第2章 杆件的内力分析.
- 格式:doc
- 大小:404.00 KB
- 文档页数:14
第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。
(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。
思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。
(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。
(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。
(6) 分布载荷q(x)向上为负,向下为正。
(7) 最大弯矩或最小弯矩必定发生在集中力偶处。
(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。
(9) 剪力图上斜直线部分可以肯定有分布载荷作用。
(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。
2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。
A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。
A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。
第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。
(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。
思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。
(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。
(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。
(6) 分布载荷q(x)向上为负,向下为正。
(7) 最大弯矩或最小弯矩必定发生在集中力偶处。
(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。
(9) 剪力图上斜直线部分可以肯定有分布载荷作用。
(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。
2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。
A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。
A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。
第二章杆件的内力分析1、梁弯曲时,凡剪力对梁内任一点的力矩是____ __转向的为正。
2、梁弯曲时,凡弯矩使所取梁段产生______ ____变形的为正。
3、梁在某截面处剪力为零,则该截面处弯矩有_________值。
4、同一根梁采用不同的坐标系(如右手坐标系与左手坐标系)时,则对指定截面求得的剪力和弯矩将;两种坐标系所得的剪力方程和弯矩方程是的;由剪力、弯矩方程绘制的剪力、弯矩图是的。
5、若简支梁上的均布荷载用静力等效的集中力来代替,则梁的支反力值将与原梁的支反力值,而梁的最大弯矩值将原梁的最大弯矩值。
6、根据q与剪力、弯矩间的微分关系,若梁段上有均布荷载q作用,则该梁段的剪力图为一条,弯矩图为一条;若剪力图数值由正到负或由负到正经过零处,则弯矩图在该处具有第三章杆件横截面上的应力应变分析1、截面上任一点处的全应力一般可分解为方向和方向的分量。
前者称为该点的,用符号表示;后者称为该点的,用符号表示。
2、横截面面积为A的等直杆两端受轴向拉力F时,杆件内最大正应力为,发生在面上,该截面上的切应力为;最大切应力为,发生在面上,该截面上的正应力为;任意两个相互垂直的斜截面上的正应力之和都等于。
3、各向同性材料有个弹性常数,它们分别是,它们之间的关系是。
因此,各向同性材料独立的弹性常数是个。
4、内、外直径分别为d和D的空心圆轴,则横截面的极惯性矩表达式为____________。
5、变速箱中的高速轴一般较细,低速轴较粗,这是因为6、纯弯曲是指________________ ________。
7、应用叠加原理分析组合变形杆内的应力,应满足的条件为:(1)_________________________ ; (2)_________________ 。
8、当梁只受集中力和集中力偶作用时,最大剪力必发生在。
9、称为切应力互等定理。
10、梁在横向力作用下发生平面弯曲时,横截面上的最大正应力发生在,最大切应力发生在。
第二章 杆件的内力与内力图§2-1 杆件内力的概念与杆件变形的基本形式一、杆件的内力与内力分量内力是工程力学中一个非常重要的概念。
内力从广义上讲,是指杆件内部各粒子之间的相互作用力。
显然,无荷载作用时,这种相互作用力也是存在的。
在荷载作用下,杆件内部粒子的排列发生了改变,这时粒子间相互的作用力也发生了改变。
这种由于荷载作用而产生的粒子间相互作用力的改变量,称为附加内力,简称内力。
需要指出的是:受力杆件某横截面上的内力实际上是分布在截面上的各点的分布力系,而工程力学分析杆件某截面上的内力时,一般将分布内力先表示成分布内力向截面的形心简化所得的主矢分量和主矩分量进行求解,而内力的具体分布规律放在下一步(属于本书第二篇中的内容)考虑。
