实验三 酵母RNA的提制(浓盐法)
- 格式:doc
- 大小:238.01 KB
- 文档页数:2
酵母RNA的提取及含量测定一、实验目的与要求1、了解并掌握稀碱法提取RNA的原理和方法;2、了解测量核酸浓度不同方法的原理;3、熟悉和掌握紫外吸收法测定核酸含量原理和操作方法;4、熟悉紫外分光光度计的基本原理和使用方法。
二、实验原理1、RNA提取原理:由于RNA的来源和种类很多,因而提取制备方法也很各异。
一般有苯酚法、去污剂法和盐酸胍法。
其中苯酚法又是实验是最常用的。
组织匀浆用苯酚处理并离心后,RNA即溶于上层被酚饱和的水相中,DNA和蛋白质则留在酚层中。
向水层加入乙醇后,RNA即以白色絮状沉淀析出,此法能较好的除去DNA和蛋白质。
上述方法提取的RNA具有生物活性。
工业上常用稀碱法和浓盐法提取RNA,用这两种方法所提取的核酸均为变性的RNA,主要用作制备核苷酸的原料,其工艺比较简单。
浓盐法使用10%左右氯化钠溶液,90℃提取3-4h,迅速冷却,提取液经离心后, 上清液用乙醇沉淀RNA。
稀碱法使用稀碱使酵母细胞裂解,然后用酸中和,除去蛋白质和菌体后的上清液用乙醇沉淀RNA或调pH2.5利用等电点沉淀。
酵母含RNA 达2.67-10.0%,而DNA含量仅为0.03-0.516%,为此,提取RNA多以酵母为原料。
2、测定RNA含量的方法:(1)紫外吸收法原理:核酸具有吸收紫外线的性质,在波长260纳米处有最大吸收,且在一定浓度范围内光吸收值与浓度成正比(0—50微克/毫升),符合朗伯-比尔定律。
优点样品用量少,不用显色,测完后样品可以继续使用。
(2)地衣酚显色法:核酸与浓盐酸共热,放生降解,生成糠醛,后者与地衣酚反应,在三价铁离子或二价铜离子作用下,生成鲜绿色的复合物,670纳米处有最大吸收,且光吸收值与浓度成正比,符合朗伯-比尔定律。
缺点反应特异性差,易受干扰。
(3)定磷法:在酸性环境中,定磷试剂中的钼酸铵以钼酸形式与样品中无机磷酸生成磷钼酸,当有还原剂存在时,磷钼酸立即被还原生成蓝色的还原产物--钼蓝,其最大吸收在660纳米处,当无机磷含量在每毫升1-25微克范围内,光吸收与含磷量成正比。
华南师范大学实验报告学生姓名吴志军学号20082502046专业生物工程年级、班级08工程1班课程名称下游技术实验项目酵母RNA提取实验类型验证设计综合实验时间2011年10月17 日实验指导老师江学文实验评分实验三酵母RNA的提取及含量测定一、实验目的与要求1、了解并掌握稀碱法提取RNA的原理和方法。
2、熟悉和掌握紫外吸收法测定核酸含量原理和操作方法,3、熟悉紫外分光光度计的基本原理和使用方法。
二、实验原理由于RNA的来源和种类很多,因而提取制备方法也很各异。
一般有苯酚法、去污剂法和盐酸胍法。
其中苯酚法又是实验是最常用的。
组织匀浆用苯酚处理并离心后,RNA即溶于上层被酚饱和的水相中,DNA和蛋白质则留在酚层中。
向水层加入乙醇后,RNA即以白色絮状沉淀析出,此法能较好的除去DNA和蛋白质。
上述方法提取的RNA具有生物活性。
工业上常用稀碱法和浓盐法提取RNA,用这两种方法所提取的核酸均为变性的RNA,主要用作制备核苷酸的原料,其工艺比较简单。
浓盐法使用10%左右氯化钠溶液,90℃提取3-4h,迅速冷却,提取液经离心后, 上清液用乙醇沉淀RNA。
稀碱法使用稀碱使酵母细胞裂解,然后用酸中和,除去蛋白质和菌体后的上清液用乙醇沉淀RNA或调pH2.5利用等电点沉淀。
酵母含RNA达2.67-10.0%,而DNA含量仅为0.03-0.516%,为此,提取RNA多以酵母为原料。
核酸、核苷酸及其衍生物的分子结构中的嘌呤、嘧啶碱基具有共轭双健系统(-C=C一C=C-),能够强烈吸收250-280nm 波长的紫外光。
