY)=E(X)E(Y).More generally,this product formula holds

for any expectation of a function X times a function of Y.For example,E(X2Y3)=

E(X2)E(Y3).

–The product formula holds for probabilities of the form P(some condi-tion on X,some condition on Y)(where the comma denotes“and”):For

example,P(X≤2,Y≤3)=P(X≤2)P(Y≤3).

–The covariance and correlation of X and Y are0:Cov(X,Y)=0,ρ(X,Y)=0.

–The variance of the sum of X and Y is the sum of the individual variances: Var(X+Y)=Var(X)+Var(Y)

–The moment-generating function of the sum of X and Y is the product of the individual moment-generating functions:M X+Y(t)=M X(t)M Y(t).

(Note that it is the sum X+Y,not the product XY,which has this property.) 6.Conditional distributions:

?De?nitions:

–conditional distribution(p.m.f.)of X given that Y=y:

g(x|y)=P(X=x|Y=y)=f(x,y)

f Y(y)

–conditional distribution(p.m.f.)of Y given that X=x:

h(y|x)=P(Y=y|X=x)=f(x,y)

f X(x)

?Connection with distribution matrix:Conditional distributions are the distribu-tions obtained by?xing a row or column in the matrix and rescaling the entries in that row or column so that they again add up to1.For example,h(y|2),the conditional dis-tribution of Y given that X=2,is the distribution given by the entries in row2of the matrix,rescaled by dividing by the row sum(namely,f X(2)):h(y|2)=f(2,y)/f X(2).

?Conditional expectations and variance:Conditional expectations,variances,etc., are de?ned and computed as usual,but with conditional distributions in place of ordinary distributions:

?E(X|y)=E(X|Y=y)=

xg(x|y)

x

x2g(x|y)

?E(X2|y)=E(X2|Y=y)=

x

?Var(X|y)=Var(X|Y=y)=E(X2|y)?E(X|y)2

More generally,for any condition(such as Y>0),the expectation of X given this condition is de?ned as

?E(X|condition)=

xP(X=x|condition)

x

and can be computed by starting out with the usual formula for the expectation,but restricting to those terms that satisfy the condition.

2

Joint Distributions,Continuous Case

In the following,X and Y are continuous random variables.Most of the concepts and formulas below are analogous to those for the discrete case,with integrals replacing sums.The principal di?erence between continuous lies in the de?nition of the p.d.f./p.m.f.f (x,y ):The formula f (x,y )=P (X =x,Y =y )is no longer valid,and there is no simple and direct way to obtain f (x,y )from X and Y .

1.Joint continuous distributions:

?Joint density (joint p.d.f.):A function f (x,y )satisfying (i)f (x,y )≥0,(ii) f (x,y )dxdy =

https://www.doczj.com/doc/2910206450.html,ually,f (x,y )will be given by an explicit formula,along with a range (a region in the xy -plane)on which this formula holds.In the general formulas below,if a range of integration is not explicitly given,the integrals are to be taken over the range in which the density function is de?ned.

?Uniform joint distribution:An important special type of joint density is one that is constant over a given range (a region in the xy -plane),and 0outside outside this range,the constant being the reciprocal of the area of of the range.This is analogous to the concept of an ordinary (one-variable)uniform density f (x )over an interval I ,which is constant (and equal to the reciprocal of the length of I )inside the interval,and 0outside it.

2.Marginal distributions:The ordinary distributions of X and Y ,when considered sepa-rately.The corresponding (one-variable)densities are denoted by f X (or f 1)and f Y (or f 2),and obtained by integrating the joint density f (x,y )over the “other”variable:

f X (x )= f (x,y )dy,f Y (y )= f (x,y )dx.

https://www.doczj.com/doc/2910206450.html,putations with joint distributions:

?Probabilities:

Given a region R in the xy -plane the probability that (X,Y )falls into this region is given by the double integral of f (x,y )over this region.For example,P (X +Y ≤1)is given by an integral of the form R f (x,y )dxdy ,where R consists of the part of the range of f in which x +y ≤1.

?Expectation of a function of X and Y (e.g.,u (x,y )=xy ):

E (u (X,Y ))= u (x,y )f (x,y )dxdy

4.Covariance and correlation:

The formulas and de?nitions are the same as in the discrete case.

