必修二 2[1].3 直线、平面垂直的判定及其性质
- 格式:doc
- 大小:61.50 KB
- 文档页数:8
α β a A 线、面垂直的判定与性质一、线、面垂直的判定与性质1.线面垂直的定义:如果直线 l 与平面α内的任意一条直线都垂直,我们说直线 l 与平面α 互相垂直.2.线面垂直的判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 直线与平面垂直3.(1)的射影所成的角(2)(3一条直线与平面所成的角的取值范围是 4.二面角相关概念:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. ∠AOB即为二面角α-AB-β的平面角注意:二面角的平面角必须满足:(1)角的顶点在棱上.(2)角的两边分别在两个面内. (3)角的边都要垂直于二面角的棱.二面角的取值范围 5.面面垂直的定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.记为β⊥α6.判定定理:如果一个平面经过另一个平面的垂线,则这两个平面垂直.7.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行8.面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 面面垂直⇒线面垂直α⊥l 记为⇒⎪⎪⎭⎪⎪⎬⎫l a l ⊥b l ⊥α⊂a α⊂b A b a = ]90,0[0[]]0[180,000π,或a β⊂a α⊥面⇒βα⊥//a a b b αα⊥⎫⇒⎬⊥⎭a b αa bl a a l αβαββ⊥⎫⎪=⎪⎬⊂⎪⎪⊥⎭a α⇒⊥二、例题解析题型一、判断问题例1、直线l与平面α内的无数条直线垂直,则直线l与平面α的关系是()A.l和平面α相互平行B.l和平面α相互垂直C.l在平面α内D.不能确定变式:如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.则能保证该直线与平面垂直()A.①③B.①②C.②④D.①④例2、已知直线a∥平面α,a⊥平面β,则( )A.α⊥βB.α∥βC.α与β不垂直D.以上都有可能变式:下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β例3、已知b⊥平面α,a⊂α,则直线a 与直线b 的位置关系是( )A.a∥b B.a⊥b C.直线a 与直线b 垂直相交D.直线a 与直线b 垂直且异面变式1:下面四个命题,其中真命题的个数为( )①如果直线l 与平面α内的无数条直线垂直,则l⊥α;②如果直线l 与平面α内的一条直线垂直,则l⊥α;③如果直线l 与平面α不垂直,则直线l 和平面α内的所有直线都不垂直;④如果直线l 与平面α不垂直,则平面α内也可以有无数条直线与直线l 垂直.A.1 个B.2 个C.3 个D.4 个变式2:已知平面α⊥平面β,则下列命题正确的个数是()①α内的直线必垂直于β内的无数条直线;②在β内垂直于α与β的交线的直线必垂直于α内的任意一条直线;③α内的任何一条直线必垂直于β;④过β内的任意一点作α与β交线的垂线,则这条直线必垂直于α. A.4 B.3C.2D.1题型二:求角问题(线面角、面面角)例1、在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值.(2)求直线A1B与平面BDD1B1所成的角.变式:如图所示,Rt△BMC中,斜边BM=5且它在平面ABC上的射影AB长为4,∠MBC=60°,求MC与平面ABC所成角的正弦值.例2、在长方体ABCD -A 1B 1C 1D 1中,二面角A -BC -A 1的平面角是( )A .∠ABCB .∠ABB 1C .∠ABA 1D .∠ABC 1变式:如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,P A ⊥平面ABCD ,且P A =3,AB =1,BC =2,AC =3,求二面角P -CD -B 的大小.题型三:证明问题例1、如图,在三棱锥 A-BCD 中,AD ,BC ,CD 两两互相垂直,M ,N分别为 AB ,AC 的中点.(1)求证:BC ∥平面 MND ;(2)求证:平面 MND ⊥平面 ACD .变式: 如图,四棱锥P-ABCD 的底面是矩形,AB=2,,侧面PAB 是等边三角形,且侧面PAB ⊥底面ABCD. (1)证明:侧面PAB ⊥侧面PBC ;(2)求侧棱PC 与底面ABCD 所成的角.BC A B C D P三、巩固练习1.在三棱锥V -ABC 中,VA =VC ,AB =BC ,则下列结论一定成立的是( )A .VA ⊥BCB .AB ⊥VCC .VB ⊥ACD .VA ⊥VB2.若A ∈α,B ∈α,A ∈l ,B ∈l ,P ∈l ,则( )A .P ⊂αB .P αC .l αD .P ∈α3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )A .异面B .相交C .平行D .不能确定4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.2 65C.155D.1055.设x ,y ,z 是空间不同的直线或平面,对下列四种情形:①x ,y ,z 均为直线;②x ,y 是直线,z 是平面;③z 是直线,x ,y 是平面;④x ,y ,z 均为平面.其中使“x ⊥z ,且y ⊥z ⇒x ∥y ”为真命题的是( )A .③④B .①③C .②③D .①②6.如图,正方体ABCD -A 1B 1C 1D 1中,异面直线BD 1与A 1D 所成的角等于__________.7如图,已知正方体ABCD -A 1B 1C 1D 1,则二面角C 1-BD -C 的正切值为________.8.如图,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图所示的三棱锥A -BCF ,其中BC =22. (1)证明:DE ∥平面BCF ;(2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .。
