汽车防侧翻预警系统研究
- 格式:pdf
- 大小:127.82 KB
- 文档页数:1
文献综述毕业设计题目:汽车防撞报警系统超声波测距的研究汽车防撞报警系统的设计陈吉鸣(电子信息工程2班 Xb11610204)1 前言自从1886年1月29日卡尔•本茨发明了人类第一辆汽车,至今世界汽车工业经过了近126年的发展,当代汽车已经非常成熟和普遍了。
汽车已经渗透于国防建设、国民经济以及人类生活的各个领域之中,成为人类生存必不可少的、最主要的交通工具,为人类生存和社会的发展与进步起到了至关重要的作用。
目前,在每年的车祸中有120多万人死亡,1200多万人伤残,全球50%的交通事故受害者年龄在15-24岁,每年交通事故造成的经济损失达5180亿美元,相当于每年发生两次日本广岛核爆炸[1~2]。
美国高速公路交通安全管理局NHTSA表示,每年因倒车事故导致的平均死亡人数达292人[3]。
伴随着汽车保有量的增加和诚实布局的日益密集化,汽车活动空间越来越小,特别是汽车倒车时司机由于视野不能很好的达到后面加上车后盲区,使得倒车事故逐年上升。
对于公路交通事故的分析表明,超过65%的交通事故属于追尾相撞,80%以上的交通事故是驾驶员由于反应不及时引起的[4]。
尽管每辆车都有后视镜,但不可避免地都存在一个后视盲区,汽车防撞报警系统则可以在一定程度上帮助驾驶员扫除视角死角和视线模糊的缺陷,提高驾驶的安全性,减少剐蹭事件。
因此,本次课题我们采用了基于单片机的超声波测距技术来设计汽车防撞报警系统。
2 汽车防撞报警系统的现状汽车防撞系统的快速发展始于20世纪末21世纪初,经过几年的时间,随着技术发展和用户需求的变化,汽车防撞系统在几年的时间里大致经过了六代的演变[5]。
第一代:倒车时通过喇叭提醒。
“倒车请注意”!想必不少人还记得这种声音,这就是倒车雷达的第一代产品,只要司机挂上倒档,它就会响起,提醒周围的人注意,不能算真正的倒车雷达,基本属于淘汰产品。
第二代:采用蜂鸣器不同声音提示驾驶员。
这是倒车雷达系统的真正开始。
车辆侧翻动态预警控制系统潘兵;梅寒【摘要】随着国内货运车辆的数量增长,由车辆超载、偏载引起道路交通事故也日益增多,道路安全问题日益突出.文章介绍的系统涉及传感器技术、电子技术及车辆底盘稳定控制领域,通过传感器实时动态监测每个轮端的载荷量,ECU处理传感器的信号,并通过算法识别侧翻的风险,进而根据判断结果进行报警处理,同时根据侧翻风险等级,实施主动干预,适时及时的主动干预,能大大降低侧翻的风险,减少交通事故发生概率.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)015【总页数】3页(P31-33)【关键词】侧翻预警;主动干预;底盘安全【作者】潘兵;梅寒【作者单位】陕西汽车控股集团有限公司,陕西西安 710200;陕西汽车控股集团有限公司,陕西西安 710200【正文语种】中文【中图分类】U463.6CLC NO.:U463.6 Document Code: A Article ID: 1671-7988 (2017)15-31-03 随着电子商务和物流行业爆炸式的发展,运输车辆的数量激增,车辆动力性能也逐步增强,车辆超载屡禁不止,超载、偏载引起道路交通事故也与日俱增,特别是群死群伤性重特大道路交通事故与超载、偏载有直接关系,道路安全问题日益突出,严重威胁人民群众的生命财产安全。
本文介绍的车辆侧翻动态预警控制系统属于车辆底盘稳定控制领域。
通过安装在车辆悬挂上的传感器,实时动态监测轮端载荷,ECU采集各传感器数值,经由算法计算车辆在运行过程中的状态,识别偏载、侧翻风险,并根据判断的结果进行报警、干预处理,大大降低侧翻风险。
目前,车辆侧翻动态预警控制系统存在两种技术路线,一是车辆加载陀螺仪等传感器来感知车辆在运行过程中的侧倾角,以此来判断车辆的行驶状态,识别侧翻预警,但是此种方法的改装成本较高,同时无法实时确定车轮是否离地,准确度不高,技术性价比较低;二是通过实时计算评估车辆质心高度来确定是否存在侧翻风险,但此方法需增加若干传感器,车辆载货高度等参数一致性也难以保证,造成车辆侧翻预警准确度较低。
重型车辆侧翻预警技术研究现状及发展趋势赵志国;王冬冬【摘要】Heavy vehicle has very poor roll stability, causing many tumbling accidents. And the active safety performance, handling and stability performance and side tumbling pre-warning technology of heavy vehicle must be improved to reduce the probability of serious traffic accidents and ensure the safety of road transportation. In the paper, the methods of side tumbling pre-warning and research status at domestic and abroad are discussed, and problems of present research are pointed out. The hidden Markov theory and the vehicle-road collaborative method are also introduced as two key techniques and development trend of side tumbling pre-warning method.