(完整版)导数的四则运算法则
- 格式:doc
- 大小:215.26 KB
- 文档页数:5
导数的四则运算证明本文讲解了求导数四则运算如何进行证明,包括加法运算、减法运算、乘法运算和除法运算。
一、加法运算求解导数的加法运算是基于拉格朗日准则:“两个曲线的切线的斜率的和等于这两条曲线的斜率的和”,可以通过它来进行证明。
如果有两个函数y1=f1(x),y2=f2(x),则其和函数y1+y2=f1(x)+f2(x),证明的形式如下:∂/∂x(f1(x)+f2(x))=∂/∂x(f1(x))+∂/∂x(f2(x))即求得,两个函数的导数的和等于这两个函数之和的导数二、减法运算假设有两个函数y1=f1(x),y2=f2(x),减法运算后y1-y2=f1(x)-f2(x),求其导数的证明如下:∂/∂x(f1(x)-f2(x))=∂/∂x(f1(x))-∂/∂x(f2(x))即求得,两个函数的导数的差等于这两个函数之差的导数三、乘法运算假设有两个函数f1(x),f2(x),它们的乘积函数为f1(x)×f2(x),对其导数求解如下:∂/∂x(f1(x)×f2(x))=f1(x)×∂/∂x(f2(x))+∂/∂x(f1(x))×f2(x)即求得,两个函数的导数的乘积等于这两个函数之乘积的导数四、除法运算假设有两个函数f1(x),f2(x),它们的积除函数为f1(x)÷f2(x),对其导数求解如下:∂/∂x(f1(x)÷f2(x))=[(f2(x))×∂/∂x(f1(x))-(f1(x))×∂/∂x(f2(x))]÷(f2(x))^2即求得,两个函数的导数的商等于这两个函数之商的导数以上就是求导数四则运算的证明,可以看出,四则运算都满足拉格朗日准则,即函数的性质不变,斜率的和等于总斜率。
§ 4 导数的四则运算法则、教学目标: 1知识与技能掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。
2.过程与方法通过用定义法求函数 f ( x) =x+x2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。
3.情感、态度与价值观培养学生由特别到一般的思维方法去探索结论,培养学生实验一一观察一一归纳一一抽象的数学思维方法。
_教学重点:函数和、差、积、商导数公式的发掘与应用、教学难点:导数四则运算法则的证明三教学方法:探析归纳,讲练结合、四教学过程、(-」)、复习:导函数的概念和导数公式表。
1•导数的定义:设函数y f (x)在x x o处附近有定义,如果x 0时,y与x的比」(也叫函数的平均变化率)有极限即」无限趋近于某个常数,我们把这个极限值叫做x x函数y f (x)在x X。
处的导数,记作y/x,,即f/(x o) lim ——x)―f x 0 v2•导数的几何意义:是曲线y f (x)上点(x o, f (x o))处的切线的斜率.因此,如果y f (x)在点X。
可导,则曲线y f (x)在点(X。
,f (x。
))处的切线方程为y f (x o) f/(x o)(x X。
).3.导函数(导数):如果函数y f (x)在开区间(a,b)内的每点处都有导数,此时对于每一个x (a,b),都对应着一个确定的导数f/(x),从而构成了一个新的函数 f /(x),称这个函数f/(x)为函数y f (x)在开区间内的导函数,简称导数,4.求函数y f(x)的导数的一般方法:(1)求函数的改变量y f(x x) f(x). (2)求平均变化率—yf(x x) f(x) (3)取极限,得导数y/= f (x) 叽~x5.常见函数的导数公式: C' 0 ; (x n)' nx n(二)、探析新课两个函数和(差)的导数等于这两个函数导数的和(差) ,即[f(x) g(x)] f (x) g (x) [f (x) g(x)] f (x) g (x)证明:令y f(x) u(x) v(x),y [u(x x) v(x x)] [u(x) v(x)][u(x x) u(x)] [v(x x) v(x)] ulim x 0 limxlimx即[u(x) v(x)]' u (x) v例1:求下列函数的导数:2 x(1) y x 2 ;(2) In (3) (x21)(x 1);(4) 解: (1) y (x2 2x) (x2) (2x) 2x 2x l n2(2) In x) (、x) (Inx)(x21)(x 1) (x3x2x 1)(x2) (x1) (x2)12、x 。
§4 导数的四则运算法则一、教学目标: 1.知识与技能掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线. 2。
过程与方法通过用定义法求函数f (x )=x+x 2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f (x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则. 3。
