圆周运动的临界条件
- 格式:doc
- 大小:117.50 KB
- 文档页数:2
圆周运动的临界问题结论总结圆周运动的临界问题结论总结在物理学中,圆周运动是一种非常重要的运动形式,特别是在机械运动、天体运动等方面有着广泛的应用。
而圆周运动的临界问题则是圆周运动中的一个极为重要的问题,它在实践中有着非常广泛的应用。
通过对圆周运动的临界问题进行总结,我们可以更好地理解这一重要的物理概念。
1. 圆周运动的基本概念圆周运动是物体在圆周轨道上运动的一种形式,它在自然界和工程技术中有着广泛的应用。
在圆周运动中,物体不断地向心加速,这使得它能够绕着圆周轨道运动。
2. 临界问题的概念所谓圆周运动的临界问题,是指在圆周运动当中,当增大或减小某个因素(比如转速、半径等)时,会引发系统性质的变化,甚至改变运动的状态的问题。
临界问题的研究对于理解圆周运动和应用于实际中具有十分重要的意义。
3. 临界问题的实际意义临界问题在现实生活中有着广泛的应用,比如在汽车转弯时的侧倾问题、工程中的旋转机械的稳定性问题等,都与临界问题有着密切的联系。
研究圆周运动的临界问题不仅可以帮助我们更好地理解物理规律,还能够指导我们更好地应用这些规律进行工程设计。
4. 圆周运动的临界问题结论总结通过对圆周运动的临界问题进行深入研究,我们可以得出一些结论:- 当圆周运动的速度达到一定临界值时,会发生状态的变化,比如从稳定运动到不稳定运动。
- 圆周运动的临界问题受到多种因素的影响,比如半径、转速、质量等,它们之间有着复杂的关系。
- 圆周运动的临界问题不仅存在于理论研究中,也存在于实际生活和工程中。
5. 个人观点和理解从我的个人观点来看,圆周运动的临界问题是一个非常复杂而有趣的物理问题。
通过深入研究和总结,我们可以更好地理解圆周运动的规律,也可以更好地应用这些规律到实际生活和工程中。
我认为,对临界问题的研究还有很多有待探索的地方,希望能够有更多的人投入到这一领域的研究当中。
总结回顾:通过本文的阐述,我们对圆周运动的临界问题有了更深入的认识。
ʏ赵世渭 吕志华当物体从一种特性变化为另一种特性时,发生质的飞跃的转折状态,叫临界状态㊂出现临界状态时,即可理解为 恰好出现 ,也可理解为 恰好不出现 ㊂竖直面内圆周运动的临界问题主要包括绳(环)约束模型㊁杆(管)约束模型和拱桥模型等,下面举例说明㊂一㊁绳(环)约束模型绳(环)约束模型的特点是绳(环)对物体只能产生指向圆心的弹力作用㊂图11.临界条件:在最高点绳(环)对物体恰好没有弹力作用㊂此时重力提供向心力,即m g =m v 2m i nr,解得v m i n =g r (可理解为恰好通过或恰好不通过最高点的速度)㊂2.能够通过最高点的条件:物体在最高点的速度v ȡg r ,绳(环)产生弹力作用㊂3.不能通过最高点的条件:物体在最高点的速度v <g r (实际上物体还没运动到最高点就已经脱离圆周做斜抛运动)㊂ 图2例1 如图2所示,长度均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A ㊁B 两点,A ㊁B 两点间的距离也为L ,重力加速度大小为g ㊂现使小球在竖直面内以A B 连线为轴做圆周运动,当小球在最高点的速率为v 时,两根绳的拉力恰好均为零,则小球在最高点的速率为2v 时,两根绳的拉力大小均为( )㊂A .3m g B .23m gC .3m gD .433m g当两根绳的拉力恰好均为零时,重力提供向心力;当小球在最高点的速率为2v 时,重力和两根绳拉力的合力提供向心力㊂根据等边三角形的几何关系可得,小球做圆周运动的半径r =32L ㊂当小球在最高点的速率为v 时,根据牛顿第二定律得m g =m v2r㊂当小球在最高点的速率为2v 时,设两根绳的拉力大小均为F ,根据牛顿第二定律得m g +2F c o s30ʎ=m(2v )2r㊂联立以上各式解得F =3m g ㊂答案:A解决本题的关键是清楚小球运动到最高点时的临界状态,抓住小球做圆周运动所需向心力的来源,结合牛顿第二定律列式求解㊂二㊁杆(管)约束模型物体在轻杆作用下的运动,或在管道中运动时,随着速度的变化,轻杆或管道对物体的作用力可以是支持力,也可以是压力,还可能为零㊂图31.