%重型车辆本身特点导致其侧倾稳定性较差,极易发生侧翻事故,为此必须提高车辆主动安全性、操纵稳定性和车辆侧翻预警技术,从而减少重大交通事故发生几率,保证公路运输安全.在全面阐述国内外车辆侧翻预警方法及研究现状的基础上,指出现有研究方法存在的问题,最后介绍了隐马尔可夫理论和车路协同2种侧翻预警关键技术及发展趋势.【期刊名称】《河北科技大学学报》【年(卷),期】2013(034)002【总页数】6页(P108-112,172)【关键词】重型车辆;侧翻预警;研究现状;发展趋势【作者】赵志国;王冬冬【作者单位】淮阴工学院交通学院,江苏淮安 223001【正文语种】中文【中图分类】U461.62010-2011年,中国重型车辆总销售量突破180万辆,增长速度堪称世界之最。
汽车侧翻稳定性与预警综述摘要:近年来,汽车侧翻事故作为重要的安全问题,受到越来越多的关注。
美国高速公路交通安全管理局统计数据表明,在汽车事故中,侧翻的危害程度仅次于碰撞事故居第二位。
然而,我国目前针对高速急转弯时汽车侧翻动态稳定性及预警方面的研究还很少。
因此,本文总结归纳了目前主流侧翻稳定性模型,侧翻预警的硬件系统与算法。
通过仿真来计算侧倾角,来得测算汽车侧翻稳定性。
以及时下最为新颖的通过DPS来获得汽车的侧倾角,横向加速度等数据来预警。
本文比较了各种方案的利弊,对目前汽车的侧翻稳定性分析及预警研究做了一定程度的综述。
关键字:侧翻模型,侧翻控制器,预警算法,侧翻仿真,GPS侧翻控制系统Abstract: in recent years, the most important safety problems as vehicle rollover accident, has attracted more and more attention. High U.S.Highway traffic safety administration statistics show that, in a car accident, harm degree rollover after touchHit the house second. However, China's current high speed sharp turning vehicle dynamic rollover stability and rollover warningThe study is also very little. Therefore, this paper summarizes the current mainstream rollover stability model, hardware system and rollover warning algorithm. Through the simulation to calculate the roll angle measurement, more automobile side tumbling stability. And nowadays the most novel through the DPS to get the car's side angle, lateral acceleration and other data to alert. In this paper, based on the comparison of the advantages and disadvantages of the various schemes on the current car rollover stability analysis and early warning research made a certain degree of review.Keywords:rollover model, rollover warning algorithm, controller, rollover simulation, GPS rollover control system1.汽车侧翻模型及动态稳定性分析1.1简明汽车模型建立模型为研究汽车侧翻提供了很大的便利。
基于感知悬架载荷的车辆防侧翻控制策略研究摘要:车辆在弯道上行驶,造成车辆侧翻的严重事故日渐增多。
本文将车辆簧载质量和整车加以分析,通过建立各自平衡力系,构建了车辆转弯时,外侧车轮悬挂簧载质量的预警和主动控制的临界压力解析式;采用位移传感器,侧向加速度传感器,侧向坡度传感器构建了基于感知悬架载荷的车辆防侧翻控制系统。
