对称密钥密码体制
- 格式:docx
- 大小:37.04 KB
- 文档页数:3
密码学中两种常见的密码算法为对称密码算法〔单钥密码算法〕和非对称密码算法〔公钥密码算法〕。
对称密码算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。
在大多数对称算法中,加密解密密钥是相同的。
这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在平安通信之前,商定一个密钥。
对称算法的平安性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。
只要通信需要保密,密钥就必须保密。
对称算法的加密和解密表示为:Ek(M)=CDk(C)=M对称算法可分为两类。
一次只对明文中的单个位〔有时对字节〕运算的算法称为序列算法或序列密码。
另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。
现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。
这种算法具有如下的特性:Dk(Ek(M))=M常用的采用对称密码术的加密方案有5个组成局部〔如下图〕l〕明文:原始信息。
2)加密算法:以密钥为参数,对明文进行多种置换和转换的规那么和步骤,变换结果为密文。
3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。
4)密文:对明文进行变换的结果。
5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。
对称密码术的优点在于效率高〔加/解密速度能到达数十兆/秒或更多〕,算法简单,系统开销小,适合加密大量数据。
尽管对称密码术有一些很好的特性,但它也存在着明显的缺陷,包括:l〕进行平安通信前需要以平安方式进行密钥交换。
这一步骤,在某种情况下是可行的,但在某些情况下会非常困难,甚至无法实现。
2)规模复杂。
举例来说,A与B两人之间的密钥必须不同于A和C两人之间的密钥,否那么给B的消息的平安性就会受到威胁。
在有1000个用户的团体中,A需要保持至少999个密钥〔更确切的说是1000个,如果她需要留一个密钥给他自己加密数据〕。
对称密钥密码体制的原理和特点一、对称密钥密码体制的原理1. 对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
2. 在对称密钥密码体制中,加密和解密使用相同的密钥,这个密钥必须保密,只有合法的用户才能知道。
3. 对称密钥密码体制使用单一密钥,因此在加密和解密过程中速度较快。
4. 对称密钥密码体制中,发送者和接收者必须共享同一个密钥,否则无法进行加密和解密操作。
二、对称密钥密码体制的特点1. 高效性:对称密钥密码体制使用单一密钥进行加密和解密,因此速度较快,适合于大量数据的加密和解密操作。
2. 安全性有限:尽管对称密钥密码体制的速度较快,但密钥的安全性存在一定的风险。
一旦密钥泄露,加密数据可能会遭到破解,因此密钥的安全性对于对称密钥密码体制至关重要。
3. 密钥分发困难:在对称密钥密码体制中,发送者和接收者必须共享同一个密钥,因此密钥的分发和管理可能会存在一定的困难。
4. 密钥管理困难:对称密钥密码体制密钥的管理和分发往往需要借助第三方机构或者密钥协商协议来实现,这增加了密钥管理的复杂性。
5. 广泛应用:尽管对称密钥密码体制存在一定的安全性和管理困难,但由于其高效性,仍然广泛应用于网络通信、金融交易等领域。
对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
它具有高效性和广泛应用的特点,然而安全性较差并且密钥管理困难。
在实际应用中,需要权衡其优劣势,并采取相应的安全措施来确保其安全性和有效性。
对称密钥密码体制的应用对称密钥密码体制作为一种快速高效的加密方式,在现实生活中有着广泛的应用。
主要的应用领域包括网络通信和数据传输、金融交易、安全存储、以及移动通信等。
1. 网络通信和数据传输在网络通信和数据传输中,对称密钥密码体制被广泛应用于加密数据传输过程。
在互联网传输中,大量的数据需要在用户和服务器之间进行传输,为了保护数据的安全性,对称密钥密码体制被用来加密数据,确保传输过程中数据不被窃取或篡改。
