触发器原理转换及设计
- 格式:wps
- 大小:100.50 KB
- 文档页数:6
实验四触发器及其功能转换一、实验目的1、掌握基本RS、JK、D和T触发器的逻辑功能2、掌握集成触发器的逻辑功能及使用方法3、熟悉触发器之间相互转换的方法二、实验原理触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。
1、基本RS触发器图4-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。
基本RS触发器具有置“0”、置“1”和“保持”三种功能。
通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发生,表9-1为基本RS触发器的功能表。
基本RS触发器。
也可以用两个“或非门”组成,此时为高电平触发有效。
2、JK触发器在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。
本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。
引脚功能及逻辑符号如图4-2所示。
JK触发器的状态方程为Q n+1=J Q n+K Q nJ和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成“与”的关系。
Q与Q为两个互补输出端。
通常把 Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。
图4-2 74LS112双JK触发器引脚排列及逻辑符号下降沿触发JK触发器的功能如表4-2表4-2注:×— 任意态 ↓— 高到低电平跳变 ↑— 低到高电平跳变Q n (Q n )— 现态 Q n+1(Q n+1 )— 次态 φ— 不定态 JK 触发器常被用作缓冲存储器,移位寄存器和计数器。
3、D 触发器在输入信号为单端的情况下,D 触发器用起来最为方便,其状态方程为 Q n+1=D n,其输出状态的更新发生在CP 脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D 端的状态,D 触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。
施密特触发器电路及工作原理详解什么叫触发器施密特触发电路(简称)是一种波形整形电路,当任何波形的信号进入电路时,输出在正、负饱和之间跳动,产生方波或脉波输出。
不同于比较器,施密特触发电路有两个临界电压且形成一个滞后区,可以防止在滞后范围内之噪声干扰电路的正常工作。
如遥控接收线路,传感器输入电路都会用到它整形。
施密特触发器一般比较器只有一个作比较的临界电压,若输入端有噪声来回多次穿越临界电压时,输出端即受到干扰,其正负状态产生不正常转换,如图1所示。
图 1 (a)反相比较器 (b)输入输出波形施密特触发器如图2 所示,其输出电压经由R1、R2分压后送回到运算放大器的非反相输入端形成正反馈。
因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示图2 (a)反相斯密特触发器(b)输入输出波形上临界电压V TH下临界电压V TL滞后宽度(电压)V H V TL<噪声<V TH输入端信号νI上升到比V TH大时,触发电路使νO 转态输入端信号νI 下降到比V TL小时,触发电路使νO转态上、下临界电压差V H=V TH -V TL噪声在容许的滞后宽度范围内,νO维持稳定状态反相施密特触发器电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换:νO= ±Vsat。
输出电压经由R1 、R2分压后反馈到非反相输入端:ν+= βνO,其中反馈因数=当νO为正饱和状态(+Vsat)时,由正反馈得上临界电压当νO为负饱和状态(- Vsat)时,由正反馈得下临界电压V TH与V TL之间的电压差为滞后电压:2R1图3 (a)输入、输出波形(b)转换特性曲线输入、输出波形及转换特性曲线如图3(b)所示。