2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标核心素养1.了解直线与平面垂直的定义.(重点)2.理解直线与平面垂直的判定定理,并会用其判断直线与平面垂直.(难点)3.理解直线与平面所成角的概念,并能解决简单的线面角问题.(易错点)1.通过学习直线与平面垂直的判定,提升直观想象、逻辑推理的数学素养.2.通过学习直线与平面所成的角,提升直观想象、数学运算的数学素养.1.直线与平面垂直定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直文字语言一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α图形语言3.直线和平面所成的角有关概念对应图形斜线与平面α相交,但不和平面α垂直,图中直线P A斜足斜线和平面的交点,图中点A射影过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影,图中斜线P A在平面α上的射影为AO直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角.规定:一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角取值范围[0°,90°]有直线”“无数条直线”?[提示]定义中的“任意一条直线”与“所有直线”是等效的,但是不可说成“无数条直线”,因为一条直线与某平面内无数条平行直线垂直,该直线与这个平面不一定垂直.1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABCC[由线面垂直的判定定理知OA垂直于平面OBC.]2.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定B[一条直线和三角形的两边同时垂直,则其垂直于三角形所在平面,从而垂直第三边.]3.在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于________.45°[如图所示,因为正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以AB即为AB1在平面ABCD中的射影,∠B1AB即为直线AB1与平面ABCD所成的角.由题意知,∠B1AB=45°,故所求角为45°.]直线与平面垂直的判定【例1】如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[证明](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.证线面垂直的方法:(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直,也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图,AB是圆O的直径,P A垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,垂足为N.求证:AN⊥平面PBM.[证明]设圆O所在的平面为α,∵P A⊥α,且BM⊂α,∴P A⊥BM.又∵AB为⊙O的直径,点M为圆周上一点,∴AM⊥BM. 由于直线P A∩AM=A,∴BM⊥平面P AM,而AN⊂平面P AM,∴BM⊥AN.∴AN与PM、BM两条相交直线互相垂直.故A N⊥平面PBM.直线与平面所成的角[探究问题]1.若图中的∠POA是斜线PO与平面α所成的角,则需具备哪些条件?[提示]需要P A⊥α,A为垂足,OA为斜线PO的射影,这样∠POA就是斜线PO与平面α所成的角.2.空间几何体中,确定线面角的关键是什么?[提示]在空间几何体中确定线面角时,过斜线上一点向平面作垂线,确定垂足位置是关键,垂足确定,则射影确定,线面角确定.【例2】在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.[证明](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=2 2.(2)连接A1C1交B1D1于O(见题图),在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt △A 1BO 中,A 1O =12A 1C 1=12A 1B , ∴∠A 1BO=30°,即A 1B 与平面BDD 1B 1所成的角为30°.在本例正方体中,若E 为棱AB 的中点,求直线B 1E 与平面BB 1D 1D所成角的正切值.[解] 连接AC 交BD 于点O ,过E 作EO 1∥AC 交BD 于点O 1,易证AC ⊥平面BB 1D 1D ,∴EO 1⊥平面BB 1D 1D ,∴B 1O 1是B 1E 在平面BB 1D 1D 内的射影, ∴∠EB 1O 1为B 1E 与平面BB 1D 1D 所成的角. 设正方体的棱长为a , ∵E 是AB 的中点,EO 1∥AC , ∴O 1是BO 的中点,∴EO 1=12AO =12×2a 2=2a4, B 1O 1=BO 21+BB 21=⎝ ⎛⎭⎪⎫2a 42+a 2=3a 22, ∴tan ∠EB 1O 1=EO 1B 1O 1=2a 43a 22=13.求斜线与平面所成角的步骤:(1)作图:作(或找)出斜线在平面内的射影,作射影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算.(2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算.1.线线垂直和线面垂直的相互转化:2.证明线面垂直的方法:(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.1.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直A[若l∥m,l⊄α,m⊂α,则l∥α,这与已知l⊥α矛盾.所以直线l与m 不可能平行.]2.垂直于梯形两腰的直线与梯形所在平面的位置关系是()A.垂直B.相交但不垂直C.平行D.不确定A[因为梯形两腰所在直线为两条相交直线,所以由线面垂直的判定定理知,直线与平面垂直.选A.]3.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30°D.120°A[∠ABO即是斜线AB与平面α所成的角,在Rt△AOB中,AB=2BO,所以cos∠ABO=12,即∠ABO=60°. 故选A.]4.在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D. [证明]如图,连接AC,∴AC⊥BD,又∵BD⊥A1A,AC∩AA1=A,AC,A1A⊂平面A1AC,∴BD⊥平面A1AC,∵A1C⊂平面A1AC,∴BD⊥A1C.同理可证BC1⊥A1C.又∵BD∩BC1=B,BD,BC1⊂平面BC1D,∴A1C⊥平面BC1D.。