关键词:车辆侧翻簧载质量位移传感器门限值电子控制一些车辆如SUV、重型半挂车等由于具有质心位置偏高、质量和体积相对较大、轮距相对过窄等特点,极易发生侧翻事故。
在侧翻事故发生时,驾驶员几乎都察觉不到侧翻的发生。
据美国公路交通安全局统计,1992年至1996年,美国每年发生的各类车辆侧翻事故高达22700起,是仅次于正面碰撞的行车事故。
1993年至1998年,35000余人死于交通事故,其中非碰撞事故占10%,而重大非碰撞事故中的90%是侧翻事故[1]。
随着中国车辆数量的不断增长,交通运输的快速发展,车辆侧翻等重大交通事故也持续增加。
可见研制一种侧翻预警系统来避免侧翻事故的频繁发生十分必要。
本文拟就感知悬架载荷的车辆防侧翻的控制策略进行研究。
1 主动控制门限值及预警门限值的确定1.1 转弯时外侧车轮悬架簧载压力值1.2 主动控制门限值的确定通过上述讨论,很显然式(1)、式(2)为车辆左、右转弯时的外侧悬架压力值,即左转时为、,右转时为、,与横坡坡度,前后桥车桥的侧向加速度和前后桥簧载质量质心到前后车桥垂直距离有关。
由文献[3]知,车辆在转弯时,当内侧车轮受到的地面支反力为零时,此时车辆将处于临界侧翻状态。
当内侧某一车轮地面支反力为零时,系统将实施主动控制——制动减速。
据文献[2]知,当内侧某一车轮所受地面支反力为零时,其临界侧向加速度为式(3)、(4)。
式中:——前桥簧载质量与非簧载质量质心离地高度;——前轮轮距;——后桥簧载质量与非簧载质量质心离地高度;——前轮轮距。
再将前后车桥侧翻临界加速度、带入式(1)、(2)可以求得外侧悬架侧翻压力值系本控制策略主动控制门限值、;同理可得右转时,外侧悬架侧翻压力主动控制门限值、。
基于主动悬架控制的客车防侧翻研究发表时间:2019-07-18T11:15:58.090Z 来源:《科技尚品》2018年第11期作者:冯浩[导读] 现如今,客车的发展越来越快,客车是我国公路客运中主要的运输工具,因质量大,质心高度与轮距之比较大等结构特征,使得其相较于其他车型更容易发生侧翻事故。
由于载客人数多,客车一旦发生侧翻往往会导致大量人员伤亡。
因此,客车防侧翻技术逐渐成为客车主动安全领域的研究热点。
身份证号:34112519900828****引言近年来,随着我国高速公路网络的不断完善,公路交通运输行业和旅游业也取得了快速发展,旅游业的快速发展使得越来越多客车投入使用。
在我国人均拥有轿车数量比较小的情况下,客车由于其特有的方便性和灵活性成为人们出行方式的首选,这也符合我国倡导的"绿色出行"理念。
在这种背景下,我国客车制造业取得了快速发展,2016年中国客车产量达60.85万辆,中国客车在市场上的竞争力明显得到提高。
1汽车侧翻控制关键技术1.1主动转向技术主动转向控制主要通过控制转向轮的转动来产生横摆力矩,间接控制车辆侧倾运动,不仅达到了防侧翻的目的,还提高了汽车的行驶稳定性。
主动转向技术可以分为主动前轮转向控制和四轮转向控制。
开发了一种主动转向辅助系统来避免重型车辆发生侧翻。
建立了基于高阶滑模观测器的估计器用于计算侧向加速度值和质心高度等车辆动力学参数,建立相应的控制策略以保证车辆的侧翻稳定性,并通过仿真和实验验证了其正确性。
国内,西华大学的徐延海博士以二自由度为参考模型,在建立8自由度动力学模型基础上,运用主动转向控制策略技术来改变转向轮角度,仿真结果验证该方法可以有效地减少车辆侧向加速,提高车辆防侧翻能力。
虽然主动转向控制简单高效,但其在防侧翻控制的同时会使汽车脱离原来的行驶路线改变驾驶员行驶意图。
在高速超车或紧急避障等工况下进行防侧翻控制,车辆通过减小较大的前轮转角来增大汽车瞬时回转半径,从而降低侧向加速度。
驾驶技巧之正确使用防侧翻系统驾驶是一项需要高度专注和技巧的任务。
在掌握基本驾驶技能的同时,了解和正确使用车辆的安全系统也是非常重要的。
其中,防侧翻系统是一项关键的安全设备,它可以帮助驾驶员在紧急情况下保持车辆的稳定性,避免侧翻事故的发生。
在本文中,我们将探讨正确使用防侧翻系统的驾驶技巧。
1. 了解防侧翻系统的工作原理在探讨如何正确使用防侧翻系统之前,我们首先需要了解它的工作原理。
防侧翻系统通过感知车辆的动态参数,如横向加速度、滚动角度等,来判断车辆是否存在侧翻的风险。
一旦系统检测到潜在的侧翻风险,它将自动采取措施来稳定车辆,比如通过减少发动机输出、调整刹车力度等方式。
2. 维护车辆的稳定性防侧翻系统的工作是基于车辆稳定性的基础上进行的。
因此,驾驶员在使用防侧翻系统之前,应该始终注意保持车辆的稳定性。
这包括遵守交通规则,合理控制车速,避免急转弯和急刹车等危险驾驶行为。
只有在车辆本身稳定的情况下,防侧翻系统才能更好地发挥作用。
3. 熟悉防侧翻系统的操作方式不同车型的防侧翻系统可能存在一些差异,因此驾驶员在购买新车或使用新车时,应该仔细阅读车辆使用手册,了解具体车型的防侧翻系统的操作方式。
通常,防侧翻系统会以图标或指示灯的形式显示在仪表盘上,驾驶员可以通过按下相应的按钮或开关来激活或关闭系统。
了解和熟悉防侧翻系统的操作方式可以帮助驾驶员在紧急情况下迅速采取正确的措施。