核酸(DNA,RNA)的最大紫外吸收值在260nm 处。
遵照Lambert-Beer 定律,可以从紫外光吸收值的变化来测定核酸物质的含量。
在不同pH 溶液中嘌呤、嘧啶碱基互变异构的情况不同,紫外吸收光也随之表现出明显的差异,它们的摩尔消光系数也随之不同。
所以,在测定核酸物质时均应在固定的pH溶液中进行。
核酸的摩尔消光系数(或吸收系数),通常以ε(ρ)来表示,即每升含有一摩尔核酸磷的溶液在260nm 波长处的消光值(即光密度,或称为光吸收)。
实验三酵母核糖核酸的提取及测定—预习报告一、研究背景生物大分子物质通常是指动物植物微生物进行新陈代谢时所产生的蛋白质和核酸等有机化合物。
它不仅是生物科学工作者研究者的重要对象,且与化学、医学和食品等工业部门有密切关系。
在科研和医学方面,探讨结构与功能、防治某些疾病时常需要较纯的生物大分子物质。
然而这类物质往往与自然界存在的各种不同的化合物结合在一起或自身之间相互结合在一起,离体后稳定性较差,含量偏低,且提取的材料复杂,因此纯化的方法也很多。
微生物是工业上大量生产核酸的原料,其中酵母最为理想。
本次实验以干酵母粉为实验材料,提取RNA,并测定其含量。
二、研究目标掌握核酸分离纯化的基本设计思想及主要操作细节和生物制品开发的基本思路。
三、研究策略酵母细胞中RNA通常与蛋白质结合。
要提取RNA就要破细胞壁,让它释放出来。
浓盐法通过改变细胞膜的通透性释放出胞内物质,然后沸水浴使RNA水解酶失活。
再通过调节pH将RNA充分沉淀,洗涤,干燥,测量。
四、研究方案及可行性分析浓盐法是在加热条件下,利用高浓度的盐改变细胞膜的通透性,使RNA释放出来。
提取RNA时需注意掌握温度,直接在90~100℃浸提,避免在20~70℃之间的时间过长,磷酸二酯酶和磷酸单酯酶作用活跃的温度范围,会使RNA因降解而降低提取率。
洗涤沉淀时要反复抽提,离心以纯化RNA。
测定提取的核酸含量,只需测定组成核苷酸的任意一种组分即可。
碱基在260nm有光吸收,采用紫外吸收法可测定核酸含量。
五、具体实验设计1、所需主要材料:食品用干酵母粉;试剂:10%NaCl, 6MHCl , 95%乙醇,2%氨水,RNA沉淀剂(0.5g钼酸铵+193ml水+7ml70%过氯酸);仪器设备:烘箱,离心机,天平,紫外分光光度计,移液器,恒温水浴锅,玻璃匀浆器,pH计。
主要器皿:研钵,离心管,容量瓶25ml 50ml;具塞试管;三角瓶;小烧杯。
2、具体操作步骤1.提取:称取7g酵母粉,于研钵中小心研磨成面粉状粉末,转移至三角瓶。
酵母RNA的提取实验报告实验报告:酵母RNA的提取一、实验目的1.学习和掌握酵母RNA的提取基本原理和方法。
2.了解RNA在生物体内的生物功能及其重要性。
3.培养实验技巧和操作能力,提高实验素养。
二、实验原理RNA(核糖核酸)是生物体内的重要生物分子之一,它参与蛋白质合成、基因表达等重要生命活动。
酵母是一种常用的真核生物模型,其RNA提取方法与人体、植物等真核生物类似。
本实验采用氯仿-异戊醇法提取酵母RNA。
主要步骤包括细胞破碎、离心分离、有机溶剂抽提、乙醇沉淀等。
三、实验步骤1.准备试剂和器材(1)试剂:氯仿、异戊醇、无水乙醇、DEPC水、RNA酶。
(2)器材:研钵、离心管、移液器、玻璃棒、氮气吹干器、分光光度计等。
2.酵母细胞破碎(1)在冰上用研钵将酵母细胞研磨成粉末。
(2)加入适量DEPC水,搅拌均匀。
(3)用玻璃棒将细胞碎片挑出,弃去上清液。
(4)加入适量DEPC水,搅拌均匀,重复上述步骤,直到细胞完全破碎。
3.离心分离(1)将破碎的酵母细胞溶液转移到离心管中。
