卫星轨道基础-坐标系统2分解
- 格式:ppt
- 大小:1.09 MB
- 文档页数:16
卫星导航定位常用参数和常用公式1、常用参考框架的几何和物理参数1.1 ITRFyy 主要的大地测量常数长半轴a=6.3781366×106m;地球引力常数(含大气层)GM=3.986004418×1014 m3/s2;地球动力因子J2=1.0826359×10-3;地球自转角速度ω=7.292115×10-5 rad/s。
扁率1/f =298.25642;椭球正常重力位U0=6.26368560×107 m2/s2;γ=9.7803278 m/s2;赤道正常重力e光速c=2.99792458×108 m/s。
1.2 GTRF主要的大地测量常数长半轴a=6.37813655×106 m;地球引力常数GM=3.986004415×1014 m3/s2;地球动力因子J2=1.0826267×10-3;扁率1/f =298.25769。
1.3 WGS84(Gwwww)主要的大地测量常数长半轴a=6.3781370×106 m;地球引力常数(含大气层)GM=3.986004418×1014 m3/s2;地球自转角速度ω=7.292115×10-5 rad/s。
扁率1/f =298.257223563;椭球正常重力位U0=62636860.8497 m2/s2;γ=9.7803267714m/s2;赤道正常重力e短半轴b=6356752.3142m;引力位二阶谐系数C=-484.16685×10-6;2,0第一偏心率平方2e=0.00669437999013;e'=0.006739496742227。
第二偏心率平方21.4 PZ90 主要的大地测量常数长半轴a=6.378136×106m;地球引力常数GM=3.9860044×1014 m3/s2;fM=3.5×108 m3/s2;地球大气引力常数a地球自转角速度ω=7.292115×10-5 rad/s。
1. 静态相对定位中,在卫星之间求一次差可有效消除或削弱的误差项为:AA. 卫星钟差B. 电离层延迟误差C. 星历误差D. 接收机钟差2. 什么是单差、双差和三差,它们各有什么特点?答:将直接观测值相减,所获得的结果被当做虚拟观测值,称为载波相位观测值的单差。
包括在卫星间求一次差,在接收机间求一次差,在不同历元间求一次差三种求差法。
在载波相位测量的一次求差基础上继续求差所获得的结果被当成虚拟观测值,称为双差。
常见的二次求差也有三种:在接收机和卫星间求二次差;在接收机和历元间求二次差;在卫星和历元间求二次差。
二次差仍可继续求差,称为求三次差。
只有一种三次差,即在卫星、接收机和历元间求三次差。
考虑到GPS定位的误差源,实际上广为采用的求差法有三种:在接收机间求一次差,在接收机和卫星间求二次差,在卫星、接收机和历元间求三次差。
他们各自的特点分别是:1)在接收机间求一次差:可以消除卫星钟差;接收机钟差参数数量减少,但并不能消除接收机钟差;卫星星历误差、电离层误差、对流层延迟等的影响也可得以减弱。
2)在接收机和卫星间求二次差:卫星钟差被消去;接收机相对钟差也被消去;在每个历元中双差观测方程的数量均比单差观测方程少一个;参数较少用一般的计算机就可胜任数据处理工作。
3)在卫星、接收机和历元间求三次差:在二次差的基础上进一步消去了整周模糊度参数,但这并没有多少实际意义;三差解是一种浮点解;三差方程的几何强度较差。
一般在GPS测量中广泛采用双差固定解而不采用三差解,通常仅被当做较好的初始值,或用于解决整周跳变的探测与修复、整周模糊度的确定等问题。
3.为什么在一般的GPS定位中广泛采用双差观测值?答:由于双差观测存在以下的优点:消去了卫星钟差;接收机相对钟差也被消去;在每个历元中双差观测方程的数量均比单差观测方程少一个;参数大大减少,用一般的计算机就可胜任数据处理工作。
4.为什么在静态相对定位载波测量中广泛采用求差法?答:在载波测量中,多余参数的数量往往非常多,这样数据处理的工作量十分庞大,对计算机及作业人员的素质也会提出较高的要求。
GNSS复习整理资料GNSS复习总结第⼀章绪论(⼀)GPS的组成部分(1)空间部分——GPS卫星星座(2)地⾯控制部分——地⾯监控系统(3)⽤户部分——GPS信号接收机、⽤户、数据处理相关内容(⼆)各部分功能(1)GPS卫星的基本功能①.接收和存储由地⾯监控站发来的导航信息,接收并执⾏监控站的控制指令②.卫星上设有微处理机,进⾏部分必要的数据处理⼯作③.通过星载的⾼精度原⼦钟(铯钟和铷钟)提供精密的时间标准④.向⽤户发送定位信息⑤.在地⾯监控站的指令下,通过推进器调整卫星的姿态和启⽤备⽤卫星。
(2)主控站主要任务①编算卫星星历、卫星钟差和⼤⽓修正参数,并传⼊注⼊站;②提供全球定位系统的时间标准③调整偏离轨道的卫星④启⽤备⽤卫星以代替失效的卫星(3)监控站的作⽤①接收卫星信号②监测卫星的⼯作状态(4)注⼊站的作⽤将控制站编算的卫星星历和卫星钟的改正数等注⼊相应的卫星存储系统(5)接收信号机的作⽤接收GPS卫星发射的⽆线电信号,以获取必要的定位信息及观测量,并经数据处理⽽完成⼯作。
