导数的四则运算法则
- 格式:ppt
- 大小:241.50 KB
- 文档页数:22
1.2.3 导数的四则运算法则学习目标(1)能利用导数的运算法则和基本初等函数的导数公式求简单函数的导数;(2)理解并掌握复合函数的求导法则.知识导学一、导数的四则运算法则1.函数和(或差)的求导法则若f(x),g(x)是可导的,则(f(x)+g(x))′=f′(x)+g′(x),(f(x)-g(x))′=f′(x)-g′(x).注意:(1)设f(x),g(x)是可导的,则(f(x)±g(x))′=f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两个函数的导数的和(或差).(2)对任意有限个可导函数,有(f1(x)±f2(x)±…±f n(x))′=f1′(x)±f2′(x)±…±f n′(x).2.函数积的求导法则对于可导函数f(x),g(x),有[f(x)g(x)]′=f′(x)·g(x)+f(x)·g′(x).注意:(1)若C为常数,则[Cf(x)]′=C′f(x)+Cf′(x)=0+Cf′(x)=Cf′(x),即[Cf(x)]′=Cf′(x),即常数与函数之积的导数,等于常数乘函数的导数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x),a,b为常数.切忌把[f(x)·g(x)]′记成f′(x)·g′(x).3.函数的商的求导法则对于可导函数f(x),g(x),有[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)g2(x)(g(x)≠0).注意:在两个函数积f(x)g(x)的导数公式中,f′(x)g(x)与g′(x)f(x)之间为“+”号;而两个函数商f(x)g(x)的导数公式中,f′(x)g(x)与f(x)g′(x)之间为“-”号.二、复合函数的求导法则1.复合函数的求导法则一般地,设函数u=φ(x)在点x处有导数u x′=φ′(x),函数y=f(u)在点x的对应点u处有导数y u′=f′(u),则复合函数y=f(φ(x))在点x处也有导数,且y x′=y u′·u x′或f′(φ(x))=f′(u) φ′(x)或d y d x=d y d u·d ud x,即复合函数对自变量的导数,等于已知函数对中间变量的导数乘中间变量对自变量的导数.2.求复合函数的导数的步骤(1)适当选定中间变量,正确分清复合关系;(2)分步求导;(3)把中间变量代回原自变量的函数.整个过程可简记为“分解——求导——回代”.熟练后,可省略中间过程.若遇多重复合,可相应的多次用中间变量.3.求复合函数的导数应处理好以下环节:①中间变量的选择应是基本函数结构;②关键是正确分析函数的复合层次;③一般是从最外层开始,由外及里,一层层地求导;④善于把一部分表达式作为一个整体;⑤最后要把中间变量换成自变量的函数.三、导数计算中的化简技巧有关导数的运算一般要按照导数的运算法则进行,但也不能盲目地套用公式,要仔细观察函数式的结构特点,适当地对函数式中的项进行“合”与“拆”,进行优化组合,有的放矢,但每部分易于求导,然后运用导数运算法则进行求解.在实施化简时,首先必须注意变换的等价性,避免运处算失误.探究点一 导数的四则运算例1 求下列函数的导数.(1)y =x 4-3x 2-5x +6;(2)y =(x +1)(x +2)(x +3);(3)y =x -1x +1; (4)y =2x +1x 2+x 22x +1.归纳总结(1)熟练掌握和运用函数的和、差、积、商的导数公式,并进行简单、合理的运算,注意运算中公式运用的准确性.(2)灵活运用公式,化繁为简,如小题(2)这种类型,展开化为和、差的导数比用积的导数简单容易.练一练1.求下列函数的导数:(1)y=x4-3x3+2x2-4x-1;(2)y=x cos x;(3)y=sin2x;(4)y=tan x+cot x;(5)y=x2ln x+1log a x(a>0且a≠1,x>0).探究点二复合函数的导数例2 求下列函数的导数.(1)y=sin3x;(2)y=3-x.方法总结复合函数的求导需注意以下问题:(1)分清复合函数的复合关系,看它是由哪些基本初等函数复合而成的,适当选定中间变量;(2)分步计算的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的导数.如(sin2x )′=2cos2x ,而(sin2x )′≠cos2x ;(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数;(4)复合函数的求导熟练后,中间步骤可省略不写.