2.3 直线、平面垂直的判定及其性质知识点1 直线与平面垂直的定义如果一条直线与平面内内任意一条直线都垂直,那么直线与平面垂直。
知识点2 线线垂直判定依据如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内任意一条直线。
知识点3 直线与平面垂直判定定理如果一条直线与平面内两条相交直线垂直,那么这条直线与这个平面垂直。
知识点4 平面与平面垂直平面角是直角的二面角叫做直二面角。
二面角是直角的两个平面互相垂直。
面面垂直的判定:一个平面过另外一个平面的垂线,则这两个平面垂直。
知识点5 平面与平面垂直的性质两个平面垂直,则一个平面内垂直于交线的直线与另外一个平面垂直。
知识点6 空间中的角异面直线所成角:经过空间一点引两平行线,所成锐角或者直角为异面直线所成角。
取值范围:(0°,90°]。
直线和平面所成角:取值范围[0°,90°],在线上一点作垂线,垂足与斜足相连为直线在平面上的投影,斜线及其投影所成角就是直线与平面所成角。
知识点7 二面角及二面角的平面角半平面:一条直线把平面分成两个部分,每一部分叫做半平面。
二面角:由一条直线发出的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱,两个半平面叫做二面角的面。
二面角的大小用它的平面角来衡量。
二面角的平面角:棱上取点,作棱的垂射线OA,OB,∠AOB叫做二面角的平面角,取值范围是[0,π]平面角具有的性质:1、二面角的棱垂直于它的平面角所在的平面。
2、从平面角的任意一边上取一点向另外一个半平面作垂线,垂足必在另一条射线上。
3、是直线与平面所成的最小角。
知识点8 空间中的距离点到平面的距离:作垂线,垂线段的距离就是点到平面的距离。
直线到平面的距离:一条直线直线与一个平面平行,直线上任意一点到平面的距离叫做这条直线和平面间的距离。
平行平面间的距离:同时垂直于两个平面的垂线段的长度。
异面直线之间的距离:作同时垂直于两条直线的公垂线(唯一),两直线间的线段长度为异面直线间的距离。
教 师 学生姓名 教材版本 北师大 学 科数学年级上课时间课 题 平行垂直 教学目 标 平行垂直教 学重 点平行垂直教 学 过 程一、知识梳理1.直线和平面垂直:(1)定义:如果一条直线l 和一个平面α内的任意一条直线都垂直,那么就说直线l 和平面α互相垂直.记作:l α⊥(2)判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 即,,,m n m n A l l m l n ααα⊂⊂=⎫⇒⊥⎬⊥⊥⎭(3)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.即a ab b αα⊥⎫⇒⊥⎬⊥⎭2. 三垂线定理:(1)斜线在平面内的射影:从斜线上斜足以外的一点向平面引垂线,过斜足和垂足的直线叫做斜线在这个平面内的射影.注:垂线段比任何一条斜线段短.⑵三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直. 即,a PA a OP a OA OA ααα⊂,⊥,⎫⇒⊥⎬⊥⊂⎭三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.即 ,,a PA A a OA a OP O OP αααα⊂,⊥,⎫⇒⊥⎬⊥∈⊄⎭垂足为二、专题精讲题型一 线线、线面、面面垂直关系的综合问题例题1:l m 、为两条不重合的直线,αβγ、、为三个互不重合的平面,给出下面四个命题: ①αγβγαβ⊥⊥⇒⊥,;②//αγβγαβ⊥⇒⊥,;//l l αβαβ⊥⇒⊥③,;m l m l αβαβ⊥⊥⇒⊥④,,其中正确的命题有( )A 1个B 2个C 3个D 4个【反思小结】与平行问题一样,本题主要考查线线、线面、面面的垂直问题,高考几乎年年都单独考查学生对线面、面面垂直的判定定理和性质定理的准确、深刻的理解,考查学生对符号语言、图形语言、文字语言熟练转换的能力,以选择题、填空题居多,既可能就平行或垂直单独进行考查,又可能在平行中渗透垂直,垂直中兼顾平行,既考查空间想象能力,又考查逻辑推理能力。
2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直1.平面与平面垂直定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.2.平面与平面垂直的判定定理判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.1.基本性质一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.2.性质定理垂直于同一个平面的两条直线平行.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.类型一、直线和平面垂直的定义下列说法中错误的是( )①如果一条直线和平面内的一条直线垂直,该直线与这个平面必相交;②如果一条直线和平面的一条平行线垂直,该直线必在这个平面内;③如果一条直线和平面的一条垂线垂直,该直线必定在这个平面内;④如果一条直线和一个平面垂直,该直线垂直于平面内的任何直线.A.①②B.②③④C.①②④D.①②③答案:D4.若P是平面外一点,则下列命题正确的是(D ).A.过P只能作一条直线与平面相交B.过P可作无数条直线与平面垂直C.过P只能作一条直线与平面平行D.过P可作无数条直线与平面平行5.设是直二面角,直线,直线,且a不垂直于,b不垂直于,那么(C ).A.a与b可能垂直,但不能平行B.a与b可能垂直,也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能平行,也不能垂直7.关于直线m、n与平面与,有下列四个命题:①若且,则m∥n;②若且,则;③若且,则;④若且,则m∥n.其中真命题的序号是(D ).A.①②B.③④C.①④D.②③8.已知直线m⊥平面,直线,给出下列四个命题,其中正确的命题是( B).①若,则;②若,则m∥n;③若m∥n,则;④若,则.A.③④B.①③C.②④D.①②9.下面四个命题:①两两相交的三条直线只可能确定一个平面;②经过平面外一点,有且仅有一个平面垂直这个平面;③平面内不共线的三点到平面的距离相等,则;④两个平面垂直,过其中一个平面内一点作它们交线的垂线,则此垂线垂直于另一个平面其中真命题的个数是(B ).A.0个B.1个C.2个D.3个10.设有不同的直线a、b和不同的平面、、,给出下列三个命题:①若,,则;②若,,则;③若,则.其中正确的个数是(B )A.0B.1C.2D.311.