单元测试卷(一)--导数及其应用 -答案
- 格式:doc
- 大小:385.50 KB
- 文档页数:5
《导数及其应用》单元测试题姓名 得分一、选择题(本大题共12小题,共60分,只有一个答案正确)1.函数()22)(x x f π=的导数是 ( ) A x x f π4)(=' B x x f 24)(π=' C x x f 28)(π=' D x x f π16)(='2.函数xx y 142+=单调递增区间是 ( ) A .),0(+∞ B .)1,(-∞ C .),21(+∞ D .),1(+∞3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时 ( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则 ( )A. 10<<b B . 1<b C .0>b D . 21<b 5.设x x x f +=3)(,则⎰-22)(dx x f 的值等于 ( )A.0B.8C.⎰20)(dx x f D.⎰20)(2dx x f 6.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为 ( ) A.294e B.22e C.2e D.22e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是 ( )8.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是 ( )A .),3[]3,(+∞--∞B .]3,3[-C .),3()3,(+∞--∞D .)3,3(-9.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的 ( )A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 10.函数()323922y x x x x =---<<有 ( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值11.设f (x )、g(x )分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(2)=0.则不等式f (x )g(x )<0的解集是( ) A .(-2,0)∪(2,+∞) B .(-2,0)∪(0, 2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0, 2)A .1个B .2个C .3个D .4个12. 下列定积分值为1的是( ) A .10tdt ⎰ B 。
第一章导数及其应用1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于().A.4 B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.5.已知函数y=2x,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.导数练习题 2015年春第 3 页 共 16 页1.1.3 导数的几何意义1.已知曲线y =12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为( ).A .30°B .45°C .135°D .165°2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ). A .2 B .4 C .6+6Δx +2(Δx )2 D .63.设y =f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-24.曲线y =2x -x 3在点(1,1)处的切线方程为________. 5.设y =f (x )为可导函数,且满足条件 lim x →0f (1)-f (1-x )2x=-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.6.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.7.设函数f (x )在x =x 0处的导数不存在,则曲线y =f (x )( ).A .在点(x 0,f (x 0))处的切线不存在B .在点(x 0,f (x 0))处的切线可能存在C .在点x 0处不连续D .在x =x 0处极限不存在 8.函数y =-1x 在⎝ ⎛⎭⎪⎫12,-2处的切线方程是( ).A .y =4xB .y =4x -4C .y =4x +4D .y =2x -49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=1x-1上两点A⎝⎛⎭⎪⎫2,-12、B(2+Δx,-12+Δy),当Δx=1时割线AB的斜率为________.11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展)已知抛物线y=ax2+bx+c通过点P(1,1),Q(2,-1),且在点Q 处与直线y=x-3相切,求实数a、b、c的值.导数练习题2015年春1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x)=x2,则f′(3)().A.0 B.2x C.6 D.92.f(x)=0的导数为().A.0 B.1 C.不存在D.不确定3.曲线y=x n在x=2处的导数为12,则n等于().A.1 B.2 C.3 D.44.设函数y=f(x)是一次函数,已知f(0)=1,f(1)=-3,则f′(x)=________. 5.函数f(x)=x x x的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x-7平行.7.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2010(x)=().A.sin x B.-sin x C.cos x D.-cos x第 5 页共16 页8.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( ).A .0个B .1个C .2个D .3个 9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________. 10.曲线y =9x 在点M (3,3)处的切线方程是________.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值.12.(创新拓展)求下列函数的导数:(1)y =log 4x 3-log 4x 2;(2)y =2x 2+1x -2x ;(3)y =-2sin x 2(2sin 2x4-1).导数练习题 2015年春第 7 页 共 16 页第2课时 导数的运算法则及复合函数的导数1.函数y =cos x1-x的导数是( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ). A.193 B.103 C.133 D.163 3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x ,则f ′(x )等于( ).A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )24.