材料力学第2章-杆件的内力与内力图
- 格式:ppt
- 大小:2.31 MB
- 文档页数:56
Fθθ34轴向拉压杆的内力轴向拉压杆的内力为轴力,用F N 表示轴力的大小:由平衡方程求解PN ,0F F F x ==∑轴力的正负:拉力为正;压力为负轴力的单位:N ;kN6轴向拉压杆的内力轴力图解:应用截面法,在F N1,由∑F x =0kN5.21P 1N ==F F kN5.13P 2P 1P 2N -=-=-=F F F F 在2-2截面截开,画出正向的F N2,由∑F x =089= 6 kN = -4 kN轴力图画在受力图正下方;10轴向拉压杆的内力轴力图例2 图示一砖柱,柱高3.5m ,截面尺寸370×370mm 2,柱顶承受轴向力F P =60 kN ,砖砌体容重ρ.g =18 kN/m 3。
试绘柱的轴力图。
11轴力图应用截面法,由平衡方程求得:kN46.260P y y A g F --=⋅⋅⋅-ρ,kN 6.68)5.3(,kN 60)0N -=-=F ㈠F N /kNy68.66012轴向拉压杆的内力轴力图等截面直杆在上端A 处固定,其受力如图试绘制杆件的轴力图。
kN,10kN,5P2=F l(a)Cl(b)机械传动轴杆件各相邻横截面产生绕杆轴的相对转动ϕ1720扭矩沿轴线的变化规律e21221. 外力偶矩的计算m N ⋅=1146AmN ⋅=3509549n PB m N ⋅=446n D23扭矩的计算m N 350e ⋅-=-=B M m N 700e e ⋅-=--B C M M mN 446e ⋅=D M 扭矩图问题:如将轮A 与轮C 互换,扭矩图如何?哪种布置受力更合理?mN 700max ⋅=轴力图剪力图和弯矩图组合变形杆件的内力与内力图25梁的外力和内力均可仅由静力平衡方程求解27纵向对称面内时,梁的轴线由位于纵向对称面内的直28单跨静定梁的三种基本形式由静力平衡方程无法全部确定梁所有外力和内力29平面弯曲梁的内力剪力图和弯矩图:剪力F S 和弯矩M 求内力的方法:截面法A F R =M MaF A R =30平面弯曲梁的内力剪力图和弯矩图单位;kNN ·m ;kN ·m31截面,并取右段研究221qa -33平面弯曲梁的内力剪力图和弯矩图剪力方程剪力沿梁轴线的变化规律,即F S =F S (x )弯矩方程弯矩沿梁轴线的变化规律,即M=M (x )按比例绘出F S (x )的图线按比例绘出M (x )的图线剪力图和弯矩图受力分析,画受力图,由平衡方程求支座约束力分段列出剪力方程和弯矩方程,标出变量x 的取值根据剪力方程,求各控制面的剪力值,按比例绘剪力图。
第二章杆件内力与内力图2-2(b)、(d)、(g)试作图示各杆的轴力图,并确定最大轴力| F N |max 。
2-3(b)试求图示桁架各指定杆件的轴力。
2-4(c)试作图示各杆的扭矩图,并确定最大扭矩| T |max 。
2-5图示一传动轴,转速n =200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。
(1)试绘该轴的扭矩图。
(2)若将轮C与轮D对调,试分析对轴的受力是否有利。
2-8(a)、(c)、(e)、(g)、(h)试列出图示各梁的剪力方程和弯矩方程。
作剪力图和弯矩图,并确定|F s |max及|M |max值。
2-9(a)、(c)、(d)、(f)、(g)、(i)、(k)、(l)、(m)试用简易法作图示各梁的剪力图和弯矩图,并确定|F s |max及|M |max值,并用微分关系对图形进行校核。
2-10设梁的剪力图如图(a)(d)所示(见教材p39)。
试作弯矩图和荷载图。
已知梁上无集中力偶。
2-11(b)试用叠加法绘出图示梁的弯矩图。
2-6一钻探机的功率为10 kW,转速n =180 r/min。
钻杆钻入土层的深度l= 40m。
若土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。
2-14图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁AB的内力图。
第三章轴向拉压杆件的强度与变形计算3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。
3-5变截面直杆如图所示。
已知A1=8cm2,A2=4cm2,E=200GPa 。
求杆的总伸长量。
3-7图示结构中,AB为水平放置的刚性杆,1、2、3杆材料相同,其弹性模量E=210GPa ,已知l =1m,A1=A2=100mm2,A3=150mm2,F P=20kN 。
活塞杆其计算简图为压杆压杆号规定为:拉伸时,轴力F N 为正;压缩时,轴力F N 为负。
外力不能沿作用线移动。
因为材料力学中研究的对象是变形体,不是刚体,力的可传性不成立。
对变形体而言,力是定位矢量。
2、轴力图用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与横截面位置关系的图线,称为轴力图。
将正的轴力画在上侧,负的画在下侧。
例2-1 求如图所示杆件的内力,并作轴力图。