已知直线⊥平面,直线平面,有四个命题:①;②;③;④④若平面⊥平面,则内任何直线都与垂直类型二、直线和平面垂直的判定如图所示,直三棱柱中,∠ACB=90°,AC=1,,侧棱,侧面的两条对角线交点为D,的中点为M.求证:CD⊥平面BDM.证明:如右图,连接、、,则.∵,∴为等腰三角形.又知D为其底边的中点,∴.∵,,∴.又,∴.∵ 为直角三角形,D 为的中点, ∴ ,.又,, ∴ ..即CD ⊥DM.∵ 、为平面BDM 内两条相交直线, ∴ CD ⊥平面BDM.类型五、平面与平面垂直的判定【变式1】如图所示,在空间四边形ABCD 中,AB=BC ,CD=DA ,E 、F 、G 分别为CD 、DA 和对角线AC 的中点,求证:平面BEF ⊥平面BGD.证明:∵ AB=BC ,CD=AD ,G 是AC 的中点,∴ BG ⊥AC ,DG ⊥AC ,∴ AC ⊥平面BGD.又EF ∥AC ,∴ EF ⊥平面BGD.∵ EF 平面BEF , ∴ 平面BDG ⊥平面BEF.类型六、综合应用例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .证明:连结D B 1、D A 1、BD ,在△BD B 1中,∵O E 、分别是B B 1和DB 的中点,∴D B EO 1//.∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影.又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD ,∴⊥D B 1平面1ACD .∵EO D B //1,∴⊥EO 平面1ACD .6.如图所示,△ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE=AC=2BD ,M 是AE 的中点,求证:(1)DE=DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA .证明: (1)取EC 的中点F ,连接DF .∵ CE ⊥平面ABC ,∴ CE ⊥BC .易知DF ∥BC ,CE ⊥DF .∵ BD ∥CE ,∴ BD ⊥平面ABC . 在Rt △EFD 和Rt △DBA 中,∵ ,, ∴ Rt △EFD ≌Rt △DBA .故DE=AD .(2)取AC 的中点N ,连接MN 、BN ,MN CF . ∵ BD CF ,∴ MN BD .N 平面BDM . ∵ EC ⊥平面ABC ,∴ EC ⊥BN .又∵ AC ⊥BN ,∴ BN ⊥平面ECA .又∵ BN 平面MNBD ,∴ 平面BDM ⊥平面ECA .(3)∵ DM ∥BN ,BN ⊥平面ECA ,∴ DM ⊥平面ECA .又∵ DM 平面DEA ,∴ 平面DEA ⊥平面ECA .5.已知ABCD 为矩形,SA ⊥平面ABCD ,过点A 作AE ⊥SB 于点E ,过点E 作EF ⊥SC 于点F ,如图所示.(1)求证:AF ⊥SC ;(2)若平面AEF 交SD 于点G ,求证:AG ⊥SD.(1)∵ SA ⊥平面ABCD ,BC 平面ABCD , ∴ SA ⊥BC.又BC ⊥AB ,SA ∩AB=A ,∴ BC ⊥平面SAB ,AE 平面SAB.∴ BC ⊥AE.又AE ⊥SB ,BC ∩SB=B.∴ 有AE ⊥平面SBC ,又SC 平面SDC ,∴ AE ⊥SC.又EF ⊥SC ,AE ∩EF=E ,∴ SC ⊥平面AEF ,AE平面AEF , ∴ AF ⊥SC.(2)∵SC⊥平面AEF,AG平面AEF,∴SC⊥AG,又CD⊥AD,CD⊥SA,AD∩SA=A.∴CD⊥平面SAD,AG平面SAD.∴CD⊥AG,又SC∩CD=C,∴AG⊥平面SDC.又SD平面SDC,∴AG⊥SD.1.已知:如图所示,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.1.证明:(1)在平面ABC内取一点D,作DF⊥AC于点F.∴平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.PC平面PAC,∴DF⊥AP.作DG⊥AB于点G.同理可证DG⊥AP.又DG、DF都在平面ABC内.∴PA⊥平面ABC.(2)连接BE并延长交PC于H.∵E是△PBC的垂心,∴PC⊥BE.又已知AE是平面PBC的垂线.∴PC⊥BH.∴PC⊥平面ABE.∴PC⊥AB.又∵PA⊥平面ABC,∴PA⊥AB.∴AB⊥平面PAC.∴AB⊥AC,即△ABC是直角三角形.2.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.证明:(1)连接AC,AC交BD于点D.连接EO,如图.∵底面ABCD是正方形.∴点O是AC的中点.在△PAC中,EO是中位线,∴PA∥EO.而EO平面EDB且PA平面EDB.所以PA∥平面EDB.(2)∵PD⊥底面ABCD且DC底面ABCD.∴PD⊥DC.∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC。
_2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定2.3.2[导入新知]1.直线与平面垂直的定义(1)自然语言:如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足.(2)图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.(3)符号语言:任意a⊂α,都有l⊥a⇒l⊥α.2.直线与平面垂直的判定定理(1)自然语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(2)图形语言:如图所示.(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.[导入新知](1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.如图,∠P AO就是斜线AP与平面α所成的角.(2)当直线AP与平面垂直时,它们所成的角是90°.(3)当直线与平面平行或在平面内时,它们所成的角是0°.(4)线面角θ的范围:0°≤θ≤90°.[例1]下列说法中正确的个数是()①如果直线l与平面α内的两条相交直线都垂直,则l⊥α;②如果直线l与平面α内的任意一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.A.0B.1C.2 D.3[活学活用]1.下列说法中,正确的是()A.若直线l与平面α内无数条直线垂直,则l⊥αB.