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________. 5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y=(x-a)(x-b)在x=a处的导数为().A.ab B.-a(a-b) C.0 D.a-b8.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=().A.a B.±a C.-a D.a29.若f(x)=(2x+a)2,且f′(2)=20,则a=________.10.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1)处的切线与直线L的距离为5,求直线L的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.导数练习题 2015年春第 9 页 共 16 页1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( ). (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数;(4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个 D .4个 2.函数y =12x 2-ln x 的单调减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ). A .a ≥1 B .a =1 C .a ≤1 D .0<a <1 4.函数y =ln(x 2-x -2)的递减区间为________.5.若三次函数f (x )=ax 3+x 在区间(-∞,+∞)内是增函数,则a 的取值范围是________.6.已知x >1,证明:x >ln(1+x ).7.当x >0时,f (x )=x +2x 的单调递减区间是( ).A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 8.已知函数y =f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则y =f (x )的图象可能是( ).9.使y =sin x +ax 为R 上的增函数的a 的范围是________. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数y =f (x )的递增区间.12.(创新拓展)求下列函数的单调区间,并画出大致图象: (1)y =x +9x ; (2)y =ln(2x +3)+x 2.导数练习题 2015年春第 11 页 共 16 页1.3.2 函数的极值与导数1.下列函数存在极值的是( ).A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 32.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值33.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点4.设方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是________.5.已知函数y =x 2x -1,当x =________时取得极大值________;当x =________时取得极小值________.6.求函数f (x )=x 2e -x 的极值.7.函数f (x )=2x 3-6x 2-18x +7( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是().A.y=x3+6x2+9x B.y=x3-6x2+9xC.y=x3-6x2-9x D.y=x3+6x2-9x9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1)求a,b的值;(2)求函数y的极小值.12.(创新拓展)设函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.导数练习题 2015年春第 13 页 共 16 页1.3.3 函数的最大(小)值与导数1.函数y =x e -x ,x ∈[0,4]的最大值是( ).A .0 B.1e C.4e 4 D.2e 22.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ).A .0≤a <1B .0<a <1C .-1<a <1D .0<a <123.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( ).A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )4.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________. 5.函数f (x )=sin x +cos x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大、最小值分别是________. 6.求函数f (x )=x 5+5x 4+5x 3+1在区间[-1,4]上的最大值与最小值.7.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ).A .-173B .-103C .-4D .-6438.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为().A.-37 B.-29 C.-5 D.-119.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.11.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.导数练习题 2015年春第 15 页 共 16 页1.4 生活中的优化问题举例1.如果圆柱截面的周长l 为定值,则体积的最大值为( ).A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43πD.14⎝ ⎛⎭⎪⎫l 43π 2.若一球的半径为r ,作内接于球的圆柱,则其侧面积最大为( ).A .2πr 2B .πr 2C .4πr D.12πr 2 3.某公司生产一种产品, 固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧ -x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是( ). A .150 B .200 C .250 D .3004.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x =________.5.如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.6.如图所示,已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的边长.7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为().A.3V B.32V C.34V D.23V8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是().A.32 3 cm2B.4 cm2 C.3 2 cm2D.2 3 cm29.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?12.(创新拓展)如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?。