情感、态度与价值观培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳-—抽象的数学思维方法。
二、教学重点:函数和、差、积、商导数公式的发掘与应用教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程(一)、复习:导函数的概念和导数公式表。
1.导数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/2. 导数的几何意义:是曲线)(x f y =上点()(,00x f x )处的切线的斜率因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为)(()(00/0x x x f x f y -=-3. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,4. 求函数)(x f y =的导数的一般方法:(1)求函数的改变量()(x f x x f y -∆+=∆(2)求平均变化率xx y ∆=∆∆ (3)取极限,得导数/y =()f x '=xyx ∆∆→∆0lim5。
导数的四则运算法则1.求和规则:如果f(x)和g(x)都是可导函数,则它们的和的导数等于各自函数的导数之和。
即:(f+g)'(x)=f'(x)+g'(x)2.差规则:如果f(x)和g(x)都是可导函数,则它们的差的导数等于各自函数的导数之差。
即:(f-g)'(x)=f'(x)-g'(x)3.乘法规则:如果f(x)和g(x)都是可导函数,则它们的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数。
即:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)4.除法规则:如果f(x)和g(x)都是可导函数且g(x)不等于零,则它们的商的导数等于第一个函数的导数乘以第二个函数减去第一个函数乘以第二个函数的导数,再除以第二个函数的平方。
即:(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2这些四则运算法则可以用于计算复杂函数的导数。
下面通过一些简单的例子来说明这些规则的具体应用。
例子1:计算函数f(x)=x^3+2x^2-3x+1的导数。
解:对于这个函数,可以按照求和规则和乘法规则分别对各项进行求导。
f'(x)=(x^3)'+(2x^2)'+(-3x)'+(1)'=(3x^2)+(4x)+(-3)=3x^2+4x-3例子2:计算函数g(x)=(2x^2+3x-1)/(x+2)的导数。
解:应用乘法规则和除法规则对该函数进行求导。
g'(x)=((2x^2+3x-1)'*(x+2)-(2x^2+3x-1)*(x+2)')/(x+2)^2=(((4x+3)*(x+2))-((2x^2+3x-1)*1))/(x+2)^2=(4x^2+11x+6-2x^2-3x+1)/(x+2)^2=(2x^2+8x+7)/(x+2)^2通过这两个简单的例子,我们可以看到四则运算法则在计算导数中的应用。
导数的四则运算证明1.加法的导数法则证明:设函数f(x)和g(x)都在区间[a,b]上可导,则有:(f(x) + g(x))' = lim_(Δx→0) [f(x + Δx) + g(x + Δx) -(f(x) + g(x))]/Δx由于f(x)和g(x)都在[a,b]上可导,根据可导的定义,有:f'(x) = lim_(Δx→0)[f(x + Δx) - f(x)]/Δxg'(x) = lim_(Δx→0)[g(x + Δx) - g(x)]/Δx我们可以将其展开并化简得到:(f(x) + g(x))' = lim_(Δx→0) [f(x + Δx) + g(x + Δx) - f(x) - g(x) + f(x) - f(x + Δx) + g(x) - g(x + Δx)]/Δx根据极限的性质,我们可以将这个式子拆分成多个极限的和:(f(x) + g(x))' = lim_(Δx→0)[f(x + Δx) - f(x)]/Δx +lim_(Δx→0)[g(x + Δx) - g(x)]/Δx即:(f(x)+g(x))'=f'(x)+g'(x)2.减法的导数法则证明:设函数f(x)和g(x)都在区间[a,b]上可导,则有:(f(x) - g(x))' = lim_(Δx→0) [f(x + Δx) - g(x + Δx) -(f(x) - g(x))]/Δx同样,根据可导的定义,有:f'(x) = lim_(Δx→0)[f(x + Δx) - f(x)]/Δxg'(x) = lim_(Δx→0)[g(x + Δx) - g(x)]/Δx将其代入上式得到:(f(x) - g(x))' = lim_(Δx→0) [f(x + Δx) - f(x) - g(x + Δx) + g(x)]/Δx根据极限的性质,我们可以将这个式子拆分成多个极限的和:(f(x) - g(x))' = lim_(Δx→0)[f(x + Δx) - f(x)]/Δx -lim_(Δx→0)[g(x + Δx) - g(x)]/Δx即:(f(x)-g(x))'=f'(x)-g'(x)3.