若直线l垂直于平面α,则l与平面α内的直线可能相交,可能异面,也可能平行C.若a∥b,a⊂α,l⊥α,则l⊥bD.若a⊥b,b⊥α,则a∥α[例2]如图所示,在三棱柱ABC-AB1C1中,侧棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点.求证:AD⊥平面A1DC1.[活学活用]2.如图,直角三角形ABC所在平面外有一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[例3]如图所示,在正方体ABCD-AB1C1D1中,E是棱DD1的中点.求1直线BE与平面ABB1A1所成的角的正弦值.[活学活用]3.已知正三棱锥的侧棱长是底面边长的2倍,求侧棱与底面所成角的余弦值.6.证明线面垂直[典例]如图,已知P是△ABC所在平面外一点,P A,PB,PC两两互相垂直,H是△ABC的垂心.求证:PH⊥平面ABC.[解题流程]要证PH⊥平面ABC,需证PH垂直于平面ABC内两条相交直线.P A,PB,PC两两垂直且H是△ABC的垂心,则△ABC的一个顶点与H连线与对边垂直.[规范解答]如图所示,∵PC⊥AP,PC⊥BP,AP∩BP=P①,AP⊂平面APB,BP⊂平面APB②,∴PC⊥平面APB.(3分)∵AB⊂平面APB③,∴PC⊥AB.(5分)连接CH,∵H为△ABC的垂心,∴CH⊥AB.(7分)∵PC∩CH=C①,PC⊂平面PHC,CH⊂平面PHC②,∴AB⊥平面PHC.∵PH⊂平面PHC③,∴AB⊥PH.(9分)同理可证PH⊥BC.(10分)∵AB⊂平面ABC,BC⊂平面ABC②且AB∩BC=B①,∴PH⊥平面ABC.(12分)[活学活用]如图,已知P A⊥圆O所在平面,AB为圆O的直径,C是圆周上的任意一点,过A作AE⊥PC于E.求证:AE⊥平面PBC.[随堂即时演练]1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定2.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30°D.120°3.如图所示,三棱锥P-ABC中,P A⊥平面ABC,P A=AB,则直线PB与平面ABC所成的角等于________.4.已知P A垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形一定是________.5.如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.[课时达标检测]一、选择题1.直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是() A.平行B.垂直C.在平面α内D.无法确定2.下列说法中正确的个数是()①若直线l与平面α内的一条直线垂直,则l⊥α.②若直线l与平面α内的两条相交直线垂直,则l⊥α.③若直线l与平面α内的任意一条直线垂直,则l⊥α.A.3 B.2C .1D .03.如图所示,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( )A .平行B .垂直相交C .垂直但不相交D .相交但不垂直4.在△ABC 中,AB =AC =5,BC =6,P A ⊥平面ABC ,P A =8,则P 到BC 的距离是( ) A. 5 B .2 5 C .3 5D .4 55.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成的角的余弦值为( ) A.23B.33C.23D.63二、填空题6.在三棱锥V -ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件________时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)8.正方体ABCD -A 1B 1C 1D 1中,面对角线A 1B 与对角面BB 1D 1D 所成的角为________.三、解答题9.如图,在直角三角形BMC 中,∠BCM =90°,∠MBC =60°,BM =5,MA =3且MA ⊥AC ,AB =4,求MC 与平面ABC 所成角的正弦值.10.如图,在锥体P-ABCD中,ABCD是菱形,且∠DAB=60°,P A=PD,E,F分别是BC,PC的中点.证明:AD⊥平面DEF.2.3.2平面与平面垂直的判定[导入新知]二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角(如图).直线AB叫做二面角的棱,半平面α和β叫做二面角的面.记法:α-AB-β,在α,β内,分别取点P、Q时,可记作P-AB-Q;当棱记为l时,可记作α-l-β或P-l-Q.(2)二面角的平面角:①定义:在二面角α-l-β的棱l上任取一点O,如图所示,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.②直二面角:平面角是直角的二面角.[导入新知]1.面面垂直的定义(1)定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:记作:α⊥β.2.两平面垂直的判定(1)文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.(2)图形语言:如图.(3)符号语言:AB⊥β,AB∩β=B,AB⊂α⇒α⊥β.[例1]如图所示,已知∠BSC=90°,∠BSA=∠CSA=60°,又SA=SB=SC.求证:平面ABC⊥平面SBC.[活学活用]1.(2012·新课标全国高考)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.[例2] 已知D ,E 分别是正三棱柱ABC -A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D =2B 1E =B 1C 1.求过D ,E ,C 1的平面与棱柱的下底面A 1B 1C 1所成的二面角的大小.[活学活用]2.如图所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC于点D,E,又SA=AB,SB=BC,求二面角E-BD-C的大小.[例3]如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,P A=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面P AC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.