?De?nitions:Cov(X,Y )=E (XY )?E (X )E (Y )=E ((X ?μX )(Y ?μY ))(Covariance

of X and Y ),ρ=ρ(X,Y )=Cov(

X,Y )σX σY

(Correlation of X and Y )?Properties:|Cov(X,Y )|≤σX σY ,?1≤ρ(X,Y )≤1

?Relation to variance:Var(X )=Cov(X,X )

?Variance of a sum:Var(X +Y )=Var(X )+Var(Y )+2Cov(X,Y )

5.Independence of random variables:Same as in the discrete case:

?De?nition:X and Y are called independent if the joint p.d.f.is the product of the individual p.d.f.’s:i.e.,if f (x,y )=f X (x )f Y (y )for all x ,y .

3

?Properties of independent random variables:

If X and Y are independent,then:

–The expectation of the product of X and Y is the product of the individual expectations:E(XY)=E(X)E(Y).More generally,this product formula holds

for any expectation of a function X times a function of Y.For example,E(X2Y3)=

E(X2)E(Y3).

–The product formula holds for probabilities of the form P(some condi-tion on X,some condition on Y)(where the comma denotes“and”):For

example,P(X≤2,Y≤3)=P(X≤2)P(Y≤3).

–The covariance and correlation of X and Y are0:Cov(X,Y)=0,ρ(X,Y)=0.

–The variance of the sum of X and Y is the sum of the individual variances: Var(X+Y)=Var(X)+Var(Y)

–The moment-generating function of the sum of X and Y is the product of the individual moment-generating functions:M X+Y(t)=M X(t)M Y(t).

6.Conditional distributions:Same as in the discrete case,with integrals in place of sums:

?De?nitions:

–conditional density of X given that Y=y:

g(x|y)=f(x,y)

f Y(y)

–conditional density of Y given that X=x:

h(y|x)=f(x,y)

f X(x)

?Conditional expectations and variance:Conditional expectations,variances,etc., are de?ned and computed as usual,but with conditional distributions in place of ordinary

distributions.For example:

?E(X|Y=1)=E(X|Y=1)=

xg(x|1)dx

?E(X2|Y=1)=E(X2|Y=1)=

x2g(x|1)dx 4

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布律

5.离散型随机变量及其分布律 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第二章第§2离散型随机变量及其分布律 【教材分析】:概率论考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统计规律性,由此,就把随机试验的每一个可能的结果与一个实数联系起来。随机变量正是为了适应这种需要而引进的,随机变量的引入有助于我们应用微积分等数学工具,把研究深入,一维离散型随机变量是随机变量中最简单最基本的一种。 【学情分析】: 1、知识经验分析 学生已经学习了概率的意义及概率的公理化定义,学习了事件的关系及运算,掌握了概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能: 了解离散型随机变量的分布律,会求某些简单的离散型随机变量的分布律列;掌握伯努利试验及两点分布, 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。 3、情感态度与价值观 通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学“零距离”,从而激发学生学习数学的热情。 【教学重点、难点】: 重点:掌握离散型随机变量的概念及其分布律、性质,理解伯努利试验,两点分布。 难点:伯努利试验,两点分布。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】:

一、问题引入(离散型随机变量的概念) 例1:观察掷一个骰子出现的点数。 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6。 例2若随机变量 X 记为 “连续射击, 直至命中时的射击次数”, 则 X 的可能值是: 1,2,3,. 例3 设某射手每次射击打中目标的概率是0.8,现该射手射了30次,则随 机变量 X 记为“击中目标的次数”, 则 X 的所有可能取值为: 0,1,2,3,,30. 定义 有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、离散型随机变量的分布律 定义 设离散型随机变量X 的所有可能取值为),2,1( =k x k , X 取各个可能值得概率,即事件称}{k x X =的概率,为 ,2,1,}{===k p x X P k k 由概率的定义,k p 满足如下两个条件: 1))21(0 ,,=≥k p k ; 2) ∑∞ ==1 1k k p (分布列的性质) 称(2.1)式为离散型随机变量为X 的概率分布或分布律, 也称概率函数。 常用表格形式来表示X 的概率分布: n i n p p p p x x x X 2121 【设计意图】:给出分布律的概念和性质,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。 例1:()()1,2,,C k P X k k N X N ?=== 若为随机变量的分布律,是确 定常数C 。 解:由分布律特征性质 1 知 C ≥ 0 , 由其特征性质 2 知 1 ()1N k P X k == =∑ 1 N k C k N =?=∑ )(12C N N ++=+ ()12 C N += 21C N ∴= + 【设计意图】:通过这个例子,让学生掌握离散型随机变量的分布律的性质。