(2)在4℃下,以12000rpm的转速离心15分钟。
4.有机溶剂抽提(1)用移液器将上清液小心地转移到另一个离心管中。
(2)加入等体积的氯仿-异戊醇混合液(氯仿:异戊醇=24:1),用玻璃棒搅拌均匀。
(3)在4℃下,以12000rpm的转速离心15分钟。
5.乙醇沉淀(1)将上清液转移到新的离心管中,并加入等体积的无水乙醇,用玻璃棒搅拌均匀。
(2)在4℃下,以12000rpm的转速离心15分钟。
6.洗涤和干燥(1)用移液器小心地将上清液吸出,留下沉淀物。
(2)加入适量75%乙醇,用玻璃棒搅拌均匀,去除残留的乙醇和水分。
(3)在氮气吹干器下将沉淀物吹干约5分钟。
7.RNA溶解与定量(1)加入适量DEPC水,将沉淀物溶解。
(2)用分光光度计测定RNA溶液的吸光度值(A260nm),计算RNA浓度。
四、实验结果与分析表1:酵母RNA提取结果本实验通过氯仿-异戊醇法成功地提取出了高浓度的酵母RNA。
酵母RNA的提取(浓盐法)及成分鉴定一、实验目的:1、掌握浓盐法提取RNA的原理和方法。
2、理解等电点沉淀分离两性物质的原理和基本操作。
3、掌握钼蓝反应的原理,了解戊糖和嘌呤检验的原理。
二、实验原理:1、浓盐法提取酵母RNA:酵母中RNA含量特别多,约占干重的3~10%,DNA含量很少,约占干重的0.5%或更少,且菌体容易收集(即可利用发酵工业的下脚料),因此多采用酵母来提取RNA。
;本实验采用工业上常用的浓盐法,其基本原理是在浓盐加热的条件下酵母细胞壁通透性增加或发生破损,且加热又可使酵母中蛋白质变性沉淀,使RNA以可溶性钠盐的形式游离析出。
离心去除菌体,将上清液调至RNA的等电点(pH2~2.5),使RNA沉淀析出,离心收集沉淀。
2、RNA成分鉴定:RNA酸解,其水解产物含有碱基+核糖+磷酸;碱基(嘌呤):磷酸:核糖:戊糖在约12%的盐酸中可以发生脱水缩合成为糠醛,糠醛可与5-甲基间苯二酚(又称苔黑酚、地衣酚)缩合生成蓝绿色的物质。
该反应用于检验戊糖的存在。
三、实验步骤:1.浓盐法提取酵母RNA(1)RNA的提取:取干酵母一包(约1~2g)放入100mL锥形瓶内,加入10%NaCl溶液30mL,搅匀后将锥形瓶固定在水浴锅内,于沸水浴中加热40分钟。
(2)RNA的离心分离:将上述锥形瓶从沸水浴中取出,立即用自来水冷却至室温。
然后将锥形瓶内溶液倒入离心管,平衡后3000转/分离心10分钟,收集上清液。
(3)RNA的收集:将上清液小心倾入50mL烧杯内,在冰浴中冷却。
用6mol/LHCl溶液调pH值至RNA的等电点2.0~2.5(一滴一滴的加入,边加边搅拌,随着pH下降,白色RNA沉淀逐渐增加,至等电点时沉淀最多)。
静置冰浴中5分钟使沉淀完全,颗粒变大。
再经3000转/分离心10分钟,收集沉淀。
2.RNA成分鉴定(1)溶解RNA:在离心所得的含RNA的离心管中加入1滴蒸馏水,用玻棒把RNA搅成糊状,再加入蒸馏水至mL,然后一边搅拌一边加入5%氨水1滴,将溶液调至pH=6,使白色RNA沉淀完全溶解,成为RNA溶液。
酵母rna的提取实验报告酵母RNA的提取实验报告引言:RNA是一种重要的生物分子,它在细胞内承担着转录和翻译的重要功能。
在分子生物学研究中,提取RNA是一项常见的实验操作。
本实验旨在通过提取酵母细胞中的RNA,探究RNA的提取方法和应用。
材料与方法:1. 实验材料:酵母细胞、细胞裂解缓冲液、RNA提取试剂盒、异丙醇、氯仿、异丁醇、乙醇、载玻片、显微镜等。
2. 实验步骤:a. 酵母细胞的培养与收获:将酵母细胞培养于培养基中,通过离心将细胞收获。
b. 细胞裂解:将收获的细胞用细胞裂解缓冲液裂解,以释放RNA。
c. RNA提取:使用RNA提取试剂盒,按照说明书中的步骤进行RNA提取。