[活学活用]3.△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.[随堂即时演练]1.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β2.对于直线m,n和平面α,β,能得出α⊥β的一组条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂βC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β3.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是________________________.4.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,P A =6,那么二面角P-BC-A的大小为________.5.在四面体ABCD中,BD=2a,AB=AD=CB=CD=AC=a,求证:平面ABD⊥平面BCD.[课时达标检测]一、选择题1.下列命题中:①两个相交平面组成的图形叫做二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②2.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角()A.相等B.互补C.不确定D.相等或互补3.在四棱锥P—ABCD中,已知P A⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是()A.平面P AB⊥平面P ADB.平面P AB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面P AD4.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,∠BAC=90°,则二面角B-P A-C的大小为()A.90°B.60°C.45°D.30°5.在正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值为()A.32 B.22C. 2D. 3二、填空题6.经过平面α外一点和平面α内一点与平面α垂直的平面有________个.7.正四面体的侧面与底面所成的二面角的余弦值是________.8.在一个倾斜角为60°的斜坡上,沿着与坡脚面的水平线成30°角的道路上坡,行走100 m,实际升高了________ m.三、解答题9.如图所示,四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EDB⊥平面ABCD.2.3.3 & 2.3.4直线与平面、平面与平面垂直的性质[导入新知]直线与平面垂直的性质定理(1)文字语言:垂直于同一个平面的两条直线平行. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b . (4)作用:①线面垂直⇒线线平行; ②作平行线.[导入新知]平面与平面垂直的性质定理(1)文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂αa ⊥l⇒a ⊥β. (4)作用:①面面垂直⇒线面垂直; ②作面的垂线.[例1] 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE .[活学活用]1.如图,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB =2a,CD=a,F是BE的中点,求证:(1)DF∥平面ABC;(2)AF⊥BD.[例2]如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°,且边长为a的菱形.侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面P AD;(2)求证:AD⊥PB.[活学活用]2.如图所示,在三棱锥P—ABC中,P A⊥平面ABC,平面P AC⊥平面PBC.求证:BC⊥AC.[例3]已知:如图,平面P AB⊥平面ABC,平面P AC⊥平面ABC,AE⊥平面PBC,E 为垂足.(1)求证:P A⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.[活学活用]3.如图,在三棱锥P-ABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面P AB;(2)若平面P AC⊥平面ABC,且P A=PC,∠ABC=90°.求证:平面PEF⊥平面PBC.[随堂即时演练]1.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β2.△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则不重合的直线l,m的位置关系是()A.相交B.异面C.平行D.不确定3.若a,b表示直线(不重合),α表示平面,有下列说法:①a⊥α,b∥α⇒a⊥b;②a ⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.其中正确的序号是________.4.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是________.5.如图所示,正方体A1B1C1D1-ABCD中,EF与异面直线AC,A1D都垂直相交.求证:EF∥BD1.[课时达标检测]一、选择题1.若l,m,n表示不重合的直线,α表示平面,则下列说法中正确的个数为()①l∥m,m∥n,l⊥α⇒n⊥α;②l∥m,m⊥α,n⊥α⇒l∥n;③m⊥α,n⊂α⇒m⊥n.A.1 B.2C.3 D.02.如果直线a与平面α不垂直,那么平面α内与直线a垂直的直线有()A.0条B.1条C.无数条D.任意条3.(2012·浙江高考)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β4.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β5.线段AB的两端在直二面角α-l-β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是()A.30°B.45°C.60°D.75°二、填空题6.一条与平面α相交的线段,其长度为10 cm,两端点到平面的距离分别是2 cm,3 cm,这条线段与平面α所成的角是________.7.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB,则直线a与直线l的位置关系是________.8.如图,四面体P-ABC中,P A=PB=13,平面P AB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.三、解答题9.如图:三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△P AC是直角三角形,∠P AC=90°,∠ACP=30°,平面P AC⊥平面ABC.求证:平面P AB⊥平面PBC.人教版必修二数学:2.3直线、平面垂直的判定及其性质(无答案)31 / 31。
