材料力学-杆件内力分析
- 格式:pptx
- 大小:173.02 KB
- 文档页数:15
第四章 杆件的内力与内力图一、选择题1.各向同性假设认为,材料沿各个方向具有相同的( ) A .应力 B .变形 C .位移 D .力学性质2.关于截面法下列叙述中正确的是( ) A .截面法是分析杆件变形的基本方法 B .截面法是分析杆件应力的基本方法 C .截面法是分析杆件内力的基本方法D .截面法是分析杆件内力与应力关系的基本方法 3.下列结论正确的是( )。
A.杆件某截面上的内力是该截面上应力的代数和B.杆件某截面上的应力是该截面上内力的平均值C.应力是内力的集度D.内力必大于应力4.常用的应力单位是兆帕(MPa ),1Mpa =( ) A .103N /m 2 B .106 N /m 2 C .109 N /m 2D .1012 N /m 25.长度为l 的简支梁上作用了均布载荷q ,根据剪力、弯矩和分布载荷间的微分关系,可以确定( )A .剪力图为水平直线,弯矩图是抛物线B .剪力图是抛物线,弯矩图是水平直线C .剪力图是斜直线,弯矩图是抛物线D .剪力图是抛物线,弯矩图是斜直线6.如图所示悬臂梁,A 截面上的内力为( )。
A.Q =ql ,M =0B.Q =ql ,M =21ql 2C.Q =-ql ,M =21ql 2D.Q =-ql ,M =23ql 27.AB 梁中C 截面左,右的剪力与弯矩大小比较应为( )。
A.Q c 左=Q c 右,M c 左<M c 右B.Q c 左=Q c 右,M c 左>M c 右C.Q c 左<Q c 右,M c 左=M c 右D.Q c 左>Q c 右,M c 左=M c 右8、为保证构件有足够的抵抗变形的能力,构件应具有足够的( ) A.刚度 B.硬度 C.强度 D.韧性 9.内力和应力的关系( )A 内力小于应力B 内力等于应力的代数和C 内力为矢量,应力为标量D 应力是单位面积上的内力 10、图示简支梁中间截面上的内力为( )。
第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。
(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。
思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。
(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。
(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。
(6) 分布载荷q(x)向上为负,向下为正。
(7) 最大弯矩或最小弯矩必定发生在集中力偶处。
(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。
(9) 剪力图上斜直线部分可以肯定有分布载荷作用。
(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。
2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。
A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。
A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。
6 .剪力 F 、弯矩 M 与载荷集度 q 三者之间的微分关系是 dM ( x)= F ( x ) 、dx《工程力学》第 4 次作业解答(杆件的内力计算与内力图)2008-2009 学年第二学期一、填空题1.作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的 伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。
2.轴力的大小等于截面截面一侧所有轴向外力的代数和;轴力得正值时,轴力的方向 与截面外法线方向相同,杆件受拉伸。
3.杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意 两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。
4.若传动轴所传递的功率为 P 千瓦,转速为 n 转/分,则外力偶矩的计算公式为M = 9549 ⨯ Pn。
5.截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和;扭矩的正负, 按右手螺旋法则确定。
S S dF ( x )S dx= ±q ( x ) 。
7.梁上没有均布荷载作用的部分,剪力图为水平直线,弯矩图为斜直线。
8.梁上有均布荷载作用的部分,剪力图为斜直线,弯矩图为抛物线。
9.在集中力作用处,剪力图上有突变,弯矩图上在此处出现转折。
10.梁上集中力偶作用处,剪力图无变化,弯矩图上有突变。
二、问答题1.什么是弹性变形?什么是塑性变形?解答:在外力作用下,构件发生变形,当卸除外力后,构件能够恢复原来的大小和形状,则这种变形称为弹性变形。
如果外力卸除后不能恢复原来的形状和大小,则这种变形称为塑性变形。
2.如图所示,有一直杆,其两端在力 F 作用下处于平衡,如果对该杆应用静力学中“力的可传性原理”,可得另外两种受力情况,如图(b )、(c )所示。
试问:(1)对于图示的三种受力情况,直杆的变形是否相同? (2)力的可传性原理是否适用于变形体?问答题 2 图问答题 3 图。
解答:(1)图示的三种情况,杆件的变形不相同。
第二章杆件的内力分析1、梁弯曲时,凡剪力对梁内任一点的力矩是____ __转向的为正。
2、梁弯曲时,凡弯矩使所取梁段产生______ ____变形的为正。
3、梁在某截面处剪力为零,则该截面处弯矩有_________值。
4、同一根梁采用不同的坐标系(如右手坐标系与左手坐标系)时,则对指定截面求得的剪力和弯矩将;两种坐标系所得的剪力方程和弯矩方程是的;由剪力、弯矩方程绘制的剪力、弯矩图是的。
5、若简支梁上的均布荷载用静力等效的集中力来代替,则梁的支反力值将与原梁的支反力值,而梁的最大弯矩值将原梁的最大弯矩值。
6、根据q与剪力、弯矩间的微分关系,若梁段上有均布荷载q作用,则该梁段的剪力图为一条,弯矩图为一条;若剪力图数值由正到负或由负到正经过零处,则弯矩图在该处具有第三章杆件横截面上的应力应变分析1、截面上任一点处的全应力一般可分解为方向和方向的分量。
前者称为该点的,用符号表示;后者称为该点的,用符号表示。