一元函数的导数及其应用(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020福建福州模拟,理7)已知函数f (x )为偶函数,当x<0时,f (x )=x 2-ln(-x ),则曲线y=f (x )在x=1处的切线方程为( ) A.x-y=0 B.x-y-2=0 C.x+y-2=0 D.3x-y-2=02.设函数f (x )在R 上可导,其导函数为f'(x ),若函数f (x )在x=1处取得极大值,则函数y=-xf'(x )的图像可能是( )3.已知函数f (x )=x+1,g (x )=ln x ,若f (x 1)=g (x 2),则x 2-x 1的最小值为( ) A.1 B.2+ln 2 C.2-ln 2 D.24.已知定义在(0,+∞)上的函数f (x )满足xf'(x )-f (x )<0,且f (2)=2,则f (e x )-e x >0的解集是( )A.(-∞,ln 2)B.(ln 2,+∞)C.(0,e 2)D.(e 2,+∞) 5.(2020北京房山区二模,5)函数f (x )=e x -x 2的零点个数为( )A.0B.1C.2D.36.(2020山东青岛5月模拟,8)已知函数f (x )=lnx x 2,若f (x )<m-1x2在(0,+∞)上恒成立,e 为自然对数的底数,则实数m 的取值范围是( ) A.m>e B.m>e2 C.m>1D.m>√e7.已知函数f (x )=x 2+|x-a|,g (x )=(2a-1)x+a ln x ,若函数y=f (x )与函数y=g (x )的图像恰好有两个不同的交点,则实数a 的取值范围为( ) A.(1,+∞)B.(-∞,1)C.(0,+∞)D.(-∞,0)8.(2020河南新乡三模,理12)已知函数f (x )=x 2-ax (x ∈[1e ,e])与g (x )=e x 的图像上存在两对关于直线y=x 对称的点,则实数a 的取值范围是( ) A.[e -1e ,e] B.(1,e -1e ] C.[1,e -1e ]D.[1,e +1e ]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(2020山东潍坊临朐模拟二,12)已知函数f (x )=x ln x+x 2,x 0是函数f (x )的极值点,以下结论中正确的是( ) A.0<x 0<1eB.x 0>1eC.f (x 0)+2x 0<0D.f (x 0)+2x 0>010.(2020山东聊城二模,10)下列关于函数f (x )=x 3-3x 2+2x 的叙述正确的是( ) A.函数f (x )有三个零点B.点(1,0)是函数f (x )图像的对称中心C.函数f (x )的极大值点为x=1-√33D.存在实数a ,使得函数g (x )=[f (x )]2+af (x )在R 上为增函数11.(2020海南天一大联考第三次模拟,12)已知函数f (x )=x 3+ax+b ,其中a ,b ∈R ,则下列选项中的条件使得f (x )仅有一个零点的有( ) A.a<b ,f (x )为奇函数 B.a=ln(b 2+1) C.a=-3,b 2-4≥0D.a<0,b 2+a36>012.(2020山东师大附中月考,12)设函数f (x )={|lnx |,x >0,e x (x +1),x ≤0,若方程[f (x )]2-af (x )+116=0有六个不等的实数根,则实数a 可能的取值是( )A.12B.23C.1D.2三、填空题:本题共4小题,每小题5分,共20分.13.(2020山东、海南两省4月模拟,13)函数f (x )=alnxe x 在点P (1,f (1))处的切线与直线2x+y-3=0垂直,则a= .14.设f (x )=e x (ln x-a ),若函数f (x )在区间1e,e 上单调递减,则实数a 的取值范围为 .15.已知函数f (x )=log 2x ,g (x )=√x +√a -x (a>0),若对∀x 1∈{x|g (x )=√x +√a -x },∃x 2∈[4,16],使g (x 1)=f (x 2)成立,则实数a 的取值范围是 .16.已知函数f (x )=2ln x ,g (x )=ax 2-x-12(a>0).若直线y=2x-b 与函数y=f (x ),y=g (x )的图像均相切,则a 的值为 ;若总存在直线与函数y=f (x ),y=g (x )的图像均相切,则a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020河南郑州质量预测二,理21)已知函数f (x )=lnx a ,g (x )=x+1x(x>0). (1)当a=1时,求曲线y=f (x )g (x )在x=1处的切线方程; (2)讨论函数F (x )=f (x )-1g (x )在(0,+∞)上的单调性.18.(12分)(2020河南开封三模,理20)已知函数f (x )=ax e x -ln x+b (a ,b ∈R )在x=1处的切线方程为y=(2e -1)x-e . (1)求a ,b 值;(2)若f (x )≥mx 恒成立,求实数m 的取值范围.19.(12分)(2020陕西宝鸡三模,文21)已知函数f(x)=ln x+ax2-(2a+1)x,a∈R,f'(x)为f(x)的导函数.(1)讨论f(x)的单调性;(2)若g(x)=f(x)+a+1,当a>12时,求证:g(x)有两个零点.20.(12分)(2020辽宁大连一中6月模拟,文20)已知函数f(x)=x ln x-1,g(x)=(k-1)x-k(k∈R).(1)若直线y=g(x)是曲线y=f(x)的一条切线,求k的值;(2)当x>1时,直线y=g(x)与曲线y=f(x)+1无交点,求整数k的最大值.21.(12分)(2020天津,20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,(ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(ⅱ)求函数g(x)=f(x)-f'(x)+9x的单调区间和极值.(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有f'(x1)+f'(x2)2>f(x1)-f(x2)x1-x2.22.(12分)(2020浙江,22)已知1<a≤2,函数f(x)=e x-x-a,其中e=2.718 28…是自然对数的底数.(1)证明:函数y=f(x)在(0,+∞)上有唯一零点.(2)记x0为函数y=f(x)在(0,+∞)上的零点,证明:①√a-1≤x0≤√2(a-1);②x0f(e x0)≥(e-1)(a-1)a.参考答案单元质检卷三一元函数的导数及其应用1.A当x>0时,-x<0,f(-x)=x2-ln x,又函数f(x)为偶函数,所以f(x)=x2-ln x,f(1)=1,所以,f'(1)=1,故切线方程为y-1=x-1,即x-y=0.