当输入信号上升到大于上临界电压V TH时,输出信号由正状态转变为负状态即:νI >V TH→νo = - Vsat当输入信号下降到小于下临界电压V TL时,输出信号由负状态转变为正状态即:νI <V TL→νo = + Vsat输出信号在正、负两状态之间转变,输出波形为方波。
jk触发器的工作原理及工作过程
JK触发器是数字电路中的一种基本触发器,由两个交叉耦合
的门电路组成。
它们的工作原理和工作过程如下:
工作原理:
1. J (Set) 输入信号:当J输入为高电平时,会将Q输出置为高
电平。
2. K (Reset) 输入信号:当K输入为高电平时,会将Q输出置
为低电平。
3. Q 输出信号:JK触发器的输出Q与输入J、K信号以及时
钟信号有关。
4. 时钟信号:时钟信号用于控制JK触发器的工作。
在上升沿
或下降沿(取决于电路的设计)时,JK触发器根据输入信号
的状态更新输出。
工作过程:
1. 初始状态:JK触发器的初始状态由上电时输入信号的状态
确定。
当J=K=0时,Q为先前状态的保持,即保持原来的值。
2. J=1,K=0:当J为高电平而K为低电平时,触发器会被置
入Set状态,即Q被置为高电平。
3. J=0,K=1:当J为低电平而K为高电平时,触发器会被置
入Reset状态,即Q被置为低电平。
4. J=1,K=1:当J和K均为高电平时,触发器处于反转状态。
当时钟信号的边沿到来时,Q的状态将发生改变,即Q的原
始值被翻转。
5. J=0,K=0:当J和K均为低电平时,触发器继续保持前一
个状态,即Q的值不变。
6. 更新输出:无论何时发生状态的改变,输出Q都会立即更新为新的状态。
总结起来,JK触发器根据输入信号和时钟信号的组合,可以实现保持状态、置高状态、置低状态和翻转状态四种操作。
它是许多复杂数字系统以及时序逻辑电路的重要组成部分。
四大触发器工作原理触发器是数字电路中常用的一种元件,它用来存储和改变电平信号的状态。
常用的四大触发器包括SR触发器、D触发器、JK触发器和T触发器,它们都有各自的工作原理。
1. SR触发器:SR触发器由两个输入端S和R组成,以及两个输出端Q和Q'。
工作原理如下:- 当S=0、R=0时,触发器维持上一个状态,Q和Q'的输出不变。
- 当S=0、R=1时,Q=0,Q'=1,表示清空(复位)触发器。
- 当S=1、R=0时,Q=1,Q'=0,表示设置(置位)触发器。
- 当S=1、R=1时,触发器的输出将出现未定义状态,Q和Q'的输出不确定。
2. D触发器:D触发器由一个输入端D和一个时钟输入CLK 组成,以及一个输出端Q。
工作原理如下:- 当时钟信号CLK为低电平时,D触发器处于保持状态,Q 的输出不变。
- 当时钟信号CLK的上升沿到来时,D触发器将输入信号D 的状态复制到输出端Q上。
3. JK触发器:JK触发器由两个输入端J和K以及一个时钟输入CLK组成,以及两个输出端Q和Q'。
工作原理如下:- 当时钟信号CLK为低电平时,JK触发器处于保持状态,Q 和Q'的输出不变。
- 当时钟信号CLK的上升沿到来时:- 当J=0、K=0时,触发器保持上一个状态,Q和Q'的输出不变。
- 当J=0、K=1时,Q=0,Q'=1,表示清空(复位)触发器。
- 当J=1、K=0时,Q=1,Q'=0,表示设置(置位)触发器。
- 当J=1、K=1时,触发器的输出将取反。
4. T触发器:T触发器由一个输入端T以及一个时钟输入CLK 组成,以及两个输出端Q和Q'。
工作原理如下:- 当时钟信号CLK为低电平时,T触发器处于保持状态,Q和Q'的输出不变。
- 当时钟信号CLK的上升沿到来时:- 当T=0时,触发器保持上一个状态,Q和Q'的输出不变。
一、实验目的1. 理解和掌握触发器的基本原理和功能。
2. 熟悉基本RS、JK、D和T触发器的逻辑功能及其应用。