2、横截面面积为A的等直杆两端受轴向拉力F时,杆件内最大正应力为,发生在面上,该截面上的切应力为;最大切应力为,发生在面上,该截面上的正应力为;任意两个相互垂直的斜截面上的正应力之和都等于。
3、各向同性材料有个弹性常数,它们分别是,它们之间的关系是。
因此,各向同性材料独立的弹性常数是个。
4、内、外直径分别为d和D的空心圆轴,则横截面的极惯性矩表达式为____________。
5、变速箱中的高速轴一般较细,低速轴较粗,这是因为6、纯弯曲是指________________ ________。
7、应用叠加原理分析组合变形杆内的应力,应满足的条件为:(1)_________________________ ; (2)_________________ 。
8、当梁只受集中力和集中力偶作用时,最大剪力必发生在。
9、称为切应力互等定理。
10、梁在横向力作用下发生平面弯曲时,横截面上的最大正应力发生在,最大切应力发生在。
工程力学中的杆件受力分析方法总结引言:工程力学是研究物体在受力作用下的力学性质和运动规律的学科。
在工程实践中,杆件是一种常见的结构元素,其受力分析是解决工程问题的关键。
本文将对工程力学中常用的杆件受力分析方法进行总结,旨在帮助读者更好地理解和应用这些方法。
一、静力平衡法静力平衡法是最基本、最常用的杆件受力分析方法之一。
它基于牛顿第一定律,即物体处于静止或匀速直线运动时,受力平衡。
在分析杆件受力时,我们可以通过绘制自由体图,将杆件从整体中分离出来,然后根据受力平衡条件,求解各个受力分量的大小和方向。
这种方法简单直观,适用于各种杆件结构。
二、杆件内力分析法杆件内力分析法是一种基于杆件内力平衡的方法。
在这种方法中,我们将杆件切割为若干个自由体,并分析每个自由体的内力平衡。
通过求解各个切割面上的内力分量,我们可以得到杆件内部各点的内力大小和方向。
这种方法适用于复杂的杆件结构,能够提供更详细的内力信息,对于杆件的设计和优化具有重要意义。
三、位移法位移法是一种基于杆件变形特性的受力分析方法。
根据杆件的几何形状和边界条件,我们可以推导出杆件在受力作用下的变形情况。
通过测量杆件的位移量,我们可以计算出杆件受力的大小和方向。
位移法适用于弹性杆件的受力分析,对于杆件的刚度和稳定性分析有重要意义。
四、弯矩法弯矩法是一种适用于梁杆结构的受力分析方法。
在这种方法中,我们将杆件简化为梁,通过计算梁的弯矩分布,进而推导出杆件各点的受力情况。
弯矩法基于梁的弯曲理论,适用于解决梁杆结构中的受力问题。
它在工程实践中得到广泛应用,对于梁杆结构的设计和分析具有重要意义。
五、应力分析法应力分析法是一种基于材料力学的受力分析方法。
在这种方法中,我们通过计算杆件各点的应力分布,进而推导出杆件各点的受力情况。
应力分析法适用于杆件的强度和刚度分析,对于杆件的设计和安全评估具有重要意义。
它涉及到材料的弹性模量、截面形状等因素,需要结合具体的杆件材料和几何特性进行分析。
第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。
二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。
轴力符号:拉伸为正,压缩为负。
∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。
2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。
正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。
注意:轴力图与基线形成一闭合曲线。
轴力图必须与杆件对齐。
在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。
例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。
剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。
ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。
外力偶矩矢量指向该截面的取负,离开该截面的取正。
四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。
外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。
第二章杆件的内力分析要想对杆件进行强度、刚度和稳定性方面的分析计算,首先必须知道杆件横截面上的内力,因此,本章主要对此作分析讨论。
首先引入了内力的基本概念和求内力的基本方法——截面法,然后讨论了各种变形情况下截面上的内力及求解和内力图的绘制,这是材料力学最基本的知识。
第一节内力与截面法杆件因受到外力的作用而变形,其内部各部分之间的相互作用力也发生改变。
这种由于外力作用而引起的杆件内部各部分之间的相互作用力的改变量,称为附加内力,简称内力。
内力的大小随外力的改变而变化,它的大小及其在杆件内部的分布方式与杆件的强度、刚度和稳定性密切相关。
为了研究杆件在外力作用下任一截面m-m上的内力,可用一平面假想地把杆件分成两部分,如图2-1a。
取其中任一部分为研究对象,弃去另一部分。
由于杆件原来处于平衡状态,截开后各部分仍应保持平衡,弃去部分必然有力作用于研究对象的m-m截面上。
由连续性假设,在m-m截面上各处都有内力,所以内力实际上是分布于截面上的一个分布力系(图2-1b)。
把该分布内力系向截面上某一点简化后得到内力的主矢和主矩,以后就称之为该截面上的内力。
但在工程实际中更有意义的是主矢和主矩在确定的坐标方向上的分量,如图2-1c,这六个内力分量分别对应着四种基本变形形式,依其所对应的基本变形,把这六个内力分量分别称为轴力、剪力、扭矩和弯矩。
(1)轴力。
沿杆件轴线方向(x轴方向)的内力分量FN,它垂直于杆件的横截面,使杆件产生轴向变形(伸长或缩短)。
(2)剪力。
与截面相切(沿y轴和z轴方向)的内力分量FQy、FQz ,使杆件产生剪切变形。
(3)扭矩。
绕x轴的主矩分量Mx,它是一个力偶,使杆件产生绕轴线转动的扭转变形。
(4)弯矩。
绕y轴和z轴的主矩分量My、Mz,它们也是力偶,使杆件产生弯曲变形。
为了求出这些内力分量,只需对所研究部分列出平衡方程就可。
这种计算截面上内力的方法通常称为截面法。
其步骤可归纳为:(1) 沿需要计算内力的截面假想地把构件分成两部分,取其中的任一部分作为研究对象, 弃去另一部分。