2.1随机变量及其概率分布(1)

随机变量及其概率分布(1) 【教学目标】 1、在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散性随机变量及其概率分布的概念。 2、会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。 3、提高学生的抽象概括能力,提高数学建模的能力,提高学生应用数学的意识。 4、随机变量是客观世界中极为普遍的,通过对各种现象及事件a 的分析,培养严谨的逻辑思维能力,激发学生学习兴趣,初步认识数学的应用价值、科学价值,并深刻体会数学是服务于实践的一门学科。 【教学过程】 1、相关知识回顾: (1)随机现象: 在一定条件下,某种现象可能发生,也可能不发生,事先也不能断定出现哪种结果的现象 (2)基本事件: 在一次试验中可能出现的每一个基本结果 (3)古典概型: 我们将具有:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件发生的概率相等. 满足这两个特点的概率模型称为古典概率模型 2、新课引入: (1)在一块地里种下10棵树苗,成活的树苗棵数X 是0,1,…,10中的某个数; (2)抛掷一颗骰子,向上的点数Y 是1,2,3,4,5,6中的某一个数; (3)新生婴儿的性别,抽查的结果可能是男,也可能是女。如果将男婴用0表示, 女婴用1表示,那么抽查的结果Z 是0和1中的某个数; 上述问题有哪些共同特点? 上述问题中的X ,Y ,Z ,ε实际上是把每个随机试验的基本事件都对应一个确定的实数,即在试验结果(样本点)与实数之间建立了一个映射。 例如:上面的植树问题中成活的树苗棵数X : X=0,表示成活0棵; X=1,表示成活1棵;…… 思考:“X>7”表示什么意思? 3、新授: 知识点1:随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫随机变量。 通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ζηε,,)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量取得可能值。 引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来。 注:(1)随机试验中,可能出现的恶结果都可以用一个数来表示。如掷一枚硬币,“正

高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列 知识点 1.随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: 此表称为离散型随机变量P ( X =x i )=p i ,i =1,2,…,n 表示X 的分布列. (2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11 =∑=n i i p 3.常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m , 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.

题型一离散型随机变量的理解 【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度X C .某超市一天中来购物的顾客数X D .小马登录QQ 找小胡聊天,设X =? ???? 1,小胡在线 0,小胡不在线 【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ; (2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数. 【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6 D .ξ≤5 【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25 【过关练习】 1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度. 2.某人射击的命中率为p (0

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

随机变量及其分布-离散型随机变量及其分布

离散型随机变量及其分布列 知识点 1随机变量的有关概念 (1) 随机变量:随着试验结果变化而变化的变量,常用字母 X , Y , E, n …表示. (2) 离散型随机变量:所有取值可以一- 变量. 2. 离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量 X 可能取的不同值为 X 1, X 2,…,X i ,…,x n , X 取每一个值X i (i = 1,2,…,n) 的概率P(X = X i )= P i ,以表格的形式表示如下: 此表称为离散型随机变量 P(X = X i )= p i , = 1,2,…, n 表示X 的分布列. (2)分布列的性质: n ① p i >0 i = 1,2,3,…,n ;① P i 1 i 1 3. 常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称 X 服从两点分布,并称 p = P(X = 1)为成功概率. (2)超几何分布 其中 m = min{ M , n},且 n 汆, M 哥,n , M , N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 题型一离散型随机变量的理解 【例 1】 下列随机变量中,不是离散型随机变量的是 ( ) A .某个路口一天中经过的车辆数 X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 X C .某超市一天中来购物的顾客数 X 在含有M 件次品的N 件产品中,任取 n 件,其中恰有X 件次品,则 P(X = k)= c M c N —M c N ,k = 0,1,2, m ,