故选A.f'(x)=2x-1x2.B因为函数f(x)在R上可导且f(x)在x=1处取得极大值,所以当x>1时,f'(x)<0;当x=1时,f'(x)=0;当x<1时,f'(x)>0.所以当x<0时,y=-xf'(x)>0,当0<x<1时,y=-xf'(x)<0,当x=0或x=1时,y=-xf'(x)=0,当x>1时,y=-xf'(x)>0,可知选项B符合题意.故选B.3.D设f(x1)=g(x2)=t,所以x1=t-1,x2=e t,所以x2-x1=e t-t+1,令h(t)=e t-t+1,则h'(t)=e t-1,所以h(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以h(t)min=h(0)=2.4.A 令g (x )=f (x )x ,g'(x )=xf '(x )-f (x )x 2<0,则g (x )在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )-ex>0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x<ln 2,则所求的解集为(-∞,ln 2).故选A .5.B 令f (x )=e x -x 2=0,得e x =x 2,分别画出y=e x 和y=x 2的图像,如图所示,当x<0时,函数y=e x 和y=x 2有一个交点. 当x>0时,f'(x )=e x -2x ,令g (x )=e x -2x ,则g'(x )=e x -2,当g'(x )=0时,可得x=ln 2.当x ∈(0,ln 2)时,g'(x )<0,g (x )单调递减,当x ∈(ln 2,+∞)时,g'(x )>0,g (x )单调递增.所以g (x )min =g (ln 2)=e ln 2-2ln 2=2-ln 4>0,所以f (x )在(0,+∞)上单调递增.又因为f (0)=1,所以当x ∈(0,+∞)时,f (x )>0.故f (x )在(0,+∞)上无零点. 综上,函数f (x )=e x -x 2的零点个数为1.故选B . 6.B 若f (x )<m-1x 2在(0,+∞)上恒成立,即f (x )+1x 2<m 在(0,+∞)上恒成立,令g (x )=f (x )+1x 2=lnx+1x 2,故只需g (x )max <m 即可,g'(x )=1x ·x 2-(lnx+1)·2x x 4=-2lnx -1x 3,令g'(x )=0,得x=e-12,当0<x<e-12时,g'(x )>0;当x>e-12时,g'(x )<0,所以g (x )在(0,e-12)上单调递增,在(e -12,+∞)上单调递减,所以g (x )max =g (e-12)=e 2,所以实数m 的取值范围是m>e2. 故选B . 7.A当a ≠0时函数g (x )的定义域为(0,+∞),所以只研究这两个函数在x ∈(0,+∞)上的图像,当a ≤0时,f (x )单调递增,又g (x )单调递减,两者的图像最多只有一个交点,不符合题意.当a>0时,设φ(x )=f (x )-g (x ),即φ(x )={x 2-2ax -alnx +a ,0<x <a ,x 2+(2-2a )x -alnx -a ,x ≥a ,因为φ'(x )={2(x -a )-ax <0,0<x <a ,2(x -a )+2x -ax>0,x ≥a ,所以φ(x )在(0,a )上单调递减,(a ,+∞)上单调递增,所以φ(x )min =-a 2-a ln a+a ,因为x →0,x →+∞时,φ(x )→+∞,所以φ(x )有两个零点,当且仅当φ(x )min =-a 2-a ln a+a<0,解得a>1,即a 的取值范围为(1,+∞).8.B ∵f (x )与g (x )的图像在x ∈[1e ,e]上存在两对关于直线y=x 对称的点,则函数f (x )与函数φ(x )=ln x 的图像在x ∈[1e ,e]上有两个交点,∴ln x=x 2-ax 在x ∈[1e ,e]上有两个实数解,即a=x-lnx x 在x ∈[1e ,e]上有两个实数解,令h (x )=x-lnxx ,则h'(x )=x 2+lnx -1x 2.令k (x )=x 2+ln x-1,k (x )在x ∈[1e ,e]上单调递增,且k (1)=0,∴当x ∈[1e ,1]时,h'(x )<0,h (x )单调递减;当x ∈(1,e]时,h'(x )>0,h (x )单调递增.∴h (x )min =h (1)=1.对g 1e =e +1e ,g (e)=e -1e ,∴a 的取值范围是1,e -1e . 9.AD ∵函数f (x )=x ln x+x 2(x>0),∴f'(x )=ln x+1+2x.∵x 0是函数f (x )的极值点, ∴f'(x 0)=0,即ln x 0+1+2x 0=0,∵f'(x )在(0,+∞)上单调递增,且f'(1e )=2e >0,又x →0,f'(x )→-∞,∴0<x 0<1e ,即选项A 正确,选项B 不正确;f (x 0)+2x 0=x 0ln x 0+x 02+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即选项D 正确,选项C 不正确.故选AD .10.ABC 令f (x )=0,即x (x-1)(x-2)=0,解得x=0或x=1或x=2,故函数f (x )有三个零点,故选项A 正确;因为f (1+x )+f (1-x )=0,所以点(1,0)是函数f (x )图像的对称中心,故选项B 正确;令f'(x )=3x 2-6x+2=0,解得x=3±√33,故f (x )在-∞,3-√33上单调递增,在3-√33,3+√33上单调递减,在3+√33,+∞上单调递增,函数f (x )的极大值点为x=1-√33,故选项C 正确;因为f (x )在R 上不单调,所以不存在实数a ,使得函数g (x )=[f (x )]2+af (x )在R 上为增函数,故D 错误.故选ABC .11.BD 由题知f'(x )=3x 2+a.对于A,由f (x )是奇函数,知b=0,因为a<0,所以f (x )存在两个极值点,易知f (x )有三个零点,故A 错误;对于B,因为b 2+1≥1,所以a ≥0,f'(x )≥0,所以f (x )单调递增,则f (x )仅有一个零点,故B 正确;对于C,若取b=2,则f (x )的极大值为f (-1)=4,极小值为f (1)=0,此时f (x )有两个零点,故C 错误;对于D,f (x )的极大值为f -√-a3=b-2a3√-a3,极小值为f√-a 3=b+2a 3√-a3.因为a<0,所以b2+4a 327>b 2+a 36>0,所以b 2>-4a 327,则b>-2a 3√-a3或b<2a3√-a3,从而f -√-a3>0,f √-a3>0或f -√-a3<0,f √-a3<0,可知f (x )仅有一个零点,故D 正确.12.BC 当x ≤0时,f (x )=e x (x+1),则f'(x )=e x (x+1)+e x =e x (x+2).由f'(x )<0得,x+2<0,即x<-2,此时f (x )单调递减, 由f'(x )>0得,x+2>0,即-2<x ≤0,此时f (x )单调递增,即当x=-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图像如图:由图像可知当0<f (x )≤1时,有三个不同的x 的取值与f (x )对应. 设t=f (x ),因为方程[f (x )]2-af (x )+116=0有六个不等的实数根, 所以t 2-at+116=0在t ∈(0,1]内有两个不等的实数根, 设g (t )=t 2-at+116.