两种电源的等效变换
- 格式:ppt
- 大小:133.50 KB
- 文档页数:14
第三章复杂直流电路
---两种电源模型及其等效变换
一.填空
1.为电路的电源称为电压源,如果电压源内阻为,电源将提供,则称为理想电压源简称恒压源。
为电路的电源称为电流源,如果电流源内阻为,电源将提供,则称为理想电流源简称恒流源。
2.电压源与电流源的等效变换中对等效,对不能等效。
3.电压源变换为等效电流源的公式为,内阻R0的数值,改为联;电流源变换为电压源的公式为内阻r的数值,改为联;
4.两种电源模型的等效变换时,I
S 与U
S
的方向应当一致,即I
S
的端与U
S
的应互相对应。
二.是非判断
1.恒压源和恒流源之间也能等效变换。
()
2.理想电流源的输出电流和电压都是恒定的,是不随负载而变化的。
()
3.理想电压源的输出电流和电压都是恒定的,是不随负载而变化的。
()三.将下图中的电流源和电压源进行互换
四.计算
1.用电压源与电流源等效变换法,求图所示电路中流过R的电流。
其中E1=E2=3V,E3=9V,R1=R2=R3=3Ω,R=1Ω。
2.利用电源的等效变换计算图中的电流I
3。
3.试用电压源与电流源等效变换的方法计算图中2Ω电阻中的电流I。
2-2 试用电压源与电流源等效变换的方法计算题图2-2中3Ω电阻中的电流I 。
解:根据题目的要求,应用两种电源的等效变换法,将题图2-2所示电路按照解题图12所示的变换顺序,最后化简为解题图12(j)所示的电路,电流I为注意:(1) 一般情况下,与理想电流源串联的电阻可视为短路、而与理想电压源并联的电阻可视为开路。
故题图2-2所示电路最左边支路中的2Ω电阻可视为0;(2)在变换过程中,一定要保留待求电流I的支路不被变换掉;(3)根据电路的结构,应按照a-b、c-d、e-f的顺序化简,比较合理。
2-3 计算题图2-3中1Ω电阻上的电压U ab。
解:该题采用两种电源的等效变换法解题比较简便。
按照解题图13的顺序化简,将题图2-3所示的电路最后化简为解题图13(e)所示的电路,根据电阻串联电路分压公式计算电压U ab为2-5 应用支路电流法计算题图2-5所示电路中的各支路电流。
解:首先对于题图2-5所示电路的三条支路电流分别确定参考方向,如解题图15所示。
然后应用基尔霍夫电流定律和基尔霍夫电压定律定律列出下列三个方程:解之,得2-6 应用支路电流法计算题图2-6所示电路中的各支路电流。
解:如题图2-6所示,电路中的四条支路均为并联,其中一条支路电流为已知,根据支路电流法可知,只需列出三个独立方程即可求解。
为看图方便,将电路中4Ω电阻支路改画到解题图16所示的地方,应用基尔霍夫电流定律对结点a列出一个电流方程,再应用基尔霍夫电压定律对电路左边回路和中间回路列出两个电压方程,即解之,得2-8 电路如题图2-8所示,试用结点电压法计算图中电阻R L两端电压U,并计算理想电流源的功率。
解:由于计算负载电阻R L的电压U,与理想电流源串联的4Ω电阻和与理想电压源并联的8Ω电阻的存在与否无关,因此,这两个电阻的作用可被忽略,如解题图17所示,那么然而,在计算理想电流源的功率时,理想电流源两端的电压值是由与之并联的外电路所确定,因此,与理想电流源串联的4Ω电阻的作用就不能被忽略。
3.3 两种电源模型的等效变换导学案电子专业考纲:理解电压源和电流源的概念,并掌握它们之间的等效变换。
一、电压源1、定义:为电路提供一定电压的电源。
如图(a )(a) (b)理想电压源:为电路提供恒定不变电压的电源。