受力杆件横截面上可能存在的内力分量最多有四类六个:轴力N F 、剪力y Q F )(和z Q F )(、扭矩x M 、弯矩y M 和z M 。
轴力N F 是沿杆件轴线方向(与横截面垂直)的内力分量。
剪力y Q F )(和z Q F )(是垂直于杆件轴线方向(与横截面相切)的内力分量。
扭矩xM 是力矩矢量沿杆件轴线方向的内力矩分量。
弯矩y M 和z M 是力矩矢量与杆件轴线方向垂直的内力矩分量。
二、杆件变形的基本形式实际的构件受力后将发生形状、尺寸的改变,构件这种形状、尺寸的改变称为变形。
杆件受力变形的基本形式有四种:轴向拉伸和压缩、扭转、剪切、弯曲。
1、轴向拉伸和压缩变形轴向拉伸和压缩简称为轴向拉压。
其受力特点是:外力沿杆件的轴线方向。
其变形特点是:拉伸——沿轴线方向伸长而横向尺寸缩小,压缩——沿轴线方向缩短而横向尺寸增大,如图4-1所示。
轴向受拉的杆件称为拉杆,轴向受压的杆件压杆。
图2-1 图2-2 土木工程结构中的桁架,由大量的拉压杆组成,如图2-2所示。
内燃机中的连杆、压缩机中的活塞杆等均属此类。
它们都可以简化成图2-1所示的计算简图。
2、剪切变形工程中的拉压杆件有时是由几部分联接而成的。
活塞杆其计算简图为压杆压杆号规定为:拉伸时,轴力F N 为正;压缩时,轴力F N 为负。
外力不能沿作用线移动。
因为材料力学中研究的对象是变形体,不是刚体,力的可传性不成立。
对变形体而言,力是定位矢量。
2、轴力图用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与横截面位置关系的图线,称为轴力图。
将正的轴力画在上侧,负的画在下侧。
例2-1 求如图所示杆件的内力,并作轴力图。
解:1)AB 段:以截面1-1将杆分为两段,取左段(图(b )),由平衡方程,0=∑x F 061N =-F 得kN 61N =F2)BC 段:以截面2-2将杆分为两段,取左段(图(c)),由平衡方程,0=∑x F 01862N =+-F 得kN 122N -=F2N F 的方向与图中所示方向相反。
2)CD 段:以截面3-3将杆分为两段,取右段(图(d)),由平衡方程,0=∑x F 043N =--F 得 kN 43N -=F3N F 的方向与图中所示方向相反。
画在x 轴下方。
例功率分别为P B =P C解:1=M A =M B =M D 2BC 段:以截面分(图(b))得负号说明1T 同理,在CA 段内,02=++B C M M Tm N 7002⋅-=--=B C M M T在AD 段内,03=-D M T m N 4463⋅==D M T3)以横坐标x 表示横截面位置,纵轴表示对应横截面上的扭矩大小,选取适当比例,绘出扭矩图。
正的扭矩画在x 轴上侧,负的扭矩画在x 轴下侧。
或具有纵向对称面,但外力并不作用在纵向对称面内这种弯曲称为非对称弯曲。
⎪⎭⎪⎬⎫=⋅-⋅==-+=∑∑03,0)(0,0l F l FF M F FF F B ABAy,得F F F F B A 31,32==2.求截面1-1上的内力F F F A D 32S == Fa a F M A D 32=⋅=同理,对于C 左截面:Fl l F M F F F C A C 92332,32S =⋅===左左对于C右截面:3S FF F F A C -=-=右Fl l F M A C 923=⋅=右负号表示假设方向与实际方向相反。
第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。
二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。
轴力符号:拉伸为正,压缩为负。
∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。
2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。
正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。
注意:轴力图与基线形成一闭合曲线。
轴力图必须与杆件对齐。
在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。
例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。
剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。
ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。
外力偶矩矢量指向该截面的取负,离开该截面的取正。
四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。
外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。
第二章杆件的内力分析要想对杆件进行强度、刚度和稳定性方面的分析计算,首先必须知道杆件横截面上的内力,因此,本章主要对此作分析讨论。
首先引入了内力的基本概念和求内力的基本方法——截面法,然后讨论了各种变形情况下截面上的内力及求解和内力图的绘制,这是材料力学最基本的知识。
第一节内力与截面法杆件因受到外力的作用而变形,其内部各部分之间的相互作用力也发生改变。
这种由于外力作用而引起的杆件内部各部分之间的相互作用力的改变量,称为附加内力,简称内力。
内力的大小随外力的改变而变化,它的大小及其在杆件内部的分布方式与杆件的强度、刚度和稳定性密切相关。