解:1)AB 段:以截面1-1将杆分为两段,取左段(图(b )),由平衡方程,0=∑x F 061N =-F 得kN 61N =F2)BC 段:以截面2-2将杆分为两段,取左段(图(c)),由平衡方程,0=∑x F 01862N =+-F 得kN 122N -=F2N F 的方向与图中所示方向相反。
2)CD 段:以截面3-3将杆分为两段,取右段(图(d)),由平衡方程,0=∑x F 043N =--F 得 kN 43N -=F3N F 的方向与图中所示方向相反。
画在x 轴下方。
例功率分别为P B =P C解:1=M A =M B =M D 2BC 段:以截面分(图(b))得负号说明1T 同理,在CA 段内,02=++B C M M Tm N 7002⋅-=--=B C M M T在AD 段内,03=-D M T m N 4463⋅==D M T3)以横坐标x 表示横截面位置,纵轴表示对应横截面上的扭矩大小,选取适当比例,绘出扭矩图。
正的扭矩画在x 轴上侧,负的扭矩画在x 轴下侧。
或具有纵向对称面,但外力并不作用在纵向对称面内这种弯曲称为非对称弯曲。
⎪⎭⎪⎬⎫=⋅-⋅==-+=∑∑03,0)(0,0l F l FF M F FF F B ABAy,得F F F F B A 31,32==2.求截面1-1上的内力F F F A D 32S == Fa a F M A D 32=⋅=同理,对于C 左截面:Fl l F M F F F C A C 92332,32S =⋅===左左对于C右截面:3S FF F F A C -=-=右Fl l F M A C 923=⋅=右负号表示假设方向与实际方向相反。
第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。
二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。
轴力符号:拉伸为正,压缩为负。
∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。
2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。
正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。
注意:轴力图与基线形成一闭合曲线。
轴力图必须与杆件对齐。
在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。
例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。
剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。
ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。
外力偶矩矢量指向该截面的取负,离开该截面的取正。
四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。
外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。
第二章杆件的内力分析要想对杆件进行强度、刚度和稳定性方面的分析计算,首先必须知道杆件横截面上的内力,因此,本章主要对此作分析讨论。
首先引入了内力的基本概念和求内力的基本方法——截面法,然后讨论了各种变形情况下截面上的内力及求解和内力图的绘制,这是材料力学最基本的知识。
第一节内力与截面法杆件因受到外力的作用而变形,其内部各部分之间的相互作用力也发生改变。
这种由于外力作用而引起的杆件内部各部分之间的相互作用力的改变量,称为附加内力,简称内力。
内力的大小随外力的改变而变化,它的大小及其在杆件内部的分布方式与杆件的强度、刚度和稳定性密切相关。
为了研究杆件在外力作用下任一截面m-m上的内力,可用一平面假想地把杆件分成两部分,如图2-1a。
取其中任一部分为研究对象,弃去另一部分。
由于杆件原来处于平衡状态,截开后各部分仍应保持平衡,弃去部分必然有力作用于研究对象的m-m截面上。
由连续性假设,在m-m截面上各处都有内力,所以内力实际上是分布于截面上的一个分布力系(图2-1b)。
把该分布内力系向截面上某一点简化后得到内力的主矢和主矩,以后就称之为该截面上的内力。
但在工程实际中更有意义的是主矢和主矩在确定的坐标方向上的分量,如图2-1c,这六个内力分量分别对应着四种基本变形形式,依其所对应的基本变形,把这六个内力分量分别称为轴力、剪力、扭矩和弯矩。
(1)轴力。
沿杆件轴线方向(x轴方向)的内力分量FN,它垂直于杆件的横截面,使杆件产生轴向变形(伸长或缩短)。
(2)剪力。
与截面相切(沿y轴和z轴方向)的内力分量FQy、FQz ,使杆件产生剪切变形。
(3)扭矩。
绕x轴的主矩分量Mx,它是一个力偶,使杆件产生绕轴线转动的扭转变形。
(4)弯矩。
绕y轴和z轴的主矩分量My、Mz,它们也是力偶,使杆件产生弯曲变形。
为了求出这些内力分量,只需对所研究部分列出平衡方程就可。
这种计算截面上内力的方法通常称为截面法。
其步骤可归纳为:(1) 沿需要计算内力的截面假想地把构件分成两部分,取其中的任一部分作为研究对象, 弃去另一部分。