圆周运动中的临界问题
- 格式:doc
- 大小:74.00 KB
- 文档页数:6
1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。
【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。
它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。
圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。
圆周运动的临界问题通常涉及到物体在竖直平面内做变速圆周运动的情况,如轻绳模型过最高点或最低点的情况,以及物体通过其他特殊点的情况。
在这些情况下,临界状态通常是由于圆周运动的向心力和离心力的平衡状态被打破所导致的。
以轻绳模型过最高点为例,当物体通过最高点时,轻绳对物体的拉力与物体的重力相等,即T = mg。
当拉力大于或小于重力时,物体将处于超重或失重状态,并可能出现临界情况。
在这种情况下,可以通过牛顿第二定律和向心力公式来求解物体的运动状态。
在求解时,首先根据题意确定物体通过最高点时的受力情况,然后根据牛顿第二定律列式,最后根据向心力公式求解出物体在最高点时的速度。
根据速度的大小,可以判断出物体是否处于临界状态,并求出相应的临界条件。
需要注意的是,在圆周运动的临界问题中,物体的运动状态可能会发生突变,因此需要特别注意物体的加速度和速度的变化情况。
此外,在求解临界条件时,需要将物体的运动状态与受力情况结合起来考虑,并灵活运用向心力和牛顿第二定律进行求解。
圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为o30与o45,问球的角速度在什么范围内,两绳始终张紧,当角速度为s rad /3时,上、下两绳拉力分别为多大?2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。
(2/10s m g =)3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力)C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即rvm mg 20=,gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。
(1)0v v = (刚好到最高点,轻绳无拉力)(2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
圆周运动中的临界问题圆周运动中的临界问题的分析方法:首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值. 一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=(可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力 注意1能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.2不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高度(距离底部)的说法中正确的是( )A、一定可以表示为 B 、可能为 C 、可能为R D 、可能为R答案:BC【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.【例5】如图所示,赛车在水平赛道上作900转弯,其内、外车道转弯处的半径分别为r1和r2,车与路面间的动摩擦因数和静摩擦因数都是μ.试问:竞赛中车手应选图中的内道转弯还是外道转弯?在上述两条弯转路径中,车手做正确选择较错误选择所赢得的时间是多少?分析:赛车在平直道路上行驶时,其速度值为其所能达到的最大值,设为v m。
转弯时,车做圆周运动,其向心力由地面的静摩擦力提供,则车速受到轨道半径和向心加速度的限制,只能达到一定的大小.为此,车在进入弯道前必须有一段减速过程,以使其速度大小减小到车在弯道上运行时所允许的速度的最大值,走完弯路后,又要加速直至达到v m。
专题:圆周运动的临界问题一、竖直平面内作圆周运动的临界问题竖直平面内的圆周运动是典型的变速圆周运动。
一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。
1.“绳模型”如图所示,小球在竖直平面内做圆周运动过最高点情况。
(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2v m R ⇒ v 临界=(2)小球能过最高点条件:v ≥(当v 时,绳对球产生 ,轨道对球产生 )(3)不能过最高点条件:v<(实际上球还没有到最高点时,就脱离了轨道)例、如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s ,g 取10m/s 2,求:(1) 在最高点时,绳的拉力? (2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少? 2.“杆模型”如图所示,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。
(1)小球能最高点的临界条件:v = ,F = (F 为支持力) (2)当0< v F 随v 增大而减小,且mg > F > 0(F 为支持力)(3)当v =F =(4)当v F 随v 增大而 ,且F >0(F 为 )注意:管壁支撑情况与杆一样。
杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.例、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A .g mrm M + B .g mr mM +C .g mr m M - D .mrMg由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论.一、滑动与静止的临界问题例、如图所示,用细绳一端系着的质量为M 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m 的小球B ,A 的重心到O 点的距离为L ,为使小球B 保持静止,求: 1)盘面光滑,A 绕转盘中心O 旋转的角速度ω的值?2)A 与转盘间的摩擦因数为μ,且mg 〈Mg μ, 求转盘与A 一起旋转的角速度ω 的取值范围? (3 ) A 与转盘间的摩擦因数为μ,且mg 〉Mg μ, 求转盘与A 一起旋转的角速度ω 的取值范围?如图所示,匀速转动的水平圆盘上,沿半径方向两个用细线相连的小物体A 、B 的质量均为m ,它们rA=20cm ,rB=30cm 。
圆周运动的临界问题临界问题是高考考查的热点,特别是圆周运动中的临界问题,知识覆盖面广,题型多样,并且与生活实际息息相关,是同学们必须重点掌握的知识.1.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.2.竖直平面内作圆周运动的临界问题(1)绳模型如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点。
①临界条件:绳子或轨道对小球没有力的作用:mg=m v2/R→v临界=Rg(可理解为恰好转过或恰好转不过的速度)②能过最高点的条件:v≥Rg,当v>Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v<v临界(实际上球还没到最高点时就脱离了轨道)注意:绳对小球只能产生沿绳收缩方向的拉力(2)杆模型如图,球过最高点时,轻质杆(管)对球产生的弹力情况:①当v=0时,N=mg(N为支持力)②当0<v<Rg时,N随v增大而减小,且mg>N>0,N为支持力.③当v=Rg时,N=0④当v>Rg时,N为拉力,N随v的增大而增大(此时N为拉力,方向指向圆心)注意:管壁支撑情况与杆一样。
杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.(3)拱桥模型如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=rg 时,F N=0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s= 2R。
例1长度为L=0.5 m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是 2.0m/s,g取10m/s2,则此时细杆OA受到()A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力解析小球在A点的速度大于gL时,杆受到拉力,小于gL时,杆受压力。
v0=gL=10×0.5 m/s= 5 m/s由于v=2.0 m/s< 5 m/s,我们知道过最高点时,球对细杆产生压力。
圆周运动中的临界问题
1、在竖直平面内作圆周运动的临界问题
⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情况
①临界条件:绳子或轨道对小球没有力的作用 v 临界=Rg
②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力。
③不能过最高点的条件:v <v 临界(实际上球没到最高点时就脱离了轨道)。
⑵如图3所示情形,小球与轻质杆相连。
杆与绳不同,它既能产生拉力,也能产生压力
①能过最高点v 临界=0,此时支持力N =mg
②当0<v <Rg 时,N 为支持力,有0<N <mg ,且N 随v 的增大而减小 ③当v =Rg 时,N =0
④当v >Rg ,N 为拉力,有N >0,N 随v 的增大而增大
例1 (99年高考题)如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。
现给小球一初速度,使它做圆周运动。
图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作用力可能是 ( )
A 、a 处为拉力,b 处为拉力
B 、a 处为拉力,b 处为推力
C 、a 处为推力,b 处为拉力
D 、a 处为推力,b 处为推力
图 1
v 0
图
2
图 3
例2 长度为L =0.5m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图5所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m /s ,g 取10m /s 2,则此时细杆OA 受到 ( )
A 、6.0N 的拉力
B 、6.0N 的压力
C 、24N 的拉力
D 、24N 的压力
例3 长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨论在下列两种情况下杆的受力:
①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时
2、在水平面内作圆周运动的临界问题
在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。
例4 如图6所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad /s 时,上、下两绳拉力分别为多大?