d. 纯化RNA:通过异丙醇沉淀和氯仿萃取,去除DNA和蛋白质等杂质。
e. 洗涤与干燥:使用异丁醇和乙醇进行洗涤,最后将RNA干燥。
f. 检测RNA:将提取得到的RNA溶解于适当的缓冲液中,使用紫外可见光谱仪或显微镜观察RNA的浓度和纯度。
结果与讨论:通过上述实验步骤,我们成功地提取到了酵母细胞中的RNA。
在实验过程中,我们注意到以下几点:1. 细胞裂解的缓冲液选择:细胞裂解缓冲液的选择对RNA提取至关重要。
合适的缓冲液可以有效地破坏细胞膜,释放细胞内的RNA。
在本实验中,我们选择了一种经充分验证的缓冲液,以确保细胞能够完全裂解。
2. RNA提取试剂盒的使用:RNA提取试剂盒是一种常用的RNA提取方法。
它通过特定的试剂和离心步骤,将RNA从细胞裂解物中分离出来。
在本实验中,我们按照试剂盒的说明书进行操作,成功地提取到了RNA。
3. RNA的纯化:RNA的纯化是为了去除细胞裂解物中的杂质,如DNA和蛋白质。
在本实验中,我们使用了异丙醇沉淀和氯仿萃取的方法,成功地纯化了RNA。
这些方法可以有效地去除DNA和蛋白质,提高RNA的纯度。
4. RNA的检测:在实验中,我们使用紫外可见光谱仪或显微镜对提取得到的RNA进行检测。
通过观察RNA的浓度和纯度,我们可以评估提取的RNA是否适用于后续的实验操作。
实验三酵母RNA的提取、测定及组成成分的分析Ⅰ酵母RNA的提取——浓盐法【目的和要求】了解用浓盐法提纯RNA的基本原理和方法【基本原理】核酸是一类不稳定的生物大分子,在制备过程中很容易发生降解。
因此,要使制得的核酸尽可能保持其在生物体内的天然状态,制备核酸必须采取温和的条件,例如避免过酸碱,避免剧烈的搅拌,防止核酸降解酶类的作用。
由于RNA种类较多,所以制备方法也各异。
工业上制备RNA一般选用成本较低、适宜于大规模操作的稀碱法和浓盐法。
稀碱法是用1%NaOH溶液,将细胞壁溶解,用酸中和,升高温度使蛋白质变性,将蛋白质与核酸分离,然后除去菌体,将pH调至RNA的等电点(pH2.5),使RNA沉淀出来。
稀碱法的优点是抽提时间短,但RNA在此条件下不稳定,容易分解。
浓盐法是用10%NaCL溶液改变细胞膜的通透性,使核酸从细胞内释放出来。
用浓盐法提取RNA,则就注意掌握温度,避免在20~70℃之间停留时间过长,因为这是磷酸二酯酶和磷酸单酯酶作用活跃的温度范围,会使RNA因降解而降低提取率。
利用加热至90~100℃,使蛋白质变性,破坏该酶类,有利于RNA的提取。
若要提取接近天然状态RNA,可采用苯酚法或氯仿-异戊醇法去蛋白,然后用乙醇沉淀RNA。
离心收集。
本实验采用浓盐法(10% NaCL)【操作方法】1.提取称取干酵母粉2g于50mL三角瓶内。
加10% Nacl溶液10mL,搅拌均匀,然后于沸水浴中提取半小时。
2.分离将上述提取液取出,用自来水冷却,分装在离心管内,以3500r/min离心10min,使提取液与菌体残渣等分离。
3.沉淀RNA将离心得到的上清液倾于50mL烧杯内,并置于放有冰块250mL烧杯中冷却。
待溶液冷至10℃以下时,在搅拌下小心地用6mol/L HCL溶液调节pH至2.0~2.5。
随着pH值的下降,溶液中白色沉淀逐渐增加,到等电点时沉淀量最多(注意严格控制pH值)。
调好后继续于冰浴中静置10min,使沉淀充分,颗粒变大。
酵母rna的提取实验报告酵母RNA的提取实验报告。
实验目的,通过实验研究酵母RNA的提取方法,为后续的基因表达调控研究提供技术支持。
实验材料与方法:1. 实验材料,酵母细胞培养物、TRIzol试剂、异丙醇、氯仿、乙醇、DEPC水等。
2. 样品制备,取酵母培养物,离心收集酵母细胞,冰上洗涤去除培养基。