3. 学习触发器之间相互转换的方法。
4. 通过实验,加深对触发器在数字电路中的应用理解。
二、实验原理触发器是一种具有记忆功能的电子器件,它可以根据输入信号和时钟脉冲的变化,在两个稳定状态之间进行切换。
触发器在数字电路中有着广泛的应用,如计数器、寄存器、时序电路等。
触发器根据时钟脉冲的触发方式分为同步触发器和异步触发器。
同步触发器在时钟脉冲的上升沿或下降沿发生状态转换,而异步触发器则不受时钟脉冲的限制,可以在任何时刻发生状态转换。
三、实验仪器与设备1. 双踪示波器2. 数字万用表3. 数字电路实验箱4. 74LS00(二输入端四与非门)5. 74LS74(双D触发器)6. 74LS76(双J-K触发器)四、实验内容与步骤1. 基本RS触发器功能测试(1)搭建基本RS触发器电路,连接实验箱中的与非门。
(2)按照实验要求,在S、R端加信号,观察并记录触发器的Q、端状态。
(3)分析实验结果,总结RS触发器的逻辑功能。
2. JK触发器功能测试(1)搭建JK触发器电路,连接实验箱中的与非门。
(2)按照实验要求,在J、K端加信号,观察并记录触发器的Q、端状态。
(3)分析实验结果,总结JK触发器的逻辑功能。
3. D触发器功能测试(1)搭建D触发器电路,连接实验箱中的与非门。
(2)按照实验要求,在D端加信号,观察并记录触发器的Q、端状态。
(3)分析实验结果,总结D触发器的逻辑功能。
4. T触发器功能测试(1)搭建T触发器电路,连接实验箱中的与非门。
(2)按照实验要求,在T端加信号,观察并记录触发器的Q、端状态。
(3)分析实验结果,总结T触发器的逻辑功能。
5. 触发器之间相互转换(1)分析基本RS触发器与JK触发器之间的转换方法。
(2)分析基本RS触发器与D触发器之间的转换方法。
(3)分析基本RS触发器与T触发器之间的转换方法。
触发器实验报告一、实验目的本次实验的主要目的是深入了解和掌握触发器的工作原理、功能特性以及其在数字电路中的应用。
通过实际操作和观察,验证触发器的逻辑功能,提高对数字电路的理解和设计能力。
二、实验原理(一)触发器的定义和分类触发器是一种具有记忆功能的基本逻辑单元,能够存储一位二进制信息。
根据其逻辑功能的不同,可分为 RS 触发器、JK 触发器、D 触发器和 T 触发器等。
(二)RS 触发器RS 触发器是最简单的触发器类型,由两个与非门交叉连接而成。
它具有两个输入端:R(复位端)和 S(置位端)。
当 R 为 0 且 S 为 1 时,触发器被置位;当 R 为 1 且 S 为 0 时,触发器被复位;当 R 和 S都为 1 时,触发器状态保持不变;当 R 和 S 都为 0 时,触发器状态不定,这是不允许的输入情况。
(三)JK 触发器JK 触发器在 RS 触发器的基础上增加了两个输入端 J 和 K。
当 J 为1 且 K 为 0 时,触发器被置位;当 J 为 0 且 K 为 1 时,触发器被复位;当 J 和 K 都为 1 时,触发器状态翻转;当 J 和 K 都为 0 时,触发器状态保持不变。
(四)D 触发器D 触发器的输入端只有一个 D。
在时钟脉冲的上升沿,D 触发器将输入 D 的值存储到输出端 Q。
(五)T 触发器T 触发器只有一个输入端 T。
当 T 为 1 时,在时钟脉冲的作用下,触发器状态翻转;当 T 为 0 时,触发器状态保持不变。
三、实验设备与器材1、数字电路实验箱2、 74LS00(四 2 输入与非门)芯片3、 74LS74(双 D 触发器)芯片4、 74LS112(双 JK 触发器)芯片5、示波器6、直流电源7、逻辑电平测试笔8、连接导线若干四、实验内容及步骤(一)RS 触发器实验1、按照图 1 所示,在实验箱上使用 74LS00 芯片搭建 RS 触发器电路。
2、分别将 R 和 S 端接入逻辑电平测试笔,设置不同的输入组合(00、01、10、11),观察并记录输出端 Q 和 Q'的电平状态。