网络安全中基于传统对称密码体制的密钥管理摘要本文主要介绍了基于传统对称密码体制下的一种密钥分配方案。
它将整个系统中的密钥从低到高分成三个等级——初级密钥、二级密钥和主机主密钥。
低级密要不会以明文的形式出现,而是以受高级密钥加密的形式传输和保存。
高级密钥存放在一种专有密码装置(硬件)的工作寄存器中(该寄存器的内容只能设置不能访问),并且相关的密码转换操作均在专有密码装置中进行,这样便保证了密钥装置内之外永不一明文的形式出现。
从而较好的提供了一种安全的密钥管理方案。
1.介绍根据近代密码学的观点,密码系统的安全应只取决于密钥的安全,而不取决于对算法的保密。
在计算机网络环境中,由于用户和节点很多,需要使用大量的密钥。
密钥的数量如此之大,而且又要经常更换,其产生、存贮、分配是极大的问题。
如无一套妥善的管理方法,其困难性和危险性是可想而知的。
以下的讨论基于这样一个事实:计算机网络中的各个节点或者是主机或者是终端。
为了简化密钥的管理工作,我们采用密钥分级策略。
我们将密钥分成初级密钥、二级密钥和主机主密钥三个级别。
1)初级密钥用于加解密数据的密钥称为初级密钥,记为K。
初级密钥可由系统应用实体请求通过硬件或软件方式自动产生,也可以由用户自己提供。
初级密钥仅在两个应用实体交换数据时才存在,它的生存周期很短,通常只有几分钟。
为了安全,初级密钥必须受更高一级的密钥的保护,直至它的生存周期结束为止。
一般而言,初级密钥为相互通信的两个进程所共享,在主机或终端上会同时存在多个初级密钥。
2)二级密钥二级密钥用以加密保护初级密钥,记作KN。
二级密钥的生存周期一般较长,它在较长时间里保持不变。
3)主机主密钥主机主密钥是这一管理方案中的最高机密钥,记作KM,用于对主机系统的初级密钥和二级密钥提供保护。
主机主密钥的生存周期很长。
在一个网络系统中由主机和终端等多种需要使用密钥的实体,只有针对不同性质的实体配备不同的密钥,并对不同的密钥采取不同的保护才能方便密钥的管理。
对称密钥密码体制
对称密钥密码体制是指加密和解密过程中使用相同的密钥。
这种体制也叫做单密钥密码体制,因为加密和解密使用的密钥相同,能在保持安全的前提下对数据进行快速处理。
对称密钥密码体制通常分为分组密码和流密码两种。
分组密码是将明文分成固定长度的块,再和密钥一起通过一系列算法进行加密。
这种方法处理速度非常快,因为加密和解密算法是对数据块进行分组处理的,同时相同密钥的使用也降低了密钥管理的复杂性。
然而,分组密码存在的一个问题是,对数据块的分组可能会导致重复的数据,这些数据可以被攻击者用来破解密钥。
流密码是将明文和密钥通过一个伪随机数生成器计算出一个流式密钥,然后将流式密钥和明文一起进行异或运算来加密数据。
这种方法加密和解密速度也非常快,而且每个数据块都有独立的流式密钥,增强了数据的安全性。
然而,流密码也存在一些问题,例如在密钥被泄露时,加密数据就变得不安全了。
对称密钥密码体制的优点包括:
1. 处理速度快:加密和解密使用的密钥相同,从而能快速处理数据。
2. 加密方式简单:对称密钥密码体制通常采用分组密码或流密码,在数据加密和解密过程中使用块或流式加密,处理速度快,同时也方便计算机的硬件或软件实现。
3. 密钥管理相对简单:使用相同的密钥进行加密和解密,可以使加密和解密的过程更加简单,从而降低了密钥管理的复杂度。
4. 对称密钥密码体制广泛应用于大多数数据通信应用中,如数据存储、数据传输等。
对称密钥密码体制的缺点包括:
1. 密钥管理不安全:对称密钥密码体制存在一个主要问题,即密钥的安全性。
如果密钥被泄露或者失窃,那么加密数据就暴露了,导致数据不安全。
2. 非法用户可以访问数据:一旦非法用户获取了密钥,他们便可以访问数据而不会受到限制,这可能会导致重大的安全问题。
3. 可能存在重放攻击:由于每个数据块都使用相同的密钥进行加密,数据可能被攻击者截获并用于重放攻击,从而使数据的安全性大大降低。
4. 算法的安全性不能得到保证:对称密钥密码体制的安全性取决于加密算法本身的安全性。
如果加密算法本身不安全,那么数据可能会被攻击者破解。
总之,对称密钥密码体制在数据通信应用中被广泛应用,由于其加密和解密速度快,处理方式简单,但其存在密钥管理不安全、存在重放攻击和算法本身的安全性问题。
在实际应用中,
需要权衡安全和效率,选择合适的密码体制以确保数据的安全性和传输效率。