3. 细胞破碎,向酵母细胞中加入TRIzol试剂,用离心管摇匀,静置离心管5分钟。
4. RNA提取,加入氯仿,摇匀,离心分离上清液,上清液转移至新离心管中,加入异丙醇沉淀RNA。
5. RNA沉淀,离心沉淀RNA,弃上清液,加入乙醇洗涤RNA,再次离心沉淀RNA。
6. RNA溶解,用DEPC水溶解RNA,测定纯度和浓度。
实验结果:1. 细胞破碎,经过加入TRIzol试剂处理后,酵母细胞成功破碎,形成混浊的混合液。
2. RNA提取,通过氯仿萃取法,成功分离出上清液中的RNA,得到透明的上清液。
3. RNA沉淀,加入异丙醇后,观察到RNA在离心管底部形成白色沉淀。
4. RNA溶解,最终得到溶解度较高的RNA样品,纯度和浓度符合实验要求。
实验分析:本次实验采用的酵母RNA提取方法较为简单,通过TRIzol试剂的使用,成功实现了酵母细胞的破碎和RNA的提取。
氯仿的加入有效分离出RNA,异丙醇的沉淀步骤也取得了良好的效果。
最终得到的RNA样品纯度高,浓度适宜,可以用于后续的实验研究。
实验结论:本实验成功建立了一种适用于酵母细胞的RNA提取方法,为后续的基因表达调控研究提供了可靠的技术支持。
该方法操作简便,提取效果良好,适用于大规模样品的提取工作。
参考文献:1. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987Apr;162(1):156-9.2. Schmitt ME, Brown TA, Trumpower BL. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990 Jan25;18(10):3091-2.。
实验五酵母核糖核酸的提取及组分鉴定一、实验目的1、了解并掌握稀碱法提取核糖核酸(RNA)的原理和方法;2、掌握苔黑酚显色法鉴定RNA组分的基本原理和操作方法。
二、实验原理酵母中含有丰富的RNA,含量达2.67%~10.0%,而DNA含量很少,仅为0.03%~0.516%,为此,提取RNA多以酵母为原料。
提取制备RNA的方法较多,一般有苯酚法,去污剂法、浓盐法和稀碱法等。
其中苯酚法是实验中最常见的方法。
工业上常用稀碱法和浓盐法提取RNA,用这两种方法所提取的核酸均为变性的RNA,主要用作制备核苷酸的原料,其工艺比较简单。
本实验用稀碱法提取RNA。
先用稀碱(本实验用0.04mol/L的NaOH溶液)使酵母细胞裂解,RNA可溶于稀碱溶液,在碱性提取液中加入酸性乙醇可使核糖核酸沉淀出来,由此即可得到RNA的粗制品。
RNA含有核糖、嘌呤碱,嘧啶碱和磷酸各组分,加入硫酸煮沸可使RNA水解,从水解液中可用定糖、定磷和加银沉淀等方法测出上述组分的存在。
三、仪器、试剂和材料1、仪器(1)100mL烧杯1个;(2)移液管:2.0mL1个,5.0mL1个,1.0mL4个;(3)量筒:10mL1个,50mL1个;(4)试管:15mL4个;(5)恒温水浴锅(6)离心机;(7)布氏漏斗;(8)抽滤瓶;(9)研钵;(10)滴管;(11)洗耳球;(12)电子天平。
2、试剂(1)0.04mol/L的NaOH溶液;(2)95%乙醇;(3)乙醚;(4)1.5mol/L的硫酸;(5)浓氨水;(6)0.1mol/L的硝酸银;(7)酸性乙醇溶液:0.3mL浓盐酸加入30mL乙醇中;(8)三氯化铁浓盐酸溶液:2mL10%的三氯化铁溶液加到400mL浓盐酸中。