练一练2.求下列函数的导数:(1)y =cos ⎝⎛⎭⎫3x -π6; (2)y =ln(2x 2+3x +1).探究点三 求导法则的综合应用例3 求和S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N +).方法总结 本题事实上可用数列中的错位相减法求和解决,若利用导数转化,则可成为等比数列求和问题,从而简化运算.求解时要注意需对x 是否等于1分类讨论.练一练3.求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程.当堂检测1.求函数y =x 3·cos x 的导数.解:y ′=(x 3)′cos x +x 3·(cos x )′=3x 2cos x -x 3sin x .2.求y =x 2sin x的导数.3.求复合函数y =(2x +1)5的导数.4.函数f (x )=(x +1)(x 2-x +1)的导数为( )A .x 2-x +1B .(x +1)(2x -1)C .3x 2D .3x 2+15、已知函数f (x )=x (x -1)(x -2)·…·(x -2015),则f ′(0)=________.课堂小结导数的四则运算法则⎩⎪⎨⎪⎧ 函数和差积商的求导法则掌握复合函数的求导法则理解参考答案探究点一 导数的四则运算例1 解:(1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′+(6)′=4x 3-6x -5.(2)解法1:y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.解法2:∵y =x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.(3)解法1:y ′=⎝ ⎛⎭⎪⎫x -1x +1′=(x -1)′(x +1)-(x -1)(x +1)′(x +1)2 =(x +1)-(x -1)(x +1)2=2(x +1)2. 解法2:∵y =1-2x +1,∴y ′=⎝⎛⎭⎫1-2x +1′=⎝⎛⎭⎫-2x +1′ =-(2)′(x +1)-2(x +1)′(x +1)2=2(x +1)2. (4)y ′=⎝⎛⎭⎫2x +1x 2′+⎝⎛⎭⎫x 22x +1′=(2x +1)′x 2-(2x +1)(x 2)′x 4+(x 2)′(2x +1)-x 2(2x +1)′(2x +1)2=2x 2-4x 2-2x x 4+4x 2+2x -2x 2(2x +1)2=-2x -2x 3+2x 2+2x (2x +1)2. 练一练1.解:(1)y ′=4x 3-9x 2+4x -4.(2)y ′=x ′cos x +x (cos x )′=cos x -x sin x .(3)y ′=(sin2x )′=(2sin x cos x )′=(2sin x )′cos x +2sin x (cos x )′=2cos 2x -2sin 2x =2cos2x .(4)y ′=(tan x +cot x )′=⎝⎛⎭⎫sin x cos x ′+⎝⎛⎭⎫cos x sin x ′=cos 2x +sin 2x cos 2x +-sin 2x -cos 2x sin 2x =1cos 2x -1sin 2x=-cos2x cos 2x sin 2x =-4cos2x sin 22x . (5)y ′=2x ln x +x 2·1x +0-1x ln a log 2a x=2x ln x +x -ln a x ln 2x . 探究点二 复合函数的导数例2 解:(1)设y =sin u ,u =3x ,则y ′x =y ′u ·u ′x =cos u ·3=3cos3x .(2)设y =u ,u =3-x ,则y ′x =y ′u ·u ′x =12u ·(-1)=-123-x. 练一练 2.解:(1)设y =cos u ,u =3x -π6, ∴y ′x =-sin u ·3=-3sin ⎝⎛⎭⎫3x -π6. (2)设y =ln u ,u =2x 2+3x +1,∴y ′x =y ′u ·u ′x =1u ·(4x +3)=4x +32x 2+3x +1. 