明轩教育个性化辅导授课案教师: 学生: 时间:_ 2015 _年_ _月 日 段 第__ 次课教学目的: 掌握判定直线和平面垂直的方法,会求直线与平面的夹角和二面角 教学重点: 掌握判定直线和平面垂直的方法 教学难点: 会求直线与平面的夹角和二面角2.2.3学习内容:直线、平面垂直的判定与性质重要知识点讲解知识点一:直线与平面垂直的定义定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直。
记作α⊥l ,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面垂直时,它们唯一的公共点P 叫做垂足符号语言:任意αα⊥⇒⊥⊂l a l a 都有,,其中“任意直线”等同于“所有直线”规律与方法(1)直线与平面垂直是直线与平面相交的特殊情形。
(2)由定义可知,若直线与平面垂直,则直线与平面内的任意一条直线垂直,这是证线线垂直的重要方法 (3)重要结论:过一点和已知平面垂直的直线只有一条 题型一: 直线与平面垂直的判定定义例题1下列命题中,正确的序号是① 若直线l 与平面α内的无数条直线垂直,则α⊥l ; ② 若直线l 与平面α内的一条直线垂直,则α⊥l③ 若直线l 不垂直于平面α,则α内没有与l 垂直的直线④ 若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直 ⑤ 过一点和已知平面垂直的直线有且只有一条变式训练1:直线a 与b 垂直,b ⊥平面α,则a 与平面α的位置关系是 ( )A .a ∥αB .a ⊥αC .a α⊂D .a α⊂或a ∥α变式训练2:已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A .,,//,////m n m n ααββαβ⊂⊂⇒B . //,,//m n m n αβαβ⊂⊂⇒C .,//m m n n αα⊥⊥⇒D . //,m n n m αα⊥⇒⊥ 变式训练3:已知两条直线,m n ,两个平面,αβ,给出下面四个命题:( )①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( )A .①③B .②④C .①④D .②③ 知识点二:直线与平面垂直的判定定理定理:一条直线与平面内的两条相交直线都垂直,则该直线与此平面垂直 图形语言: 符号语言:(1) 推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面 (2) 直线和平面垂直的性质1A 1B 1C 1D ABCDE 1D 1A D A42图5 ③垂直于同一直线的两平面平行.线面角定义:斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角 题型二 直线与平面垂直的判定定理的运用例题1:如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。
§2.3.1直线与平面垂直的判定一、教学目标1、知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握判定直线和平面垂直的方法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
2、过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。
3、情态与价值培养学生学会从“感性认识”到“理性认识”过程中获取新知。
二、教学重点、难点直线与平面垂直的定义和判定定理的探究。
三、教学设计(一)创设情景,揭示课题1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。
2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。
(二)研探新知1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。
然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。
如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。
并对画示表示进行说明。
Lpα图2-3-12、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。
有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图2.3-2试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问如何翻折才能保证折痕AD与桌面所在平面垂直?AB D C图2.3-2(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
老师特别强调:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
(三)实际应用,巩固深化(1)课本P69例1教学(2)课本P69例2教学(四)归纳小结,课后思考小结:采用师生对话形式,完成下列问题:①请归纳一下获得直线与平面垂直的判定定理的基本过程。
②直线与平面垂直的判定定理,体现的教学思想方法是什么?课后作业:①课本P70练习2②求证:如果一条直线平行于一个平面,那么这个平面的任何垂线都和这条直线垂直。
思考题:如果一条直线垂直于平面内的无数条直线,那么这条直线就和这个平面垂直,这个结论对吗?为什么?§2.3.2平面与平面垂直的判定一、教学目标1、知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