4. 注意系统的工作状态一旦驾驶员启动了防侧翻系统,他们应该时刻关注系统的工作状态。
通常,防侧翻系统会在系统工作时发出声音或震动的警告信号,以提醒驾驶员。
如果驾驶员在驾驶过程中听到或感觉到这些警告信号,他们应该立即采取措施来降低车速或调整驾驶行为,以保持车辆的稳定性。
5. 不要过度依赖防侧翻系统虽然防侧翻系统可以帮助驾驶员保持车辆的稳定性,但驾驶员不应过度依赖这一系统。
防侧翻系统并不能解决所有的驾驶安全问题,它只是作为一个辅助工具存在。
因此,驾驶员应该始终保持警觉,提高驾驶技能,以应对各种紧急情况。
10.16638/ki.1671-7988.2019.19.038大客车防侧翻预警及控制分析孙艳妮(西安汽车职业大学,陕西西安710600)摘要:大客车虽然给人们的出行带来了一定的方便,但是也面临着严峻安全问题。
大客车在运行的过程中,鉴于其载客量大、重心高等特点,在高速行驶进行转弯的过程中,极容易发生侧翻事故,给人们的生命财产带来了严重的威胁。
论文以大客车防侧翻为研究切入点,对其预警系统、控制系统进行了详细的研究和分析。
关键词:大客车;防侧翻;预警;控制系统中图分类号:U463.66 文献标识码:A 文章编号:1671-7988(2019)19-107-03Early Warning and Control Analysis of Passenger Bus Anti-rolloverSun Yanni(Xi'an Automobile V ocational University, Shaanxi Xi'an 710600)Abstract: Although bus has brought some convenience to people's travel, it is also facing severe safety problems. In the course of operation, in view of its large passenger capacity and high center of gravity, buses are very prone to roll over accidents during the process of turning at high speed, which poses a serious threat to people's lives and property. In this paper, the prevention of side-flip of buses as a research entry point, its early warning system, control system is studied and analyzed in detail.Keywords: bus; Prevention of roll over; Early warning; control systemCLC NO.: U463.66 Document Code: A Article ID: 1671-7988(2019)19-107-03前言伴随着国民经济的发展,我国的高速公路也逐渐完善。
汽车防撞预警系统设计一、系统概述汽车防撞预警系统主要由传感器、控制器、报警装置和执行机构四部分组成。
传感器负责实时监测车辆周围的环境信息,控制器对收集到的信息进行处理和分析,判断是否存在碰撞风险,如有风险,立即启动报警装置并控制执行机构进行干预。
二、传感器选型与布局1. 传感器选型为实现全天候、全方位的监测,本系统选用毫米波雷达、摄像头和超声波传感器三种传感器。
毫米波雷达具有穿透力强、抗干扰能力强等优点,适用于雨雾等恶劣天气;摄像头可识别道路标志、行人和车辆等目标;超声波传感器则用于检测车辆周围的近距离障碍物。
2. 传感器布局根据车辆结构和行驶需求,本系统将传感器均匀分布在车辆的前后左右四个方向,确保无死角监测。
具体布局如下:(1)前方:安装两个毫米波雷达,分别位于车辆前保险杠两侧,覆盖前方120°的监测范围。
(2)后方:安装一个毫米波雷达,位于车辆后保险杠中央,覆盖后方60°的监测范围。
(3)左右两侧:各安装一个摄像头,分别位于车辆左右两侧,覆盖左右两侧60°的监测范围。
(4)四周:安装四个超声波传感器,分别位于车辆前后保险杠和左右两侧,用于检测近距离障碍物。
三、控制器设计1. 算法设计(1)数据预处理:对传感器采集到的数据进行去噪、滤波等处理,提高数据质量。
(2)目标检测与识别:通过摄像头识别道路标志、行人和车辆等目标,结合毫米波雷达和超声波传感器数据,确定目标的位置、速度等信息。
(3)碰撞风险评估:根据目标的位置、速度等信息,计算与本车的相对距离和相对速度,预测未来一段时间内可能发生的碰撞情况。
(4)预警决策:根据碰撞风险评估结果,判断是否触发预警。
2. 硬件设计控制器硬件部分主要包括处理器、存储器、通信接口等。
处理器选用高性能、低功耗的嵌入式芯片,满足系统实时性和稳定性的需求;存储器用于存储算法模型和运行数据;通信接口负责与传感器、报警装置和执行机构进行数据交互。