第二章__随机变量及其概率分布_考试模拟题答案

第二章随机变量及其概率分布考试模拟题 (共90 分) 一.选择题(每题2分共20分) 1.F(X) 是随机变量X的分布函数,则下列结论不正确的是( B ) A.0 F( x) 1 B.F( x)=P{X=x} C.F( x)=P{X x} D.F( )=1, F( )=0 解析:A,C,D 都是对于分布函数的正确结论,请记住正确结论! B 是错误的。2.设随机变量X的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X 5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是 4x 0 x1 2x A.F(x)= B.F(x)= 其它其它 x<0 x<0 C.F(x)= 2x D.F(x)= 2x 0 x 0.5 其它≥0.5 解析:由分布函数F(x) 性质:0 F(x) 1,A,B,C 都不满足这个性质,选D 4.设X 的密度函数为f(x)=则P{-2

1 解析:根据密 度函数性质: A.有f(x) 0的情况,错; B.D. 不符合 f(x)dx 1错; 1 C. 1 12dx 21x|11 12 21 1 选 C 6.设随机变量 X~N(1 ,4), (1) 0.8413, (0) 0.5 ,则事件 {1 X 3 } 的概率为(D ) 解:P{1 X 3 }=F(3)-F(1)= (3 1) (1 1) (1) (0) 0.8413 0.5 0.3413 22 7.已知随机变量 X 的分布函数为( A ) 0 x 0 1 0 x 1 F(x)= 2 ,则 P X 1 = 2 1x3 3 1 x 3 112 A . 1 B . 1 C . 2 D . 1 623 A. 0 B. C. D. 848 解析: P {-2

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.doczj.com/doc/2910206450.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

第二章 随机变量及其概率分布

第二章 随机变量及其概率分布 教学目的与要求 1. 熟练掌握一维离散型随机变量及其分布的概念,会求一维离散型随机变量的分布列; 2. 熟练掌握一维随机变量分布函数的概念与性质; 3. 熟悉一维离散型随机变量的分布函数与分布列的关系; 3. 理解一维连续型随机变量分布函数与分布密度的概念及其关系; 4. 熟记常见的几种分布的表达形式. 6. 熟悉随机变量函数的分布函数与分布密度的计算公式. 教学重点 一维离散型、连续型随机变量及其分布 教学难点 随机变量函数的分布 教学方法 讲解法 教学时间安排 第11-12学时 第一节 随机变量 第四节 随机变量的分布函数 第13-16学时 第二节 离散型随机变量 第三节 连续型随机变量 第17-18学时 第五节 随机变量函数的分布 习题辅导 教学内容 第一节 随机变量 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,且对{},x R x ξ?∈≤为事件,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(),b a b ξξξ≤<≤L 等都表

示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、分布函数的定义与性质 定义2.2 定义在样本空间Ω上,取值于实数域的函数()ξω,称为是样本空间Ω上的(实值)随机变量,并称 ()(()), (,)F x P x x ξω=≤∈-∞∞ 是随机变量()ξω的概率分布函数.简称为分布函数. 分布函数的性质: (1)单调性 若12,x x <则12()()F x F x ≤; (2)()lim ()0x F F x →-∞ -∞== ()lim ()1x F F x →+∞ +∞== (3)右连续性 (0)()F x F x += 反过来,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数.因此,满足这三个性质的函数通常都称为分布函数. 由分布函数还可以下列事件的概率: {()}1(){()}(0) {()}1(0){()}()(0) P x F x P x F x p x F x P x F x F x ξωξωξωξω>=-<=-≥=--==-- 由此可见,形如12121212{()},{()},{()},{()}x x x x x x x x ξωξωξωξω≤≤<<<≤≤<这些事件以及它们经过有限次或可列次并、交、差以后的概率,都可以由()F x 算出来,所以()F x 全面地描述了随机变量()ξω的统计规律. 第二节 离散型随机变量 一、离散型随机变量的概念及其分布 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

人教版高数选修2-3第二章2.1随机变量及其分布(教师版)