3、情态与价值通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
二、教学重点、难点。
重点:平面与平面垂直的判定;难点:如何度量二面角的大小。
三、学法与教学用具。
1、学法:实物观察,类比归纳,语言表达。
2、教学用具:二面角模型(两块硬纸板)四、教学设计(一)创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
(二)研探新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。
教师特别指出:(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;(2)∠AOB的大小与点O在L上位置无关;(3)当二面角的平面角是直角时,这两个平面的位置关系怎样?承上启下,引导学生观察,类比、自主探究,βB获得两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
C O A(三)应用举例,强化所学α例题:课本P.72例3 图2.3-3做法:教师引导学生分析题意,先让学生自己动手推理证明,然后抽检学生掌握情况,教师最后讲评并板书证明过程。
(四)运用反馈,深化巩固问题:课本P.73的探究问题做法:学生思考(或分组讨论),老师与学生对话完成。
(五)小结归纳,整体认识(1)二面角以及平面角的有关概念;(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?(六)课后巩固,拓展思维1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互补。
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB 的大小与点O在L上的位置无关?§2.3.3直线与平面垂直的性质§2.3.4平面与平面垂直的性质一、教学目标1、知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。
2、过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;(2)性质定理的推理论证。
3、情态与价值通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。
二、教学重点、难点两个性质定理的证明。
三、学法与用具(1)学法:直观感知、操作确认,猜想与证明。
(2)用具:长方体模型。
四、教学设计(一)创设情景,揭示课题问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢?让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。
(自然进入课题内容)(二)研探新知1、操作确认观察长方体模型中四条侧棱与同一个底面的位置关系。
如图2.3—4,在长方体ABCD—A1B1C1D1中,棱AA1、BB1、CC1、DD1所在直线都垂直于平面ABCD,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a⊥α、b⊥α、那么直线a、b一定平行吗?(一定)我们能否证明这一事实的正确性呢?图2.3-52、推理证明引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法——反证法,然后师生互动共同完成该推理过程,最后归纳得出:垂直于同一个平面的两条直线平行。
(三)应用巩固例子:课本P.74例4做法:教师给出问题,学生思考探究、判断并说理由,教师最后评议。
(四)类比拓展,研探新知类比上面定理:若在两个平面互相垂直的条件下,又会得出怎样的结论呢?例如:如何在黑板面上画一条与地面垂直的直线?引导学生观察教室相邻两面墙的交线,容易发现该交线与地面垂直,这时,只要在黑板上画出一条与这交线平行的直线,则所画直线必与地面垂直。
然后师生互动,共同完成性质定理的确认与证明,并归纳性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
(五)巩固深化、发展思维思考1、设平面α⊥平面β,点P在平面α内,过点P作平面β的垂线a,直线a与平面α具有什么位置关系?(答:直线a必在平面α内)思考2、已知平面α、β和直线a,若α⊥β,a⊥β,a α,则直线a与平面α具有什么位置关系?(六)归纳小结,课后巩固小结:(1)请归纳一下本节学习了什么性质定理,其内容各是什么?(2)类比两个性质定理,你发现它们之间有何联系?作业:(1)求证:两条异面直线不能同时和一个平面垂直;(2)求证:三个两两垂直的平面的交线两两垂直。
第二章点、直线、平面的位置关系小结一、教学目标1、知识与技能(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。
2、过程与方法利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。
3情态与价值学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。
二、教学重点、难点重点:各知识点间的网络关系;难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计(一)知识回顾,整体认识1、本章知识回顾(1)空间点、线、面间的位置关系;(2)直线、平面平行的判定及性质;(3)直线、平面垂直的判定及性质。
2、本章知识结构框图(二)整合知识,发展思维1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。
公理1——判定直线是否在平面内的依据;公理2——提供确定平面最基本的依据;公理3——判定两个平面交线位置的依据;公理4——判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;3、空间平行、垂直之间的转化与联系:4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。
(三)应用举例,深化巩固1、P.82 A 组第1题本题主要是公理1、2知识的巩固与应用。
2、P.82 A 组第8题本题主要是直线与平面垂直的判定与性质的知识巩固与应用。
(四)课后作业1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;2、P.83 B 组第2题。