为了研究杆件在外力作用下任一截面m-m上的内力,可用一平面假想地把杆件分成两部分,如图2-1a。
取其中任一部分为研究对象,弃去另一部分。
由于杆件原来处于平衡状态,截开后各部分仍应保持平衡,弃去部分必然有力作用于研究对象的m-m截面上。
由连续性假设,在m-m截面上各处都有内力,所以内力实际上是分布于截面上的一个分布力系(图2-1b)。
把该分布内力系向截面上某一点简化后得到内力的主矢和主矩,以后就称之为该截面上的内力。
但在工程实际中更有意义的是主矢和主矩在确定的坐标方向上的分量,如图2-1c,这六个内力分量分别对应着四种基本变形形式,依其所对应的基本变形,把这六个内力分量分别称为轴力、剪力、扭矩和弯矩。
(1)轴力。
沿杆件轴线方向(x轴方向)的内力分量FN,它垂直于杆件的横截面,使杆件产生轴向变形(伸长或缩短)。
(2)剪力。
与截面相切(沿y轴和z轴方向)的内力分量FQy、FQz ,使杆件产生剪切变形。
(3)扭矩。
绕x轴的主矩分量Mx,它是一个力偶,使杆件产生绕轴线转动的扭转变形。
(4)弯矩。
绕y轴和z轴的主矩分量My、Mz,它们也是力偶,使杆件产生弯曲变形。
为了求出这些内力分量,只需对所研究部分列出平衡方程就可。
这种计算截面上内力的方法通常称为截面法。
其步骤可归纳为:(1) 沿需要计算内力的截面假想地把构件分成两部分,取其中的任一部分作为研究对象, 弃去另一部分。
第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。
(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。
思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。
(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。
(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。
(6) 分布载荷q(x)向上为负,向下为正。
(7) 最大弯矩或最小弯矩必定发生在集中力偶处。
(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。
(9) 剪力图上斜直线部分可以肯定有分布载荷作用。
(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。
2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。
A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。
A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。
A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。
A. AB 梁段的剪力F S 相同B. BC 梁段的剪力F S 相同C. CD 梁段的剪力F S 相同D. AB 梁段的弯矩M 相同E. BC 梁段的弯矩M 相同F. CD 梁段的弯矩M 相同思2-1(5)图(6) 如思2-1(6)图所示,梁的剪力F S ,弯矩M 和载荷集度q 之间的微分关系S d d M F x =-和S d d F q x=-适用于图( )所示微梁段,其中F 0和M 0分别为集中力和集中力偶。
材料力学思2-1(6)图(7) 如思2-1(7)图所示组合梁( )。
A. 梁段AB弯矩为常量B. 梁段AB剪力为常量C. 梁段BC弯矩为常量D. 梁段BC剪力为常量(8) 如思2-1(8)图所示,当集中力偶沿简支梁AB任意移动时( )。
A. 梁内剪力为常量B. 梁内剪力不为常量,但最大剪力值不变C. 梁内弯矩为常量D. 梁内弯矩不为常量,但最大弯矩值不变思2-1(7)图思2-1(8)图(9) 悬臂梁左端自由,右端固定,梁上载荷元集中力偶,剪力图如思2-1(9)图所示,则梁上作用的最大集中载荷F max(绝对值)=_______________,梁内最大弯矩为M max=_______________。
(10) 如思2-1(10)图所示,外伸梁长l,载荷F可能作用在梁的任意位置,为了减小梁的最大弯矩值,则外伸段长度a=_______________。
思2-1(9)图思2-1(10)图答案:(2)A (3)AC (4)BD (5)ACDF (6)D (7)BD (8)A (9)4F,3Fa(10)l/5(需要用等强设计思想分析)2-3 简答题第2章 构件的内力分析(1) 梁的弯矩峰值一般会产生在什么位置?(2) 在集中力和集中力偶矩处,梁的剪力图和弯矩图各有什么特点?(3) 若结构对称,载荷对称或反对称,其剪力图和弯矩图各有什么特点?(4) 某梁分别承受A 、B 两组载荷,A 组载荷只比B 组载荷多一个集中的力偶矩。
有人认为,由于画剪力图时,集中力偶矩不影响剪力,因此,对应于这两组载荷的剪力图是完全一样的。
这种看法对吗?为什么?(5) 某梁的弯矩图如思2-3(5)图所示。
如果将支反力也视为一种外荷载,那么,梁承受了哪些载荷?这些载荷各作用于什么位置?(6) 如思2-3(6)图所示的简支梁上有一副梁。
集中力F 作用于副梁上。
在求简支梁A 、B 处的支反力时,可以将F 沿其作用线平移至梁上D 处吗?在求简支梁中的剪力和弯矩时,是否可以将F 平移至D 处?(7) 思2-3(7)图所示的对称结构的中点作用有一个集中力偶。