则{g (0)>0,g (1)≥0,Δ>0,0<a 2<1,即{116>0,1-a +116≥0,a 2-4×116>0,0<a 2<1, 解得12<a ≤1716.结合选项可知实数a 可能是23或1,故选BC .13.e2由题意,得f'(x)=ax ex-ae x lnx(e x)2=ax-alnxe x.又切线斜率k=12.∴f'(1)=ae=12,∴a=e2.14.[e-1,+∞)由题意可得f'(x)=e x ln x+1x -a≤0在1e,e上恒成立.因为e x>0,所以只需lnx+1x-a≤0,即a≥ln x+1x在1e,e上恒成立.令g(x)=ln x+1x.因为g'(x)=1x−1x2=x-1x2.由g'(x)=0,得x=1.则g(x)在1e,1上单调递减,在(1,e)上单调递增,g1e =ln1e+e=e-1,g(e)=1+1e,因为e-1>1+1e,所以g(x)max=g1e=e-1.故a的取值范围为[e-1,+∞).15.[4,8]结合题意可得log24=2≤f(x)≤log216=4,要使得对∀x1∈{x|g(x)=√x+√a-x},∃x2∈[4,16],使g(x1)=f(x2)成立,则要求g(x)的值域在[2,4]上,对g(x)求导得g'(x)=√a-x-√x2√x·√a-x,令g'(x)>0,解得x<a2,结合该函数的定义域为[0,a],可知g(x)在0,a2上单调递增,在a2,a上单调递减,故g(x)在x=a2取到最大值,在x=0取到最小值,所以需要满足g a2≤4,且g(0)≥2,得到{√a2+√a2≤4,√a≥2,解得a∈[4,8].16.32[32,+∞)由题意,f'(x)=2x,g'(x)=2ax-1,因为直线y=2x-b与函数y=f(x),y=g(x)的图像均相切,所以{2x=2,2ax-1=2,解得x=1,a=32.设直线l与y=f(x)的图像相切于点P1(x1,y1),x1>0,则切线方程为y-2ln x1=2x1(x-x1),代入g(x)=ax2-x-12(a>0),得2x1x-2+2ln x1=ax2-x-1 2,即ax2-(1+2x1)x+(32-2ln x1)=0.所以Δ=(1+2x1)2-4a×(32-2ln x1)=0.所以a=(x 1+2)22x 12(3-4ln x 1)(x 1>0). 令y=(x 1+2)22x 12(3-4ln x 1)(x 1>0), 则y'=2(x 1+2)(4ln x 1+x 1-1)x 13(3-4ln x 1)2.令y'=0,解得x 1=1.当x 1>1时,y'>0,y 单调递增,当0<x 1<1时,y'<0,y 单调递减,因此y ≥(1+2)22×12(3-4ln1)=32,即a ≥32.17.解 (1)当a=1时,y=f (x )g (x )=xlnxx+1,y'=(1+lnx )(x+1)-xlnx(x+1)2=lnx+x+1(x+1)2,所以y'|x=1=ln1+1+1(1+1)2=12,即当x=1时,切线的斜率为12,又切线过点(1,0),所以切线方程为x-2y-1=0.(2)f'(x )=1ax ,(1g (x ))'=1(x+1)2,F'(x )=f'(x )-(1g (x ))'=1ax −1(x+1)2=(x+1)2-ax ax (x+1)2,当a<0时,F'(x )<0,函数F (x )在(0,+∞)上单调递减; 当a>0时,令h (x )=1a x 2+(2a -1)x+1a ,Δ=1-4a ,当Δ≤0,即0<a ≤4时,h (x )≥0,此时F'(x )≥0,函数F (x )在(0,+∞)上单调递增; 当Δ>0,即a>4时,方程1a x 2+(2a -1)x+1a =0有两个不等实数根x 1,x 2,设x 1<x 2,则x 1=a -2-√a 2-4a 2,x 2=a -2+√a 2-4a 2,所以0<x 1<1<x 2,此时,函数F (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. 综上所述,当a<0时,F (x )的单调递减区间是(0,+∞); 当a>4时,F (x )的单调递减区间是(a -2-√a 2-4a 2,a -2+√a 2-4a2),单调递增区间是0,a -2-√a 2-4a2,a -2+√a 2-4a2,+∞.当0<a ≤4时,F (x )的单调递增区间是(0,+∞). 18.解 (1)f'(x )=a e x +ax e x -1x .因为函数f (x )=ax e x -ln x+b 在x=1处的切线为y=(2e -1)x-e, 所以{f (1)=ae +b =e -1,f '(1)=2ae -1=2e -1,解得a=1,b=-1.(2)由f (x )≥mx 得,x e x-ln x-1≥mx (x>0),即m ≤xe x -lnx -1x. 令φ(x )=xe x -lnx -1x ,则φ'(x )=x 2e x +lnxx 2.令h (x )=x 2e x +ln x ,h (x )在(0,+∞)上单调递增,则h 1e=1e 2e 1e -1<e 2e 2-1=0,h (1)=e >0.所以h (x )在1e ,1上存在零点x 0,即h (x 0)=x 02e x 0+ln x 0=0,即x 0e x 0=-ln x0x 0=ln 1x 0(eln1x 0).由于y=x e x 在(0,+∞)上单调递增,故x 0=ln 1x 0=-ln x 0,即e x 0=1x 0.因为φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以φ(x )min =x 0e x 0-ln x 0-1x 0=1+x 0-1x 0=1. 所以m ≤1.实数m 的取值范围为(-∞,1]. 19.(1)解 f'(x )=1x +2ax-(2a+1)=(x -1)(2ax -1)x(x>0). ①当a ≤0时,令f'(x )>0,得0<x<1;令f'(x )<0,得x>1.所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.②当a>0时,令f'(x )=0,得x 1=1,x 2=12a . (ⅰ)当a=12时,f'(x )=(x -1)2x ≥0,所以f (x )在(0,+∞)上单调递增.(ⅱ)当a>12时,令f'(x )>0,得0<x<12a 或x>1; 令f'(x )<0,得12a <x<1.所以f (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减. (ⅲ)当0<a<12时,令f'(x )>0,得0<x<1或x>12a ; 令f'(x )<0,得1<x<12a .所以f (x )在(0,1)和12a ,+∞上单调递增,在1,12a 上单调递减.综上,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a=12时,f (x )在(0,+∞)上单调递增;当a>12时,f (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减; 当0<a<12时,f (x )在(0,1)和12a ,+∞上单调递增,在1,12a 上单调递减.(2)证明 由(1)知,当a>12时,f (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减.则g (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减.因为g (1)=0,所以1是函数g (x )的一个零点,且g 12a >0.