乘法的导数法则证明:设函数f(x)和g(x)都在区间[a,b]上可导,则有:(f(x) * g(x))' = lim_(Δx→0) [(f(x + Δx) * g(x + Δx) -f(x) * g(x))]/Δx根据极限的性质,我们可以将这个式子拆分成多个极限的和:(f(x) * g(x))' = lim_(Δx→0) [f(x + Δx) * g(x + Δx) - f(x) * g(x)]/Δx= lim_(Δx→0) [f(x + Δx) * g(x + Δx) - f(x) * g(x) + f(x+ Δx) * g(x) - f(x + Δx) * g(x)]/Δx应用极限的性质进行化简,得到:(f(x) * g(x))' = lim_(Δx→0)[f(x + Δx) - f(x)]/Δx * g(x)+ f(x) * lim_(Δx→0)[g(x + Δx) - g(x)]/Δx即:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)4.除法的导数法则证明:设函数f(x)和g(x)都在区间[a,b]上可导,并且g(x)≠0,则有:(f(x) / g(x))' = lim_(Δx→0) [(f(x + Δx) / g(x + Δx) -f(x) / g(x))]/Δx同样,根据可导的定义,有:f'(x) = lim_(Δx→0)[f(x + Δx) - f(x)]/Δxg'(x) = lim_(Δx→0)[g(x + Δx) - g(x)]/Δx将其代入上式得到:(f(x) / g(x))' = lim_(Δx→0) [(f(x + Δx) * g(x) - f(x) *g(x + Δx))/(Δx * g(x) * g(x + Δx))]根据极限的性质,我们可以将这个式子拆分成多个极限的和:(f(x) / g(x))' = [lim_(Δx→0) [f(x + Δx) - f(x)]/Δx * g(x) - f(x) * lim_(Δx→0) [g(x + Δx) - g(x)]/Δx] / g(x)^2即:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g(x)^2综上所述,我们证明了导数的四则运算法则。
§4 导数的四则运算法则一、教学目标: 1.知识与技能掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。
2.过程与方法通过用定义法求函数f (x )=x+x 2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。
3.情感、态度与价值观培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。
二、教学重点:函数和、差、积、商导数公式的发掘与应用教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程(一)、复习:导函数的概念和导数公式表。
1.导数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/2. 导数的几何意义:是曲线)(x f y =上点()(,00x f x )(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为)(()(00/0x x x f x f y -=-3. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,4. 求函数)(x f y =的导数的一般方法:(1)求函数的改变量()(x f x x f y -∆+=∆(2)求平均变化率xx y ∆=∆∆(3)取极限,得导数/y =()f x '=xyx ∆∆→∆0lim5. 常见函数的导数公式:0'=C ;1)'(-=n n nx x(二)、探析新课两个函数和(差)的导数等于这两个函数导数的和(差),即)()(])()([)()(])()([x g x f x g x f x g x f x g x f '-'='-'+'='+证明:令)()()(x v x u x f y ±==,)]()([)]()([x v x u x x v x x u y ±-∆+±∆+=∆v u x v x x v x u x x u ∆±∆=-∆+±-∆+=)]()([)]()([,∴x v x u x y ∆∆±∆∆=∆∆,xv x u x v x u x y x x x x ∆∆±∆∆=⎪⎭⎫⎝⎛∆∆±∆∆=∆∆→∆→∆→∆→∆0000lim lim lim lim 即 )()()]()(['''x v x u x v x u ±=±. 例1:求下列函数的导数:(1)xx y 22+=; (2)x x y ln -=; (3))1)(1(2-+=x x y ; (4)221x xxy +-=。