临界条件:物体在最高点的速度v =0㊂2.物体运动到最高点:当m g =mv2r,即v =g r 时,轻杆或管道对物体的作用力F =0;当v >g r 时,轻杆或管道对物体产生向下的拉力;当v <g r 时,轻杆或管道对物体产生向上的弹力㊂例2 如图4所示,一轻杆一端A 固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,重力33物理部分㊃知识结构与拓展高一使用 2021年3月图4加速度为g ㊂下列说法中正确的是( )㊂A .小球过最高点时,轻杆受到的弹力可以等于零B .小球过最高点的最小速度是g RC .小球过最高点时,轻杆对小球的作用力一定随速度的增大而增大D .小球过最高点时,轻杆对小球的作用力一定随速度的增大而减小小球过最高点时,当m g =mv2R,即v =g R 时,轻杆对小球的作用力F =0,根据牛顿第三定律可知,轻杆受到的弹力为零,选项A 正确㊂因为轻杆能够支撑小球,所以小球过最高点的速度最小可以为零,选项B 错误㊂当小球在最高点的速度v <g R 时,轻杆对小球产生向上的弹力,根据牛顿第二定律得m g -F =m v 2R ,变形得F =m g -m v2R,因此当v 增大时,F 减小,选项C 错误㊂当小球在最高点的速度v >g R 时,轻杆对小球产生向下的拉力,根据牛顿第二定律得m g +F =m v2R,变形得F =mv2R-m g ,因此当v 增大时,F 增大,选项D 错误㊂答案:A轻绳模型与轻杆模型的临界条件不同,对于轻绳模型来说物体能通过最高点的临界速度是v 临=gR ,对轻杆模型来说物体过最高点的临界速度是v 临=0㊂三㊁拱桥模型图5当汽车通过拱形桥顶部的速度v =g R 时,根据m g -N =mv2R可知,汽车对弧顶的压力N =0,汽车将脱离桥面做平抛运动,因此汽车过拱形桥时需限速,即v ɤg R ㊂例3如图6所示,半径为R 的光滑半 图6圆球固定在水平面上,顶部有一可视为质点的物体,现给它一个水平初速度v 0=g R ,则该物体将( )㊂A .沿球面下滑至M 点B .先沿球面下滑至某点N ,然后离开球面做斜下抛运动C .立即离开球面做平抛运动,且水平射程为2R D .立即离开球面做平抛运动,且水平射程为2R假设物体在最高点受重力和球面的支持力N 作用做圆周运动,根据牛顿第二定律得m g -N =mv 2R,解得N =0,即物体只受重力作用,因此物体将立即离开球面做平抛运动㊂根据平抛运动规律可得,物体做平抛运动的时间t =2Rg,水平位移x =v 0t =2R ,因此物体做平抛运动的轨迹曲率半径大于半圆球的半径,物体不可能中途落在球面上㊂答案:C解决本题的关键是利用牛顿第二定律分析出物体在最高点时受到的球面对它的支持力为零,进而判断出物体仅受重力作用,且初速度方向水平,物体离开球面做平抛运动,然后利用平抛运动规律求物体的水平射程㊂拓展:倾斜面内圆周运动的临界问题㊂在斜面上做圆周运动的物体,可能由静摩擦力提供向心力,也可能由轻绳或轻杆的作用力提供向心力㊂ 图7例4 如图7所示,一块足够大的光滑平板放置在水平面上,绕水平固定轴MN 可以调节其与水平面间的夹角㊂平板上一根长度l =0.8m 的轻质细绳的一43 物理部分㊃知识结构与拓展 高一使用 2021年3月端系住一质量m=0.2k g的小球,另一端固定在平板上的O点㊂当平板的倾角固定为α时,将小球拉至最高点,然后给小球一沿着平板并与细绳垂直的初速度v0=2m/s㊂(取g=10m/s2)(1)若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(2)若细绳所能承受的最大拉力F= 8N,则当平板的倾角α最大时,小球经过最高点的速度最多多大小球在运动过程中,受重力㊁细绳拉力和斜面支持力作用㊂小球运动到最高点时,由细绳的拉力和小球的重力沿斜面分力的合力提供向心力㊂(1)小球恰好能过最高点的临界条件是细绳的拉力F=0,设此时平板的倾角为α0,根据牛顿第二定律得m g s i nα0=m v20l,解得α0=30ʎ,即小球能保持在板面内做圆周运动,平板的倾角α的值应满足0<αɤ30ʎ㊂(2)设小球经过最高点时的最大速度为v m a x,由(1)得平板的最大倾角α0=30ʎ,根据牛顿第二定律得F+m g s i nα0=m v2m a x l,解得v m a x=6m/s㊂与分析竖直面内圆周运动问题类似,分析斜面上的圆周运动问题也是先分析物体在最高点的受力情况,再根据牛顿第二定律列式求解㊂注意:在进行受力分析时,一般需要先将立体图转化为平面图,这是解斜面上圆周运动临界问题的难点㊂图81.如图8所示,一根轻绳系着装有水的小桶,在竖直面内绕O点做圆周运动,小桶的质量M=1k g,水的质量m=0.5k g,绳长L=0.6m,取g=10m/s2㊂求:(1)要使水桶运动到最高点时水不流出,最小速率多大(2)如果水桶运动到最高点时的速率v=3m/s,那么水桶对轻绳的拉力多大?(3)如果水桶运动到最低点时的速率v=3m/s2,那么水对桶底的压力多大?图92.如图9所示,将内壁光滑的导管弯成半径为R的圆周轨道竖直放置,其质量为2m,质量为m的小球在管内滚动㊂当小球运动到最高点时,导管刚好要离开地面,此时小球的速度多大?图103.如图10所示,质量为m的小物体(可视为质点)随水平传送带运动,A为终端皮带轮㊂已知皮带轮半径为r,传送带与皮带轮间不会打滑,当小物体可被水平抛出时()㊂A.传送带的最小速度为g rB.传送带的最小速度为g rC.皮带轮每秒的转数最少是12πg rD .皮带轮每秒的转数最少是12πg r图114.如图11所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5m处有一小物体与圆盘始终保持相对静止㊂小物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面间的夹角为30ʎ,取g=10m/s2㊂求ω的最大值㊂参考答案:1.(1)v m i n=6m/s;(2)T=7.5N;(3)N'=12.5N㊂2.v=3g R㊂3.A C4.ωm a x=1r a d/s㊂作者单位:山东省青州第一中学(责任编辑张巧)53物理部分㊃知识结构与拓展高一使用2021年3月。
圆周运动不脱轨的临界条件(一)圆周运动不脱轨的临界条件引言•圆周运动是物体围绕某一点或轴作曲线运动的形式之一,广泛应用于机械、航天等领域。
•为了保证圆周运动的稳定性和安全性,我们需要了解圆周运动不脱轨的临界条件。
什么是圆周运动不脱轨的临界条件?圆周运动不脱轨的临界条件是指在一定条件下,物体进行圆周运动时不会从轨道上脱出的临界条件。
具体来说,当满足以下条件时,圆周运动才能保持稳定,物体不会脱离轨道。
临界条件一:合力向心力等于向心力•合力向心力是物体在圆周运动过程中所受的合力,它的方向指向圆心。