当x ∈0,12a 时,取0<x 0<e -a-1且x 0<12a ,则a x 02-(2a+1)x 0+a+1=a x 02-x 0-2ax 0+a+1<a+1,g (x 0)<-a-1+a+1=0.所以g 12a ·g (x 0)<0,所以g (x )在0,12a 上恰有一个零点,所以g (x )在区间(0,+∞)上有两个零点.20.解 (1)由题意知f'(x )=ln x+1(x>0),设切点为P (x 0,x 0ln x 0-1),在点P 处的切线方程为y-(x 0ln x 0-1)=(1+ln x 0)(x-x 0).整理得y=(1+ln x 0)x-(x 0+1).由{1+ln x 0=k -1,k =x 0+1,即{ln x 0=k -2,x 0=k -1,得ln x 0=x 0-1.令h (x )=ln x-x+1,则h'(x )=1x -1=1-xx .当0<x<1时,h'(x )>0,h (x )在(0,1)上单调递增; 当x>1时,h'(x )<0,h (x )在(1,+∞)上单调递减. 所以h (x )的最大值为h (1)=0,即x 0=1,故k=2.(2)令F (x )=f (x )-g (x )=x ln x-(k-1)x+k ,则F'(x )=ln x+2-k=ln x-(k-2)(x>1). ①当k-2≤0时,F'(x )>0,所以f (x )在(1,+∞)上单调递增.所以F (x )>F (1)=1,即F (x )在(1,+∞)上无零点. ②当k-2>0时,由F'(x )=0,得x=e k-2.当1<x<e k-2时,F'(x )<0,所以F (x )在(1,e k-2)上单调递减; 当x>e k-2时,F'(x )>0,所以F (x )在(e k-2,+∞)上单调递增. F (x )的最小值为F (e k-2)=(k-1)e k-2-k (e k-2-1)=k-e k-2.令m (k )=k-e k-2,则m'(k )=1-e k-2<0,所以m (k )在(2,+∞)上单调递减,而m (2)=2-1=1,m (3)=3-e >0,m (4)=4-e 2<0,因此k 的最大值为3.21.(1)解 (ⅰ)当k=6时,f (x )=x 3+6ln x ,故f'(x )=3x 2+6x .可得f (1)=1,f'(1)=9,所以曲线y=f (x )在点(1,f (1))处的切线方程为y-1=9(x-1),即9x-y-8=0.(ⅱ)依题意,g (x )=x 3-3x 2+6ln x+3x ,x ∈(0,+∞).从而可得g'(x )=3x 2-6x+6x −3x 2,整理可得g'(x )=3(x -1)3(x+1)x 2.令g'(x )=0,解得x=1.当x 变化时,g'(x ),g (x )的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);g (x )的极小值为g (1)=1,无极大值.(2)证明 由f (x )=x 3+k ln x ,得f'(x )=3x 2+k x .对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x1x 2=t (t>1),则(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)3x 12+k x 1+3x 22+k x 2-2x 13−x 23+k ln x1x 2=x 13−x 23-3x 12x 2+3x 1x 22+k x 1x 2−x 2x 1-2k ln x 1x 2=x 23(t 3-3t 2+3t-1)+k t-1t -2ln t .①令h (x )=x-1x -2ln x ,x ∈(1,+∞). 当x>1时,h'(x )=1+1x 2−2x=(1-1x )2>0,由此可得h (x )在(1,+∞)上单调递增, 所以当t>1时,h (t )>h (1),即t-1t -2ln t>0. 因为x 2≥1,t 3-3t 2+3t-1=(t-1)3>0,k ≥-3,所以,x 23(t 3-3t 2+3t-1)+k t-1t -2ln t ≥(t 3-3t 2+3t-1)-3t-1t -2ln t =t 3-3t 2+6ln t+3t -1.② 由(1)(ⅱ)可知,当t>1时,g (t )>g (1),即t 3-3t 2+6ln t+3t >1,故t 3-3t 2+6ln t+3t -1>0. ③由①②③可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]>0. 所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2. 22.证明 (1)因为f (0)=1-a<0,f (2)=e 2-2-a ≥e 2-4>0,所以y=f (x )在(0,+∞)上存在零点.因为f'(x )=e x -1,所以当x>0时,f'(x )>0,故函数f (x )在[0,+∞)上单调递增,所以函数y=f (x )在(0,+∞)上有唯一零点.(2)①令g(x)=e x-1x2-x-1(x≥0),g'(x)=e x-x-1=f(x)+a-1,由①知函数2g'(x)在[0,+∞)上单调递增,故当x>0时,g'(x)>g'(0)=0,所以函数g(x)在[0,+∞)上单调递增,故g(x)≥g(0)=0.由g(√2(a-1))≥0,得f(√2(a-1))=e√2(a-1)−√2(a-1)-a≥0=f(x0), 因为f(x)在[0,+∞)上单调递增,故√2(a-1)≥x0.令h(x)=e x-x2-x-1(0≤x≤1),h'(x)=e x-2x-1,令h1(x)=e x-2x-1(0≤x≤1),h'1(x)=e x-2,所以故当0<x<1时,h1(x)<0,即h'(x)<0,所以h(x)在[0,1]上单调递减,因此当0≤x≤1时,h(x)≤h(0)=0.由h(√a-1)≤0,得f(√a-1)=e√a-1−√a-1-a≤0=f(x0),因为f(x)在[0,+∞)上单调递增,故√a-1≤x0.综上,√a-1≤x0≤√2(a-1).②令u(x)=e x-(e-1)x-1,u'(x)=e x-(e-1),所以当x>1时,u'(x)>0,故函数u(x)在区间[1,+∞)上单调递增,因此u(x)≥u(1)=0.由e x0=x0+a可得x0f(e x0)=x0f(x0+a)=(e a-1)x02+a(e a-2)x0≥(e-1)a x02,由x0≥√a-1,得x0f(e x0)≥(e-1)(a-1)a.。