解:(1)2ln 22)2()()2(22xxxx x x y +='+'='+='。
(2)xxx x x x y 121)(ln )()ln (-='-'='-='。
(3)[]123)1()()()()1()1)(1(223232+-='-'+'-'='-+-='-+='x x x x x x x x x x y 。
()x xx x x x x x x x x x x x x x x x y 21222)()()(111)4(23232122122222++-=++-='+'-'='+-='⎪⎭⎫⎝⎛+-='⎪⎭⎫ ⎝⎛+-='------例2:求曲线xx y 13-=上点(1,0)处的切线方程。
解:()22331311x x x x x x y +='⎪⎭⎫ ⎝⎛-'='⎪⎭⎫⎝⎛-='。
将1=x 代入导函数得 41113=+⨯。
即曲线xx y 13-=上点(1,0)处的切线斜率为4,从而其切线方程为 )1(40-=-x y ,即44-=x y 。
设函数)(x f y =在0x 处的导数为)(0x f ',2)(x x g =。
我们来求)()()(2x f x x g x f y ==在0x 处的导数。
[])()()()()()()()]()([)()()()(02020002002020002002020x f xx x x x x f x x f x x xx f x x x x f x x f x x xx f x x x f x x x y ∆-∆++∆-∆+∆+=∆-∆++-∆+∆+=∆-∆+∆+=∆∆令0→∆x ,由于 20200)(lim x x x x =∆+→∆)()()(lim0000x f xx f x x f x '=∆-∆+→∆0202002)(lim x xx x x x =∆-∆+→∆ 知)()()(2x f x x g x f y ==在0x 处的导数值为)(2)(00020x f x x f x +'。
因此)()()(2x f x x g x f y ==的导数为)()()(22x f x x f x '+'。
一般地,若两个函数)(x f 和)(x g 的导数分别是)(x f '和)(x g ',我们有)()()()()()()()()()()(])()([2x g x g x f x g x f x g x f x g x f x g x f x g x f '-'='⎥⎦⎤⎢⎣⎡'+'=' 特别地,当k x g =)(时,有)(])([x f k x kf '='例3:求下列函数的导数:(1)xe x y 2=; (2)x x y sin =; (3)x x y ln =。
解:(1)xxxxxxe x x e x xe e x e x e x y )2(2)()()(22222+=+='+'='=';(2)x x xx x x x x x x y cos 2sin )(sin sin )()sin (+='+'='=';(3)1ln 1ln 1)(ln ln )()ln (+=⋅-⋅='-'='='x xx x x x x x x x y 。
例4:求下列函数的导数:(1)xxy sin =; (2)x x y ln 2=。
解:(1)222sin cos 1sin cos )(sin )(sin sin x x x x x x x x x x x x x x x y -=⋅-⋅='⋅-⋅'='⎪⎭⎫ ⎝⎛='; (2)xx x xx x x x x x x x x x x y 2222222ln )1ln 2(ln 1ln 2)(ln )(ln ln )(ln -=⋅-⋅='⋅-⋅='⎪⎪⎭⎫ ⎝⎛='(三)、练习:课本44P 练习:1、2. 课本46P 练习1.(四)课堂小结:本课要求:1、了解两个函数的和、差、积、商的求导公式;2、会运用上述公式,求含有和、差、积、商综合运算的函数的导数;3、能运用导数的几何意义,求过曲线上一点的切线。
)()(])()([)()(])()([x g x f x g x f x g x f x g x f '-'='-'+'='+ 2()()()()()[()()]()()()()()()f x f x g x f x g x f x g x f x g x f x g x g x g x '''⎡⎤-'''=+=⎢⎥⎣⎦(五)、作业:课本47P 习题2-4:A 组2、3 B 组2五、教后反思:本节课成功之点:(1) 从特殊函数出发,利用已学过的导数定义来求f (x )=x+x 2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明 (2) 由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。
(3)通过上述的教学过程,让学生自己探索求法法则,总结出求导公式培养了学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。
不足之处:学生做练习的时间太短,对于公式还没有时间去练习运用,这样有可能导致学生对积、商的导数公式不是很熟练掌握。