(6)GPS的组成部分天线、信号处理、控制显⽰、记录装置、电源(7)卫星定位技术的特点①定位精度⾼②全天候测量③⾼效率测量④多功能、⽤途⼴⑤易操作(8)GNSS技术的应⽤①⼤地测量②⼯程测量③变形监测④海洋测量⑤摄影测量⑥地形与地籍测量⑦农业、渔业和林业⑧⼤⽓研究⑨资源、环境检测和野外调查⑩移动通信11其他科学第⼆章坐标系统和时间系统(⼀)坐标系统的种类①空固坐标系:与地球⾃转⽆关、在空间固定的坐标系统②地固坐标系:与地球体相固连的坐标系统(⼆)天球坐标系(1)天球:天⽂学中为便于研究天体的位置和运动⽽引进的假想圆球⾯。
(2)天极:地球⾃转的中⼼轴线简称地轴,将其延伸就是天轴,天轴与天球的交点称为天极。
(3)天球⾚道:通过地球质⼼M与天轴垂直的平⾯称为天球⾚道⾯,天球⾚道⾯与天球相交的⼤圆就称为天球⾚道(4)天球⼦午圈:包含天轴并通过地球上任⼀点的平⾯称为天球⼦午⾯,天球⼦午⾯与天球相交的⼤圆称为天球⼦午圈。
卫星轨道动⼒学数值计算⽬录1星历计算的时间和坐标系统 (2)1.1 有关的时间系统与坐标系统 (2)1.1.1 时间系统及其换算 (2)1.1.2 坐标系统及其换算 (4)1.2 计算单位和有关常数 (7)2 轨道动⼒学计算的基本数学模型 (12)2.1 ⼆体问题 (12)2.2 地球⾮球形引⼒摄动 (12)2.3 ⽇、⽉摄动 (15)2.4 太阳直接辐射压摄动 (16)2.5 地球固体潮摄动 (19)2.6 ⼤⽓阻⼒摄动 (19)2.7 Y轴偏差加速度摄动 (20)2.8 巡航姿态控制动⼒摄动 (20)2.9 其它摄动影响 (21)附录:⽇⽉位置计算 (21)3 轨道计算⽅法 (24)3.1 Runge_Kutta积分法 (24)3.2 Adams_Cowell积分 (25)3.3 轨道计算 (27)3.4 星历的快速插值 (28)4 轨道根数与位置⽮量、速度⽮量的关系 (32)4.1 由位置⽮量和速度⽮量计算轨道根数 (32)4.2 由轨道根数计算位置⽮量和速度⽮量 (33)1星历计算的时间和坐标系统1.1 有关的时间系统与坐标系统轨道计算过程重要涉及到不同的时间系统和坐标系统,下⾯将空间战场环境系统中所涉及到的时间系统和坐标系统进⾏定义,并说明各系统之间的相互关系。
⼀般情况下,仿真系统采⽤的是TDT 时间系统和J2000地⼼惯性坐标系。
1.1.1 时间系统及其换算在轨道计算中,时间是独⽴变量。
但是,在计算不同的物理量时,却使⽤不同的时间系统。
例如:在计算恒星时⽤世界时UT1;定位解算时采⽤GPS 时GPST ;岁差和章动量的计算采⽤TDB 时等。
所以必须清楚各时间系统的定义和各时间系统之间的转换,下⾯给出各种时间系统的定义及它们之间的转换公式。
格林尼治恒星时格林尼治恒星时为春分点对格林尼治平天⽂⼦午⾯的时⾓。
由于岁差、章动原因,它由格林尼治真恒星时(GAST )和平恒星时(GMST )之分。
RTK基础知识RTK作为现代化测量中的测绘仪器,已经非常普及.RTK在测量中的优越性也是不言而喻.为了能让RTK的优越性能在使用中充分的发挥出来,为了能让RTK使用人员能灵活的应用RTK,我认为R TK使用人员必须了解以下的基本知识:1.GPS的概念及组成GPS(Global Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时的三维导航定位和测速;另外,利用该系统,用户还能够进行高精度的时间传递和高精度的精密定位。
GPS计划始于1973年,已于1994年进入完全运行状态(FOC[2])。
GPS的整个系统由空间部分、地面控制部分和用户部分所组成:空间部分GPS的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。
这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。
卫星的运行周期约为12恒星时。
每颗GPS工作卫星都发出用于导航定位的信号。
GPS用户正是利用这些信号来进行工作的。
控制部分GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。
主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星中去;同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。
监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwa jalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去.用户部分GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。