《导数及其应用》单元测试题(理科)(满分150分 时间:120分钟 )一、选择题(本大题共8小题,共40分,只有一个答案正确) 1.函数()22)(x x f p =的导数是( )(A) x x f p 4)(=¢ (B) x x f 24)(p =¢ (C) x x f 28)(p =¢ (D) x x f p 16)(=¢ 2.函数xe x xf -×=)(的一个单调递增区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,03.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ¢¢>>,,则0x <时( )A .()0()0f x g x ¢¢>>,B .()0()0f x g x ¢¢><,C .()0()0f x g x ¢¢<>,D .()0()0f x g x ¢¢<<,4.=-+òdx xx x )111(3221( ) (A)872ln +(B)872ln - (C)452ln + (D)812ln +5.曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( )A.29e 2B.24eC.22eD.2e6.设()f x ¢是函数()f x 的导函数,将()y f x =和()y f x ¢=的图象画在同一个直角坐标系中,不可能正确的是( )7.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ³,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .328.设2:()e ln 21xp f x x x mx =++++在(0)+¥,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件二.填空题(本大题共6小题,共30分)9.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,则该长方体的长、宽、高各为 时,其体积最大.10.将抛物线22x y =和直线1=y 围成的图形绕y 轴旋转一周得到的几何体的体积等于11.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__.12.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ìüíý+îþ的前n 项和的公式是 13.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为a ,则a 的取值范围是 14.已知函数53123-++=ax x x y (1)若函数在()+¥¥-,总是单调函数,则a 的取值范围是 . (2)若函数在),1[+¥上总是单调函数,则a 的取值范围 . (3)若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 .三.解答题(本大题共6小题,共12+12+14+14+14+14=80分) 15.设函数()e e xxf x -=-. (1)证明:()f x 的导数()2f x ¢≥;(2)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.16.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =uuu r uuu r,点Q 是点P 关于直线2(4)y x =-的对称点,.求(1)求点A B 、的坐标; (2)求动点Q 的轨迹方程.17.已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值-3-c ,其中a,b,c 为常数。
导数及其应用测试题一:选择题1.设函数0()f x x 在可导,则000()(3)limt f x t f x t t→+--=( )A .'0()f xB .'02()f x - C .'04()f x D .不能确定 2.(2007年浙江卷)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )3.下列说法正确的是 ( )A .当f ′(x 0)=0时,则f(x 0)为f(x)的极大值B .当f ′(x 0)=0时,则f(x 0)为f(x)的极小值C .当f ′(x 0)=0时,则f(x 0)为f(x)的极值D .当f(x 0)为函数f(x)的极值且f ′(x 0)存在时,则有f ′(x 0)=0 4.已知函数x x f =)(,在0=x 处函数极值的情况是( )A .没有极值B .有极大值C .有极小值D .极值情况不能确定5.曲线321x y =在点⎪⎭⎫⎝⎛41,8R 的切线方程是( )A .02048=-+y xB .48200x y ++=C .48200x y -+=D .4200x y --=6.已知曲线)1000)(100(534002≤≤-++=x x x y 在点M 处有水平切线,则点M 的坐标是( ).A .(-15,76)B .(15,67)C .(15,76)D .(15,-76) 7.已知函数x x x f ln )(=,则( )A .在),0(+∞上递增B .在),0(+∞上递减C .在⎪⎭⎫ ⎝⎛e 1,0上递增 D .在⎪⎭⎫ ⎝⎛e 1,0上递减8.(2007年福建卷)已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,9.(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为( )A .2π5B .43 C.32 D .π210.(2012年高考(福建理))如图所示,在边长为1的正方形OABC中任取一点P ,则点P 恰好取自阴影部分的概率为( )y x O y xO yx O yxO A . B . C . D .1- yxO11A .14 B .15 C .16 D .17二、填空题11.函数53)(23--=x x x f 的单调递增区间是_____________.12.若一物体运动方程如下:⎪⎩⎪⎨⎧≥-+<≤+=)2( )3()3(329)1( )30(2322t t t t s则此物体在1=t 和3=t 时的瞬时速度是________.13.求由曲线1,2,===y x e y x 围成的曲边梯形的面积为___________.14.(2006年湖北卷)半径为r 的圆的面积S(r)=πr 2,周长C(r)=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)’=2πr ○1,○1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。
单元测试卷(一) 导数及其应用--参考答案
二、填空题: 11. 2
cos sin 'x x x
y x
-=
;12. 18 13.36+π; 14.}0|{<a a ; 15.),1()0,1(+∞- 三、解答题
16. [解析] f ′(x )=cos x +sin x +1=2sin(x +π
4
)+1 (0<x <2π)
令f ′(x )=0,即sin(x +π4)=-2
2,
解之得x =π或x =3
2
π.
x ,f ′(x )以及f (∴f (x )的单调增区间为(0,π)和(32π,2π)单调减区间为(π,3
2π).
f 极大(x )=f (π)=π+2,f 极小(x )=f (32π)=3π
2.
17.解:(1)2()663f x x ax b '=++,
因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.
即6630241230a b a b ++=⎧⎨
++=⎩
,
.
解得3a =-,4b =.
(2)由(Ⅰ)可知,32()29128f x x x x c =-++,
2()618126(1)(2)f x x x x x '=-+=--.
当(01)x ∈,
时,()0f x '>; 当(1
2)x ∈,时,()0f x '<; 当(23)x ∈,
时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.
则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 2
98c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.