这种情况载荷是对称的还是反对称的?或是既不对称又不反对称?思2-3(5)图 思2-3(6)图 思2-3(7)图习 题2-1 铰接梁的尺寸及载荷如题2-1图所示,B 为中间铰。
求支座反力和中间铰两侧面上的内力。
答:1312,,,3263Ay Cy Dy B F F F F F F F F -====。
题2-1图2-2 如题2-2图所示悬臂梁AB ,试求:(1) 支座反力,(2) 1-1,2-2,3-3截面上的内力。
答:1-1:M =2.5kN ⋅m(顺时针),F S =5kN(↑);2-2:M =7.5kN ⋅m(顺时针),F S =5kN(↑);3-3:M =10kN ⋅m(顺时针),F S =5kN(↑)。
2-3 如题2-3图所示为一端固支的半圆弧杆,自由端受F 力作用。
求截面1-1,2-2,3-3上的内力。
材料力学答:1-1:M /2(顺时针),F N /2(正法向),F S = F /2(向心);2-2:M =FR (顺时针),F N =F (向上),F S = 0;3-3:M =Fa (逆时针),F N =0,F S = F (向上)。
题2-2图 题2-3图2-4 塔式架的受力与支承如题2-4图所示。
若己知载荷F 和尺寸a ,h 。
试求1,2,3杆的内力。
答:N1N2N3/(),(),2/F Fh a F a F Fh a ===拉力拉力(压力)。
2-5 如题2-5图所示杆系结构在C ,D ,E ,G ,H 处均为铰接。
C ,D 铰分别设置在AH 杆和BH 杆的下侧。
已知F =100kN ,求杆1~5所受的轴向力。
答: F 1=125kN(拉),F 2=75kN(压),F 3=100kN(拉),F 4=75kN(压),F 5=125kN(拉),题2-4图 题2-5图2-6 一等直杆及其受力情况如题2-6图所示。
试作此杆的内力图。
答:F Nmax =50kN 。
2-7 两组人员拔河比赛,某瞬时作用于绳子上的力如题2-7图所示。
已知F l =0.4kN ,F 2=0.3kN ,F 3=0.35kN ,F 4=0.35kN ,F 5=0.25kN ,F 6=0.45kN 。
试求横截面1-1,2-2,3-3,4-4,5-5上的内力。
答: F N1=0.4kN ,F N2=0.7kN ,F N3=1.05kN ,F N4=0.7kN ,F N5=0.45kN 。
第2章构件的内力分析题2-6图题2-7图2-8 试求如题2-8图所示等直杆横截面1-1,2-2上的内力,并作内力图。
已知F=100kN,a=1m。
答:F N1=-100kN,F N2=200kN。
2-9 电车架空线立柱结构如题2-9图所示,假设杆AB与杆BC在B处为固定连接。
(1)若在A处作用有沿z 方向的力F,试问AB和BC两杆各产生什么基本变形形式,并求截面1-1和截面2-2上的内力。
(2)若在A处作用有沿y方向(垂直于AB)的力F,试问AB和BC两杆各产生什么基本变形形式,并求截面1-1和截面2-2上的内力。
答:(1) AB杆:剪切与弯曲变形,BC杆:压缩与弯曲变形;F S1=-F,M1=-Fa,F N1=-F,M2=-2Fa。
(2) AB杆:剪切与弯曲变形,BC杆:剪切、弯曲与扭转变形;|F S1|=F,|M1|=Fa,|F S1|=F,|T|=2Fa。
2-10 如题2-10图所示一环形夹具,由两个半薄壁圆筒组成,内部受均布载荷p作用,若圆筒直径为D,沿轴线方向圆筒的长度为b,试求左右螺栓所受的内力。
答:F N=0.5pbD。
题2-8图题2-9图题2-10图2-11 空气泵操纵杆如题2-11图所示。
所受力F l=8.5kN,试求截面1-1上的内力。
答:F S1=17kN,M1=5.44kN m。
题2-11图2-12 试求如题2-12图所示各梁在指定横截面1,2,3上的内力。
答:(a) F S1=M/2l,M1=M/2,F S2=-M/2l,M2=M0,F S3=0,M1=M0。
(b) F S1=-q0a/3,M1=0,F S2=-q0a/12,M2=-q0a2/4,F S3=-2q0a/3,M1=0。
材料力学(c) F S1=0.75qa,M1=-qa2,F S2=-qa,M2=-qa2,F S3=-qa,M1=0。
(d) F S1=0.5qa,M1=0,F S2=0.5qa,M2=0,F S3=-0.5qa,M1=0。
(e) F S1=-ql,M1=-1.5ql2,F S2=-ql,M2=-0.5ql2,F S3=-ql,M1=-0.5ql2。
(f) F S1=-F,M1=-Fa,F S2=-F,M2=0,F S3=-F,M1=0。
题2-12图2-13 试写出如题2-13图所示各梁的内力方程,并作出内力图。
答:(a) F Smax=qa,|M|max=0.5qa2;(b) F Smax=0.75ql,|M|max=0.25ql2;(c) F Smax=ql,M max=0.5ql2;(d) F Smax=1.25qa,M max=0.75qa2;(e) |F S|max=1.25ql,M max=ql2;(f) |F S|max=1.5ql,|M|max=9ql2/8。
第2章构件的内力分析题2-13图2-14 利用剪力、弯矩与荷载集度之间的微分关系作出题2-14图所示各梁的内力图。
答:(a) F Smax=2ql,M max=ql2;(b) |F S|max=qa,M max=2qa2;(c)|F S|max=7qa/4,M max=49qa2/64; (d) F Smax=1.5qa,M max=3.125qa2;(e) F Smax=ql,|M|max=ql2;(f) F Smax=ql,|M|max=0.5ql2。
题2-14图材料力学2-15 试用奇异函数写出题2-14的内力方程。