随机变量及其分布 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解随机变量的概念. 2.熟练掌握随机变量的概率分布及其性质. 3.能熟练应用两点分布. 4.能熟练运用超几何分布. 1.随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母X ,Y ,Z (或小写希腊字母,,ξηζ)等表示,而用小写拉丁字母x ,y ,z (加上适当下标)等表示随机变量取的可能值. 注意:(1)一般地,一个试验如果满足下列条件:i)试验可以在相同的情形下重复进行;ii)试验的所有可能结果是明确可知的,并且不止一个;iii)每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是个随机试验,为了方便起见,也简称试验. (2)所谓随机变量,即是随机试验的试验结果与实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的.这与函数概念的本质是一样的,只不过在函数概念中,函数f (x )的自变量是实数,而在随机变量的概念中,随机变量的自变量是试验结果. (3)一般情况下,我们所说的随机变量有以下两种: 如果随机变量所有可能的取值都能一一列举出来,这样的随机变量叫做离散型随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量. (4)离散型随机变量和连续型随机变量的区别: 离散型随机变量和连续型随机变量都用来刻画随机试验所出现的结果,但二者之间又有着根本的区别:对于离散型随机变量来说,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值,按一定次序一一列出,而连续型随机变量可取某一区间内的一切值,我们无法将其中的值一一列举. 2.随机变量的概率分布 一般地,假定随机变量X 有n 个不同的取值,它们分别是12,, ,,n x x x 且()i P X x == ,1,2,3, ,i p i n =①,则称①为随机变量X 的概率分布列. 3.随机变量概率分布的性质 (1)对于随机变量的研究,我们不仅要知道随机变量取哪些值,随机变量所取的值表示的随机试验的结果,而且需要进一步了解随机变量:取这些值的概率. (2)随机事件A 的概率满足0≤P (A )≤1,必然事件U 的概率P (U )=1.若离散型随机变量X 所有可能取的值为12,, ,.n x x x X 取每一个值i x (i =1,2,…,n )的概率为(),i i P X x p ==○ 10,1,2,3,,;i p i n ≥=○2123 1.n p p p p ++++=不满足上述两条性质的分布列一定是错误的, 即分布列满足上述两条性质是该分布列正确的必要不充分条件. (3)由离散型随机变量分布列的概念可知,离散型随机变量各个可能的取值表示的事件是互斥的.

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

随机变量的概率分布

随机变量的概率分布 一、填空题 1.某射手射击所得环数X 的概率分布为 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 答案 0.79 2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=1 3. 答案 1 3 3.(优质试题·常州期末)设X 是一个离散型随机变量,其概率分布为: 则q 的值为________解析 由概率分布的性质知??? ?? 2-3q ≥0, q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 32-33 6 4.设离散型随机变量X 的概率分布为

解析由概率分布的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5. 答案0.5 5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则“放回5个红球”事件可以表示为________. 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案ξ=6 6.(优质试题·南通调研)从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是________. 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布 问题,故所求概率为P=C23C14 C37= 12 35. 答案12 35 7.已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d 的取值范围是________. 解析设X取x1,x2,x3时的概率分辊为a-b,a,a+d,则(a-d)+a+(a

自考概率论与数理统计多维随机变量及其概率分布

第三章多维随机变量及其概率分布 内容介绍 本章讨论多维随机变量的问题,重点讨论二维随机变量及其概率分布。 考点分析 内容讲解 §3.1多维随机变量的概念 1. 维随机变量的概念: 个随机变量,,…,构成的整体=(,,…,)称为一个维随机变量, 称为的第个分量(). 2.二维随机变量分布函数的概念: 设(,)为一个二维随机变量,记 ,,, 称二元函数为二维随机变量(,)的联合分布函数,或称为(,)的分布函数. 记函数= =, 则称函数和为二维随机变量(,)的两个分量和的边缘分布函数. 3. 二维随机变量分布函数的性质: (1)是变量(或)的不减函数;

(2)01,对任意给定的,;对任意给定的,; ,; (3)关于和关于均右连续,即. (4)对任意给定的,有 . 例题1. P62 【例3-1】判断二元函数是不是某二维随机变量的分布函数。【答疑编号12030101】

解:我们取, = 1-1-1+0=-1<0,不满足第4条性质,所以不是。 4.二维离散型随机变量 (1)定义:若二维随机变量(X,Y)只取有限多对或可列无穷多对(),(=1,2,…),则称(X,Y)为二维离散型随机变量. (2)分布律: ① 设二维随机变量(X,Y)的所有可能取值为(),(=1,2,…),(X,Y)的各个可能取值的概率为 ,(=1,2,…), 称,(=1,2,…)为(X,Y)的分布律. (X,Y)的分布律还可以写成如下列表形式

②(X,Y)分布律的性质 [1] ,(=1,2,…); [2] 例题2. P62 【例3-2】设(X,Y)的分布律为 求a的值。 【答疑编号12030102】 解:

相关主题
文本预览
相关文档 最新文档