•向心力是物体在圆周运动中受到的真实力,它的方向也指向圆心。
•当合力向心力等于向心力时,物体在圆周运动中所受的合力与向心力平衡,从而保证圆周运动的稳定性。
临界条件二:离心力小于或等于摩擦力•离心力是物体在圆周运动中受到的惯性力,它的方向指向远离圆心的外侧。
•摩擦力是物体与与其接触物体之间发生摩擦产生的力。
•当离心力小于或等于摩擦力时,物体受到的向外的离心力不足以克服摩擦力,从而保持在轨道上,不会脱离圆周运动。
临界条件三:速度不超过临界速度•临界速度是物体进行圆周运动时,速度达到的最大值。
•当速度超过临界速度时,由于离心力增大,合力向心力小于离心力,物体将无法保持在轨道上,从而产生脱轨现象。
•因此,速度不超过临界速度是保证圆周运动不脱轨的关键条件之一。
结论•圆周运动不脱轨的临界条件包括合力向心力等于向心力、离心力小于或等于摩擦力,以及速度不超过临界速度。
•在设计和运用圆周运动时,必须严格遵守这些临界条件,以确保圆周运动的稳定性和安全性。
以上是关于圆周运动不脱轨的临界条件的相关内容。
希望能对读者对此有所帮助。
谢谢阅读!补充说明临界条件一:合力向心力等于向心力•合力向心力与向心力之间的平衡关系是保持圆周运动稳定的基础。
•当合力向心力小于向心力时,物体将受到向外的合力作用,导致脱离轨道。
•当合力向心力大于向心力时,物体将受到向内的合力作用,导致向轨道内侧运动。
圆周运动的临界问题结论总结引言圆周运动是物理学中一个重要的研究对象,它广泛应用于机械、电子、核物理等领域。
在圆周运动中,存在着临界问题,即在达到一定条件下,系统会出现特殊的运动状态。
本文将对圆周运动的临界问题进行总结和讨论,探究其背后的原理和应用。
圆周运动简介圆周运动是物体绕着一个固定点以相同的速度做匀速运动的过程。
在圆周运动中,我们经常涉及到的几个重要概念包括角速度、圆周位移、向心加速度等。
圆周运动的临界问题在圆周运动中,当某些条件达到一定数值时,系统会出现特殊的运动状态,即临界状态。
以下是几个常见的圆周运动的临界问题:1. 临界速度临界速度是指物体在圆周运动中的最小速度,即达到这个速度后,物体将能够保持圆周运动而不会脱离。
临界速度的计算可以通过向心加速度和半径之间的关系得到。
2. 临界半径临界半径是指物体在圆周运动中最大的半径,即当半径超过这个值时,物体将无法保持圆周运动。
临界半径的计算可以通过向心加速度和速度之间的关系得到。
3. 同步转速同步转速是指当一个物体在圆周运动中与另一个物体由于某种相互作用而达到相同的转速。
同步转速常见于机械传动系统中,应用于传感器、电机等设备。
4. 切向加速度的临界条件在圆周运动中,物体的切向加速度也扮演着重要的角色。
临界条件是切向加速度的大小是否足够让物体保持圆周运动,当切向加速度小于临界值时,物体将离开圆周运动。
圆周运动的应用圆周运动的临界问题在实际应用中具有重要意义。
以下是几个典型的应用:1. 离心力的利用离心力是圆周运动中一种重要的力,它的大小与向心加速度成正比。
在很多设备中,我们会利用离心力进行分离、过滤、加速等操作。
2. 地球绕太阳的运动地球绕太阳做圆周运动,正是由于地球的临界速度和太阳的引力,地球才能在太阳系中稳定运动。
3. 卫星轨道维持人造卫星在轨道上运行时,需要使用推进器进行修正,使卫星维持在临界半径内,避免脱离圆周运动。
4. 强化材料的测试在材料科学中,可以通过使材料在高速旋转的离心机中达到临界速度,来测试材料的强度和耐久性。
高三物理 圆周运动的临界条件 知识精讲在竖直平面内,圆周运动的临界条件:1. 绳拉小球在竖直平面内的运动,是变速运动,在上端v v 小大,在下端BA 位置v AGN小球受到重力G ,绳的拉力为T ,A 位置的向心力F mg N mg N mv RA =++=2/mg N 重力与运动状态无关,为轨道对物体的弹力,该力的大小与运动状态有关。