探究点三 求导法则的综合应用例3 解:当x =1时,S n =1+2+…+n =n (n +1)2; 当x ≠1时,∵x +x 2+x 3+…+x n =x (x n -1)x -1, ∴S n =1+2x +3x 2+…+nx n -1=(x +x 2+x 3+…+x n )′=(x n +1-x x -1)′ =(x n +1-x )′(x -1)-(x n +1-x )(x -1)′(x -1)2=1-(n +1)x n +nx n +1(x -1)2. 练一练3.解:设P (x 0,y 0)为切点,则切线斜率为k =y ′|x =x 0=3x 20-2.故切线方程为y -y 0=(3x 20-2)(x -x 0). ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0. ② 又∵(1,-1)在切线上,∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12. 故所求的切线方程为y +1=x -1或y +1=-54(x -1), 即x -y -2=0或5x +4y -1=0.当堂检测1.解:y ′=(x 3)′cos x +x 3·(cos x )′=3x 2cos x -x 3sin x .2.解:y ′=(x 2)′sin x -x 2·(sin x )′sin 2x=2x sin x -x 2cos x sin 2x. 3.解:∵函数y =(2x +1)5由函数y =u 5和u =2x +1复合而成, ∴y ′x =y ′u ·u ′x =(u 5)′u ·(2x +1)′x=5u 4·2=5(2x +1)4·2=10(2x +1)4,即y ′x =10(2x +1)4.4.【答案】 C【解析】 因为y =(x +1)(x 2-x +1)=x 3+1, 所以y ′=(x 3+1)′=3x 2,故选C.5.【答案】 -(1×2×3× (2015)【解析】 依题意,设g (x )=(x -1)(x -2)·…·(x -2015), 则f (x )=x ·g (x ),f ′(x )=[x ·g (x )]′=g (x )+x ·g ′(x ), 故f ′(0)=g (0)=-(1×2×3×…×2015).。
导数的四则运算证明本文讲解了求导数四则运算如何进行证明,包括加法运算、减法运算、乘法运算和除法运算。
一、加法运算求解导数的加法运算是基于拉格朗日准则:“两个曲线的切线的斜率的和等于这两条曲线的斜率的和”,可以通过它来进行证明。
如果有两个函数y1=f1(x),y2=f2(x),则其和函数y1+y2=f1(x)+f2(x),证明的形式如下:∂/∂x(f1(x)+f2(x))=∂/∂x(f1(x))+∂/∂x(f2(x))即求得,两个函数的导数的和等于这两个函数之和的导数二、减法运算假设有两个函数y1=f1(x),y2=f2(x),减法运算后y1-y2=f1(x)-f2(x),求其导数的证明如下:∂/∂x(f1(x)-f2(x))=∂/∂x(f1(x))-∂/∂x(f2(x))即求得,两个函数的导数的差等于这两个函数之差的导数三、乘法运算假设有两个函数f1(x),f2(x),它们的乘积函数为f1(x)×f2(x),对其导数求解如下:∂/∂x(f1(x)×f2(x))=f1(x)×∂/∂x(f2(x))+∂/∂x(f1(x))×f2(x)即求得,两个函数的导数的乘积等于这两个函数之乘积的导数四、除法运算假设有两个函数f1(x),f2(x),它们的积除函数为f1(x)÷f2(x),对其导数求解如下:∂/∂x(f1(x)÷f2(x))=[(f2(x))×∂/∂x(f1(x))-(f1(x))×∂/∂x(f2(x))]÷(f2(x))^2即求得,两个函数的导数的商等于这两个函数之商的导数以上就是求导数四则运算的证明,可以看出,四则运算都满足拉格朗日准则,即函数的性质不变,斜率的和等于总斜率。
导数的基本公式和四则运算法则导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
导数的基本公式和四则运算法则是学习导数的基础,也是解决导数相关问题的重要工具。
首先,我们来看导数的基本公式。
对于函数f(x),它在点x处的导数可以用以下公式表示:f'(x) = lim(h->0) [f(x+h) f(x)] / h.这个公式描述了函数在点x处的变化率,也就是函数曲线在该点的切线斜率。
通过这个公式,我们可以求得函数在任意点的导数值,从而描绘出函数的变化规律。
接下来,我们来看四则运算法则在导数中的应用。
四则运算法则包括加法、减法、乘法和除法。
在导数的计算中,我们可以利用这些法则简化复杂函数的导数计算。