如图(b)(教师帮助学生分析电压源和理想电压源为电路提供电压和电流的特点)二、电流源通常所说的电流源一般是指理想电流源,其基本特性是所发出的电流固定不变(I s )或是一定的时间函数i s (t ),但电流源的两端电压却与外电路有关。
实际电流源是含有一定内阻r S 的电流源。
三、两种实际电源模型之间的等效变换实际电源可用一个理想电压源E 和一个电阻r 0串联的电路模型表示,其输出电压U 与输出电流I 之间关系为U = E - r 0I实际电源也可用一个理想电流源I S 和一个电阻r S 并联的电路模型表示,其输出电压U 与输出电流I 之间关系为U = r S I S - r S I对外电路来说,实际电压源和实际电流源是相互等效的,等效变换条件是r 0 = r S , E = r S I S 或 I S = E /r 0四、电源之间的等效变换注意事项:① 。
② 。
③ 。
④ 。
⑤ 。
【课前练习】一、判断题1、对外电路来说,一个有源二端网络可以用一个电压源来等效替代。
( )2、如果网络具有两个引出端与外电路相连不管其内部结构如何这样的网络就叫做二端网络。
( )3、理想电压源只是从电路中抽象出来的一种理想元件,实际上并不存在。
( )二、选择题1、如图1所示电路中,电流I值为 ( )A.2A B.-2 A C.4A D.-4A2、如图2所示电路中,电阻R2减小时,电流I将( )A.增大 B.减小 C.不变 D.不能确定3、如图3所示电路中的电压U为()A.2.5V;B.5V;C.7.5V;D.10V图1 图2 图3三、填空题1、如图4所示电路中,电流I= A,电阻消耗功率为,电流源的功率为,电压源的功率为。
1.5电压源和电流源的等效变换实际使用的电源,按其外特性,可分为电压源和电流源。
当一个电压源和一个电流源能够为同一个负载提供相同的电压、电流和功率时,这两个电源对该负载来说是等效的,可以互相置换,这种置换称为等效变换。
下面来讨论电压源和电流源的等效变换。
1.5.1 电压源在电路分析课程中,将能够向外电路提供电压的器件称为电压源。
如,电池,发电机等均是电压源。
在物理学中,电池表示成电动势E和内阻R相串联的电路模型,电池是一个典型的电压源,所以,电压源也可表示成电动势和内阻相串联的电路模型。
为了利用KVL的方便,对电压源特性进行标定时,通常不使用电动势E,而改用电压源所能输出的恒压值US,如图1-30(a)所示虚线框内部的电路。
图中电压源旁的箭头为US的参考方向。
注意: US 和E是不同性质的两个物理量,US是描述电压源所能输出的恒值电压,该值的大小与E相等,设定的参考方向与E相反。
当电压源与负载电阻RL相连时,根据KVL可得描述电压源外特性的函数式。
描述理想化电压源外特性的函数式是(1-57)由式1-57可见,理想化电压源的外特性曲线是直线,如图1-30(b)所示,图1-30(b)又称为电压源伏(U)-安(A)特性曲线。
图1-30(b)纵轴上的点,为电压源输出电流等于0的情况,相当于电压源处在开路的状态下。
当电压源开路时,电压源的输出电压U就等于US ,所以,US的值等于电压源的开路电压。
图1=30(b)横轴上的点,为电压源输出电压等于0的情况,相当于电压源处在短路的状态下(实际上这是不允许的),电压源输出电流为IS ,所以,IS称为短路电流。
计算短路电流的表达式为(1-58)U=f(I)曲线的斜率为R0,R越小,斜率越小,直线越平坦。
当R=0时,电源外特性曲线是一条平行与I轴的直线。
具有这种外特性曲线的电压源输出电压保持恒定值US,这种电压源称为理想电压源,简称恒压源。
将图1-30(a)虚线框内部电路的电阻R去掉,剩下的电路就是恒压源电路的模型。