18. 解:(1)2,2,0)(),2(3)(212=
-=='-='x x x f x x f 得令 …………………1分
∴当()0;,()0x x f x x f x ''<>><<,当,…………………2分
∴)(x f 的单调递增区间是(,)-∞+∞和,单调递减区间是)2,2(-……3分 当245)(,2+-=有极大值x f x ;当245)(,2-=
有极小值x f x .…………4分
(2)由(1)可知)(x f y =图象的大致形状及走向(图略)
∴当)(,245245x f y a y a ==+<<-与直线时的图象有3个不同交点,……6分
即当55a -<<+α=)(x f 有三解. …………………………………7分 (3))1()5)(1()1()(2-≥-+--≥x k x x x x k x f 即
∵),1(5,12+∞-+≤∴>在x x k x 上恒成立. …………………………………………9分 令5)(2-+=x x x g ,由二次函数的性质,),1()(+∞在x g 上是增函数,
∴,3)1()(-=>g x g ∴所求k 的取值范围是3-≤k ……………………………………12分
19. 解:(1)2
'()36(1).f x mx m x n =-++因为1x =是函数()f x 的一个极值点.所以'(1)0f =
即36(1)0,m m n -++=所以36n m =+
(2)由(1)知,22
'()36(1)363(1)[(1)]f x mx m x m m x x m
=-+++=--+
当0m <时,有2
11>+,当x 为化时,()f x 与'()f x 的变化如下表:
故由上表知,当0m <时,()f x 在(,1)m -∞+
单调递减,在(1,1)m
+单调递增,在(1,)+∞上单调
递减.
(3)由已知得'()3f x m >,即22(1)20mx m x -++>又0m <,所以222
(1)0x m x m m
-
++<,即222
(1)0,[1,1]x m x x m m
-
++<∈- 设212()2(1)g x x x m m =-++,其函数图象开口向上,由题意知①式恒成立,所以
22(1)0120(1)010
g m m g ⎧
-<+++<⎧⎪⇒⎨
⎨<⎩⎪-<⎩ 解之得403m m -<<又所以4
03m -<<即m 的取值范围为4(,0)3-
20.(1)由题意:bx x x x f -+=2ln )(, )(x f 在),0(+∞上递增,∴021
)(≥-+=
'b x x
x f 对),0(+∞∈x 恒成立,即x x b 21+≤对),0(+∞∈x 恒成立,∴只需min )21
(x x
b +≤, 0>x ,∴
2221≥+x x ,当且仅当2
2
=x 时取“=”,∴22≤b ,∴b 的取值范围为)22,(-∞ (2)由已知得,⎩⎨⎧=--==--=0ln )(0ln )(2222212111bx ax x x f bx ax x x f ⇒⎩⎨⎧-=-=22
221
211ln ln bx ax x bx ax x ,两式相减,得: )())((ln
21212121x x b x x x x a x x -+-+=⇒])()[(ln 21212
1b x x a x x x x
++-=, 由b ax x
x f -+=
'21
)(及2102x x x +=,得: ])([221)(2211000b x x a x x b ax x x f ++-+=--=
'2
111ln 1
222x x x x x x +-+= ]ln )(2[12
111122
2x x x x x x x x -+--=]ln )1()
1(
2[1212
121
12x x x x x x x x -+--=
,令)1,0(21∈=x x t , 且t t t t ln 122)(-+-=ϕ)10(<<t , 0)1()1()(2
2
<+--='t t t t ϕ,∴)(t ϕ在)1,0(上为减函数, ∴0)1()(=>ϕϕt ,又21x x <,∴0)(0<'x f
21. 解:(1)3222()
()()()(0)x a x ea F x f x g x x e x ex
-'''=-=-=> ①当0,()0a F x '≤>时恒成立
()(0,)F x +∞在上是增函数,()F x F 只有一个单调递增区间(0,-∞)
,没有最值……3分
②当0a >
时,2(()(0)x x F x x ex
-=
>,
若0x <<
()0,()F x F x '<在上单调递减;
若x >
()0,())F x F x '>+∞在上单调递增,
x ∴=当()F x 有极小值,也是最小值,
即min ()2ln F x F a a a a ==-=-…………6分 所以当0a >时,()F x
的单调递减区间为
单调递增区间为)+∞,最小值为ln a a -,无最大值…………7分
(2)方法一,若()f x 与()g x 的图象有且只有一个公共点, 则方程()()0f x g x -=有且只有一解,所以函数()F x 有且只有一个零点…………8分[来源:学_科_
网]
由(1)的结论可知min ()ln 01F x a a a =-==得…………10分
此时,2
()()()2ln 0x F x f x g x x e =-=-≥
m i n ())0F x ==
1,()()f g f x g x ∴==∴与
的图象的唯一公共点坐标为
又
()f e g ''==
()
()f x g x 与
的图象在点
处有共同的切线,
其方程为1
y x -=-,即1y x =-…………13分
综上所述,存在a 1=,使
()()f x g x 与
的图象有且只有一个公共点,且在该点处的公切线方
程为 1.y x =
-…………14分
方法二:设()f x 与g(x)图象的公共点坐标为00(,)x y ,
根据题意得⎩⎨⎧==)()()()(0'
0'00x f x f x g x f 即20
0002ln 22x a x e
x a e
x ⎧=⎪⎪⎨⎪=⎪⎩
由②得2
0x a e =,代入①得021
ln ,2x x =∴=
从而1a =…………10分
此时由(1)可知min ()0F x F == 0x x ∴>≠当且()0,()()F x f x g x >>即
因此除0x =
0x ,使00()()f x g x =…………13分
故存在1a =,使()()f x g x 与的图象有且只有一个公共点,且在该公共点处有共同的切线,易求得
公共点坐标为,公切线方程为1y x
=-…………14分。