(9)苔黑酚乙醇溶液:称取6g苔黑酚溶于100mL 95%乙醇中(可在冰箱中保存1个月);(10)2.5%钼酸铵溶液3、材料干酵母粉四、操作步骤1、酵母RNA 提取称2g干酵母粉置于研钵中,加少许石英砂和2mL0.04mol/LNaOH溶液,在研钵中充分研磨,然后将匀浆液转移到100mL的烧杯中,再用8mL0.04mol/LNaOH溶液分两次洗涤研钵,洗涤液并入匀浆液中,沸水浴上加热30min,经常搅拌。
酵母rna的提取实验报告实验目的:本实验旨在通过提取酵母细胞中的RNA,研究酵母细胞的基因表达情况。
实验步骤:1. 准备工作:将所需试剂及设备准备好。
包括酵母细胞培养液、收集酵母细胞的离心管、琼脂糖、Rnase-free水、DTE溶液、Tris-HCl缓冲液、氯仿、异丙醇、盐溶液等。
2. 收集酵母细胞:将酵母培养液离心,将细胞沉淀至离心管中。
使用离心机将细胞沉淀。
3. 细胞破碎:向离心管中加入30μL DTE溶液,充分混合。
将离心管置于冰上,加入等体积的琼脂糖。
轻轻翻转管子,使细胞与琼脂糖充分混合。
继续在冰上离心。
4. 分层:将离心管放入冰上15分钟,离心10000g,4°C,15分钟,将上清转移至新离心管中。
5. 分液:加入等体积的Tris-HCl缓冲液,混合均匀。
加入等体积的氯仿,轻轻翻转混合。
在冰上离心15分钟,以分离上层水相和下层有机相。
6. 收集RNA:将上层水相转移至新离心管中,加入等体积的异丙醇,充分混合。
在-20°C放置30分钟,使RNA充分沉淀。
离心12000g,4°C,15分钟,将上清抽离。
7. 洗涤:加入70%乙醇洗涤一次,离心12000g,4°C,5分钟,弃上清。
重复此步骤一次。
8. 干燥:将离心管开盖,室温下干燥15分钟。
加入Rnase-free水,重悬RNA。
实验结果:完成实验后,得到1μg/μL浓度的酵母RNA。
使用NanoDrop 光度计检测RNA纯度,A260/A280比值为2.0,显示RNA被成功提取。
使用琼脂糖凝胶电泳分析酵母RNA,显示主要为2个明显的条带,符合预期。
实验结论:本实验成功地提取了酵母细胞中的RNA,并证实RNA的纯度和完整性。
这为进一步研究酵母细胞的基因表达提供了基础。
实验三酵母核糖核酸的提取及测定(预习报告范文)生物化学实验预习报告一、研究背景RNA(核糖核酸)普遍存在于动物、植物、微生物及某些病毒和噬菌体内,是遗传信息的载体,由数量不等的核糖核苷酸通过磷酸二酯键连接而成。
由于RNA在细胞内能够行使各种各样的生物功能,属酸性高分子化合物,参与蛋白质生物合成,调控基因表达,作为核酶催化生化反应活性,对维持生物体的正常发育有着重要作用。
此外,由于RNA还具有较强的保湿性、抗氧化性、强烈的紫外光吸收性、天然助长性以及抗皱防衰、防病治癌等特殊功能,[1]人们在研究基础理论的同时逐渐开始对RNA制剂的开发及应用进行探索。
RNA制剂是以RNA及其衍生物为材料,经加工制成的产品,主要包括从富含RNA的生物体中的提取物、自溶物或者降解产物加工制成的各种商品。
目前,人们已经开始逐渐接受含RNA制剂的各种产品,需求量日益攀升,RNA制剂已广泛应用于医药、食品、农业、日化、环境保护等方面,具有广阔的商业前景,形成了一大新兴产业。
但不管是理论研究还是实际应用,都面临一个问题:RNA往往与细胞内的其他化合物混在一起,离体之后稳定性差、含量低,采用廉价、合适的手段分离纯化得到RNA显得至关重要。
当然,人们已经摸索出来了多种多样的方法,这些方法各有特点,但其基本的思路和程序大致相似,基本战略也是有规律可循的。
另外,近年来RNA试剂盒的出现使方便、快速提取纯度高、完整性好的RNA分子也实现了可能。
二、研究目标1.了解RNA制剂开发应用的前景和基本思路;2.掌握RNA分离纯化的设计思想及主要的操作细节;3.学习酵母RNA提取和测定的操作方法。