N mv R mg A =-2/ (1)当时绳提供弹力向下,是N mv R mg A >>02/由绳的形变而引起的,小球维持圆周运动。
()当时重力提供向心力,202N mv R mg A ==/小球与绳间无相互作用。
()当时除提供向心力外还有余力,302N mv R mg mg A <</必须由绳提供,向上拉力以抵消该余力,这是绳所做不到的,所以,受力大于向心力而下落。
A. 该时v 称为临界速度,是小球刚好越过顶点,作圆周运动速度的最小值。
B. 临界速度与物体质量⋅⋅无关,只取决于竖直平面内,绳长和重力加速度gC. 当v v <临,小球下落,v v ≥临,小球保持⋅⋅圆周运动。
尚未达到最高点,作抛体运动。
在B 位置重力为mg 为切向力,使小球在切向加速,T 提供力作为向心力 T mv R B =2/在C 位置重力为mg ,拉力为T 在一条直线上,合力指向圆心,充当向心力T mg mv R C -=2/TmgvD. 如果在该题中,绳拉球,改为球在单侧内轨道运动,物体做圆周运动情况相同。
物体在绳,单侧轨道上竖直平面内,否则物体能做圆周运动的速度条件为v gR ≥在最高点。
2. 杆带球在竖直平面内作圆周运动,可以做到是匀速圆周运动。
CA 位置N mgv小球受到重力,杆的拉力N ,A 位置的向心力,F mg N =+ N F mg mv R mg A =-=-2/mg 与运动状态无关,N 与运动状态有关。
(1)当N mv R mg >>02,/ 杆提供向下弹力,是由于杆对球拉力,可以做到。
第3.5节
圆周运动的应用 答案
例题2:
练1:解析:要使悬线碰钉后小球做完整的圆周运动,须使小球到达以P 点为圆心的圆周最高点M ,当刚能到达最高点M 时,小球只受重力mg 作用,此时悬线
拉力为零,即有mg =m R v 2m in ,其中R 为以P 点为圆心的圆周的半径,v min 为小球到达M 点的最小速度,而根据机械能守恒定律,有mg (L -2R )=2
1mv min
2 联立解得R =52L ,此为小球以P 点为圆心的最大半径,所以OP =L -R =53L 为OP 间的最小距离.
故OP 段的最小距离是5
3L .
例题3:解析】 两根绳张紧时,小球受力如图4-3-7所示,当ω由0逐渐增大时,ω可能出现以下两个临界值.
(1)BC 恰好拉直,但F 2仍然为零,设此时的角速度为ω1,则有F 1sin30°=m ω12L sin30°
F 1cos30°=mg
代入数据解得ω1=2.4 rad/s.
(2)AC 由拉紧转为恰好拉直,但F 1已为零,设此时的角速度为ω2,则有F 2sin45°=m ω22LBC sin45°
F2cos45°=mg
代入数据解得ω2=3.16 rad/s
可见,要使两绳始终张紧,ω必须满足2.4 rad/s≤ω≤3.16 rad/s.
【答案】 2.4 rad/s≤ω≤3.16 rad/s
练2:D
练3:解析:要使B静止,A必须相对于转盘静止——具有与转盘相同的角速度.A 需要的向心力由绳的拉力和静摩擦力的合力提供.角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O.
对于B:F T=mg
对于A:F T+Ff=Mrω12
或F T-Ff=Mrω22
代入数据解得
ω1=6.5 rad/s,ω2=2.9 rad/s
所以2.9 rad/s≤ω≤6.5 rad/s.
答案:2.9 rad/s≤ω≤6.5 rad/s。