对于两个函数f(x)和g(x),它们的和、差、积和商的导数计算规则如下:1. 和的导数,(f+g)'(x) = f'(x) + g'(x)。
2. 差的导数,(f-g)'(x) = f'(x) g'(x)。
3. 积的导数,(fg)'(x) = f'(x)g(x) + f(x)g'(x)。
4. 商的导数,(f/g)'(x) = (f'(x)g(x) f(x)g'(x)) / g(x)^2。
利用四则运算法则,我们可以将复杂函数的导数计算转化为简单函数的导数计算,从而更方便地求得函数的导数值。
在实际问题中,导数的基本公式和四则运算法则是非常有用的工具。
它们可以帮助我们分析函数的变化规律,解决最优化问题,以及研究曲线的性质。
因此,掌握导数的基本公式和四则运算法则对于理解微积分的重要性不言而喻。
希望通过本文的介绍,读者对导数的基本概念有了更清晰的认识,也能够更加灵活地运用导数的基本公式和四则运算法则解决实际问题。
导数的运算公式和法则导数是微积分中的重要概念,用于描述函数的变化率。
在求导的过程中,有一些常用的运算公式和法则,可以帮助我们简化计算。
下面是一些常用的导数运算公式和法则。
一、基本导数公式1. 常数导数法则:对于任意常数c,其导数为0,即d/dx(c) = 0。
2. 幂函数导数法则:对于任意实数n,幂函数y = x^n的导数为d/dx(x^n) = nx^(n-1)。
特别地,当n = 0时,常数函数y = c的导数为d/dx(c) = 0。
3. 指数函数导数法则:对于底数为常数a的指数函数y = a^x,其导数为d/dx(a^x) = ln(a) * a^x。
这个法则也适用于自然对数中的指数函数y = e^x,其导数为d/dx(e^x) = e^x。
4. 对数函数导数法则:对于底数为常数a的对数函数y = log_a(x),其导数为d/dx(log_a(x)) = 1 / (x * ln(a))。
特别地,当底数为自然常数e时,对数函数变为自然对数函数y =ln(x),其导数为d/dx(ln(x)) = 1 / x。
5.三角函数导数法则:(1)正弦函数的导数为d/dx(sin(x)) = cos(x)。
(2)余弦函数的导数为d/dx(cos(x)) = -sin(x)。
(3)正切函数的导数为d/dx(tan(x)) = sec^2(x)。
(4)余切函数的导数为d/dx(cot(x)) = -csc^2(x)。
(5)正切函数和余切函数的导数也可以写成d/dx(tan(x)) = 1 /cos^2(x)和d/dx(cot(x)) = -1 / sin^2(x)。
6.反三角函数导数法则:(1)反正弦函数的导数为d/dx(arcsin(x)) = 1 / sqrt(1 - x^2)。
(2)反余弦函数的导数为d/dx(arccos(x)) = -1 / sqrt(1 - x^2)。
(3)反正切函数的导数为d/dx(arctan(x)) = 1 / (1 + x^2)。
导数运算法则加减乘除一、导数的定义导数是微积分中重要的概念,它主要用于表达函数在某一点处的变化速度。
可以用来研究函数运动规律,反映函数曲线的变化趋势。
二、导数的运算1、加法运算规则:设函数f(x)=f1(x)+f2(x),其中有f(x)在x处可导,则有f(x)的导数:f'(x)=f1'(x)+f2'(x)2、减法运算规则:设函数f(x)=f1(x)-f2(x),其中有f(x)在x处可导,则有f(x)的导数:f'(x)=f1'(x)-f2'(x)3、乘法运算规则:设函数f(x)=f1(x)*f2(x),其中有f(x)在x处可导,则有f(x)的导数:f'(x)=f1'(x)*f2(x)+f2'(x)*f1(x)4、除法运算规则:设函数f(x)=f1(x)/f2(x),其中有f(x)在x处可导,则有f(x)的导数:f'(x)=(f1'(x)*f2(x)-f2'(x)*f1(x))/(f2(x)*f2(x))三、导数运算法则的应用导数运算法则广泛应用于几何、物理学、经济学、管理学等多学科,其应用范围非常广泛。
例如,在几何学中,用来描述曲线的凹凸性,在物理学中,可以用来解析运动物体的位移关系,也可以用来研究二者之间的力学原理。
在经济学中,导数法则可以用来研究经济中的边际效应,以及经济变量之间的关系。
在管理学中,可以应用导数法则进行管理绩效的诊断,以便更好地进行企业管理。
四、总结导数具有重要的概念价值和重要的应用价值,可以用来描述函数的变化,反映曲线的变化趋势。
导数运算法则几乎可以应用于各学科领域,可以使解决问题的过程更有效率。