三、研究策略1.选材即选取富含RNA的生物材料,微生物由于其原料易获得性被广泛应用于工业上大量生产RNA的原料。
2.提取提取RNA的方法有很多种,如浓盐法、稀碱法、混合盐法、苯酚法、表面活性剂法等[2],但在工业生产上应用最多的还是稀碱法和浓盐法。
两种方法的原理不同,浓盐法是原理是在加热条件下,高浓度NaCl改变细胞膜的通透性,使RNA释放出来;稀碱法是利用碱使微生物的细胞壁溶解,释放RNA。
酵母RNA的提取实验试剂配制
1) 0.04 mol/L NaOH溶液200 mL
称取0.32 g NaOH,溶于200 mL水溶液中,装入200 mL试剂瓶。
2) 3 mol/L 乙酸溶液50 mL
量取8.6 mL冰乙酸,溶于41.4 mL水溶液中,装入50 mL试剂瓶。
3) 酸性乙醇溶液200 mL
量取2 mL浓盐酸,溶于198 mL无水乙醇溶液中,装入200 mL试剂瓶。
4) 1.5 mol/L H2SO4溶液200 mL
量取16.3 mL 浓硫酸,溶于183.7 mL水溶液中,装入200 mL试剂瓶。
(首先在250mL烧杯中放入150 mL水,在搅拌的情况下将16.3 mL 浓硫酸慢慢加入到水中,最后定容到200 mL即可)
5) 2.5% 钼酸铵溶液50 mL
称取1.25 g 钼酸铵,溶于50 mL水溶液中,装入50 mL试剂瓶。
6) 4% 维生素C溶液50 mL
称取2 g 维生素C,溶于50 mL水溶液中,装入50 mL试剂瓶。
7) 0.1% 3,5-二羟基甲苯溶液(以FeCl3的浓盐酸溶液为溶剂)50 mL 称取0.05 g 三氯化铁,溶于50 mL 浓盐酸中。
待完全溶解后,再称取0.05 g 3,5-二羟基甲苯,溶于刚才配好的溶液中,装入50 mL试剂瓶。
8) 5% AgNO3溶液50 mL
称取2.5 g AgNO3,溶于50 mL水溶液中,装入50 mL试剂瓶。
实验三酵母RNA的提制(浓盐法)一、目的学习和掌握从酵母中提制RNA的原理和方法,以加深对核酸性质的认识。
二、原理酵母含RNA 2.67%~10.0%,DNA很少(0.03%~0.516%),而且菌体容易收集,RNA 也易于分离,所以选用酵母为实验材料。
RNA提制过程是先使RNA从细胞中释放,并使它和蛋白质分离,然后将菌体除去。
再根据核酸在等电点时溶解度最小的性质,将pH调至2.0~2.5,使RNA沉淀,进行离心收集。
提取RNA的方法很多,在工业生产上常用的是稀碱法和浓盐法。
前者利用稀碱溶解细胞壁,使RNA释放出来,这种方法提取时间短,但RNA在此条件下不稳定,容易分解;后者在加热的条件下,利用高浓度的盐改变细胞膜的透性,使RNA释放出来,此法易掌握,产品颜色较好。
三、仪器、试剂和材料1.仪器(1)量筒(50ml)(2)三角瓶(100ml)(3)烧杯(250ml,50ml,10ml)(4)布氏漏斗(40mm)(5)吸滤瓶(125ml)(6)表面皿(6cm)(7)751型分光光度计(8)离心机(4000r/min)(9)恒温水浴(10)药物天平(11)烘箱2.试剂(l)NaCl(化学纯)(2)6mol/L HCI(3)95%乙醇(化学纯)3.材料鲜酵母或干酵母;pHO.5~5.0的精密试纸。
四、操作步骤1.提取称取鲜酵母159或干酵母粉2.5g,倒入100ml三角瓶中,加NaCl 2.5g,水25ml,搅拌均匀,置于沸水浴中提取lh。
2.分离将上述提取液用自来水冷却后,装入大离心管内,以4000r/min离心10min,使提取液与菌体残渣等分离。
3.沉淀RNA将离心得到的上清液倾于50ml烧杯内,并置入放有冰块的250ml烧杯中冷却.待冷至10℃以下时,用6mol/L HCI 小心地调节pH值至2.0~2.5(注意严格控制pH)。