施密特触发器原理施密特触发器(Schmitt Trigger)是一种非线性电路,广泛应用于信号调节和数字电路中。
本文将介绍施密特触发器的原理和工作方式。
1. 施密特触发器的概述施密特触发器是一种具有双阈值的比较器电路,能够将输入信号从模拟域转换为数字域的电路。
它通过正反馈实现了滞回特性,可以抑制输入信号中的噪声和抖动,从而提供了可靠的输出信号。
2. 施密特触发器的工作原理施密特触发器由一个比较器和一个正反馈网络组成。
正反馈网络使得比较器的阈值有两个水平:一个是正向阈值(高电平阈值),另一个是负向阈值(低电平阈值)。
当输入信号超过正向阈值时,输出变为高电平;当输入信号低于负向阈值时,输出变为低电平。
施密特触发器的工作过程可以分为两个阶段:上升沿和下降沿。
•上升沿:当输入信号从低电平变为高电平时,触发器的输出保持低电平,直到输入信号超过正向阈值才将输出切换为高电平。
•下降沿:当输入信号从高电平变为低电平时,触发器的输出保持高电平,直到输入信号低于负向阈值才将输出切换为低电平。
在施密特触发器中,正反馈网络起到了关键作用。
当输出为低电平时,在正反馈网络中的电压分压导致比较器的阈值提高,使得输入信号必须超过一个值才能使输出切换为高电平。
同样地,当输出为高电平时,正反馈网络使比较器的阈值降低,输入信号必须低于另一个值才能使输出切换为低电平。
3. 施密特触发器的应用施密特触发器在数字电路和信号调节中有广泛的应用。
•输入信号消抖:施密特触发器能够抑制输入信号上的噪声和抖动,使输出信号更加稳定,可用于消抖电路的设计。
•信号波形整形:施密特触发器能够将输入信号波形整形为方波信号,便于后续的数字处理。
•触发器设计:施密特触发器本身可以作为一个触发器,用于时序电路的设计。
4. 施密特触发器的优缺点施密特触发器的主要优点在于它能够通过滞回特性抑制输入信号中的噪声和抖动,提供可靠的输出信号。
然而,施密特触发器也有一些缺点:•边沿速度较慢:由于滞回特性的存在,施密特触发器的边沿速度相对较慢,对于高频信号可能会出现失真。
D触发器工作原理引言在数字电路中,D触发器是一种非常重要的基本元件,用于实现同步时序逻辑电路。
D触发器以其输入信号D来命名,具有存储数据和控制信号流向的作用。
本文将深入探讨D触发器的工作原理,包括其工作流程、工作特点、实际应用、典型应用案例、未来发展与展望以及结论。
一、D触发器简介D触发器的定义:D触发器是一种具有数据输入端D,时钟输入端C(clock),以及数据输出端Q的非阻塞性触发器。
当C端为高电平时,Q端状态会跟随D端变化。
工作原理:D触发器的工作原理基于二进制状态存储和时钟信号控制。
在时钟信号的上升沿或下降沿到来时,D触发器的输出状态会根据输入数据D的状态变化。
二、D触发器工作流程状态存储:D触发器在时钟信号的驱动下,将输入数据D的状态存储在内部。
数据更新:在时钟信号的上升沿或下降沿到来时,D触发器根据输入数据D的状态更新内部状态。
输出更新:输出端Q的状态将在时钟信号的下一个周期内反映输入数据D的状态。
三、D触发器的工作特点同步工作:D触发器只能在时钟信号的驱动下工作,而非同步工作。
状态依赖:D触发器的输出状态取决于输入数据D的状态。
存储能力:D触发器可以存储二进制状态,用于后续的数据处理和逻辑控制。
四、D触发器的实际应用时序逻辑电路设计:D触发器是构建各种时序逻辑电路的基础元件,如寄存器和计数器等。
数据存储和控制:在数字系统中,D触发器可用于数据的存储和控制,实现数据的顺序处理和逻辑运算。
数据流控制:在多媒体处理和通信系统中,D触发器用于实现数据流的控制和管理。
五、D触发器的典型应用案例寄存器设计:使用多个D触发器可以构建一个寄存器,用于存储多个数据位。
这种应用常见于微处理器和计算机内存系统。
计数器设计:使用D触发器可以构建计数器,用于实现计数的功能。
这种应用常见于数字系统和计算机程序计数器。
移位寄存器设计:使用多个D 触发器可以构建一个移位寄存器,用于实现数据的串行传输和并行转换。
这种应用常见于串行通信和并行通信系统。