图 5
C
图 6
例5 如图7所示,细绳一端系着质量M =0.6kg 的物体,静止在水平肌,另一端通过光滑的小孔吊着质量m =0.3kg 的物体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。
现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态?(g =10m /s 2)说明:一般求解“在什么范围内……”这一类的问题就是要分析两个临界状态。
3、巩固练习
1、汽车通过拱桥颗顶点的速度为10 m /s 时,车对桥的压力为车重的3
4 。
如果使汽
车驶至桥顶时对桥恰无压力,则汽车的速度为 ( )
A 、15 m /s
B 、20 m /s
C 、25 m /s
D 、30m /s
2、如图8所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其下压力的μ倍。
求:
⑴当转盘角速度ω1=μg
2r
时,细绳的拉力T 1。
⑵当转盘角速度ω2=3μg
2r
时,细绳的拉力T 2。
三、小结
1、解圆周运动的问题时,一定要注意找准圆心,绳子的悬点不一定是圆心。
2、把临界状态下的某物理量的特征抓住是关键。
如速度的值是多大、某个力恰好存在还是不存在以及这个力的方向如何。
图 8
图 7
答案
例1分析:答案A是正确的,只要小球在最高点b的速度大于gL ,其中L是杆的长;答案B也是正确的,此时小球的速度有0<v<gL ;答案C、D肯定是错误的,因为小球在最低点时,杆对小球一定是拉力。
例2解法:小球在A点的速度大于gL 时,杆受到拉力,小于gL 时,杆受压力。
V0=gL =10×0.5 m/s= 5 m/s
由于v=2.0 m/s< 5 m/s,我们知道:过最高点时,球对细杆产生压力。
小球受重力mg和细杆的支持力N
由牛顿第二定律mg-N=m v2 L
N=mg-m v2
L=6.0N故应选B。
例3
解法一:(同上例)小球的速度大于 5 m/s时受拉力,小于 5 m/s时受压力。
①当v1=1m/s< 5 m/s时,小球受向下的重力mg和向上的支持力N
由牛顿第二定律mg-N=m v2 L
N=mg-m v2
L=16N
即杆受小球的压力16N。
②当v2=4m/s> 5 m/s时,小球受向下的重力mg和向下的拉力F
由牛顿第二定律mg+F=m v2 L
F=m v2
L-mg=44N
即杆受小球的拉力44N。
解法二:小球在最高点时既可以受拉力也可以受支持力,因此杆受小球的作用力也可以是拉力或者是压力。
我们可不去做具体的判断而假设一个方向。
如设杆竖直向下拉小球A,则小球的受力就是上面解法中的②的情形。
由牛顿第二定律mg+F=m v2 L
得到F=m(v2
L-g
)
N
当v1=1m/s时,F1=-16N F1为负值,说明它的实际方向与所设的方向相反,即小
球受力应向上,为支持力。
则杆应受压力。
当v2=4m/s时,F2=44N。
F2为正值,说明它的实际方向与所设的方向相同,即小
球受力就是向下的,是拉力。
则杆也应受拉力。
例4解析:①当角速度ω很小时,AC和BC与轴的夹角都很小,BC并不张紧。
当ω逐渐增大到30°时,
BC才被拉直(这是一个临界状态),但BC绳中的张力仍然为零。
设这时的角速度为ω1,则有:
T AC cos30°=mg
T AC sin30°=mω12Lsin30°
将已知条件代入上式解得ω1=2.4 rad/s
②当角速度ω继续增大时T AC减小,T BC增大。
设角速度达到ω2时,T AC=0(这又是一个临界状
态),则有:T BC cos45°=mg
T BC sin45°=mω22Lsin30°
将已知条件代入上式解得ω2=3.16 rad/s
所以当ω满足 2.4 rad/s≤ω≤3.16 rad/s,AC、BC两绳始终张紧。
本题所给条件ω=3 rad/s,此时两绳拉力T AC、T BC都存在。
T AC sin30°+T BC sin45°=mω2Lsin30°
T AC cos30°+T BC cos45°=mg
将数据代入上面两式解得T AC=0.27N,T BC=1.09N
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad/s时,T BC=0,AC与轴的夹角小于30°。
如果ω>3.16rad/s时,T AC=0,BC与轴的夹角大于45
例5解析:要使m静止,M也应与平面相对静止。
而M与平面静止时有两个临界状态:
当ω为所求范围最小值时,M有向着圆心运动的趋势,水平面对M的静摩擦力的方向背
此时,对M运用牛顿第二定律。
有T-f m=Mω12r 且T=mg
解得ω1=2.9 rad/s
当ω为所求范围最大值时,M有背离圆心运动的趋势,水平面对M的静摩擦力的方向向着圆心,大小还等于最大静摩擦力2N。
再对M运用牛顿第二定律。
有T+f m=Mω22r
解得ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s。