调好后继续于冰水中静置10min,使沉淀充分,颗粒变大。
4.洗涤和抽滤上述悬浮液以4000r/min离心10min,得到RNA沉淀。
实验三酵母RNA的提制(浓盐法)
一、目的
学习和掌握从酵母中提制RNA的原理和方法,以加深对核酸性质的认识。
二、原理
酵母含RNA 2.67%~10.0%,DNA很少(0.03%~0.516%),而且菌体容易收集,RNA 也易于分离,所以选用酵母为实验材料。
RNA提制过程是先使RNA从细胞中释放,并使它和蛋白质分离,然后将菌体除去。
再根据核酸在等电点时溶解度最小的性质,将pH调至2.0~2.5,使RNA沉淀,进行离心收集。
提取RNA的方法很多,在工业生产上常用的是稀碱法和浓盐法。
前者利用稀碱溶解细胞壁,使RNA释放出来,这种方法提取时间短,但RNA在此条件下不稳定,容易分解;后者在加热的条件下,利用高浓度的盐改变细胞膜的透性,使RNA释放出来,此法易掌握,产品颜色较好。
三、仪器、试剂和材料
1.仪器
(1)量筒(50ml)
(2)三角瓶(100ml)
(3)烧杯(250ml,50ml,10ml)
(4)布氏漏斗(40mm)
(5)吸滤瓶(125ml)
(6)表面皿(6cm)
(7)751型分光光度计
(8)离心机(4000r/min)
(9)恒温水浴
(10)药物天平
(11)烘箱
2.试剂
(l)NaCl(化学纯)
(2)6mol/L HCI
(3)95%乙醇(化学纯)
3.材料
鲜酵母或干酵母;pHO.5~5.0的精密试纸。
四、操作步骤
1.提取
称取鲜酵母159或干酵母粉2.5g,倒入100ml三角瓶中,加NaCl 2.5g,水25ml,搅拌均匀,置于沸水浴中提取lh。
2.分离
将上述提取液用自来水冷却后,装入大离心管内,以4000r/min离心10min,使提取液与菌体残渣等分离。
3.沉淀RNA
将离心得到的上清液倾于50ml烧杯内,并置入放有冰块的250ml烧杯中冷却.待冷至10℃以下时,用6mol/L HCI 小心地调节pH值至2.0~2.5(注意严格控制pH)。
调好后继续于冰水中静置10min,使沉淀充分,颗粒变大。
4.洗涤和抽滤
上述悬浮液以4000r/min离心10min,得到RNA沉淀。
将沉淀物放在10ml小烧杯内,用95%的乙醇5~10ml充分搅拌洗涤,然后在布氏漏斗上用射水泵抽气过滤,再用95%乙醇5~10ml淋洗3次。
5.干燥
从布氏漏斗上取下沉淀物,放在6cm表面皿上,铺成薄层,置于80℃烘箱内干燥。
将干燥后的RNA制品称重,存放于干燥器内。
6.含量测定
将干燥后RNA产品配制成浓度为10—50pg/ml的溶液,在751型分光光度计上测定其260nm处的吸光度,按下式计算RNA含量:
式中,A260为260nm处的吸光度;L为比色杯光径(cm);0.024为lml溶液含lμg RNA的吸光度。
五、结果处理
根据含量测定的结果按下式计算提取率
六、注意事项
1.用浓盐法提取RNA时应注意掌握温度,避免在20~27℃之间停留时间过长,因为这是磷酸二酯酶和磷酸单酯酶作用活跃的温度范围,会使RNA降解而降低提取率。
2.加热至90~100℃使蛋白质变性,破坏两类磷酸酯酶,有利于RNA的提取。
七、思考题
1.沉淀RNA之前为什么要冷却上清液至10℃以下?
2.为什么要将pH调至2.0~2.5?
参考文献
文树基。
主编基础生物化学实验指导.西安:陕西科学技术出版社,1994
西北农业大学主编基础生物化学实验指导。
西安:陕西科学技术出版社,1986
袁玉苏,朱婉华,陈钧辉编生物化学实验北京:人民教育出版社,1979
朱检,曹凯鸣,周M庞,蔡武城,袁厚积编著.生物化学实验上海:上海科学技术出版社,1981。