2016届高考数学大一轮复习平面解析几何解答题规范专练(五)理(含解析)
- 格式:doc
- 大小:80.00 KB
- 文档页数:6
【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。
2016年普通高等学校招生全国统一考试理科数学及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的.〔1〕设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = 〔A 〕3(3,)2--〔B 〕3(3,)2-〔C 〕3(1,)2〔D 〕3(,3)2〔2〕设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +〔A 〕1〔B 〔C D 〕2〔3〕已知等差数列{}n a 前9项的和为27,10=8a ,则100=a 〔A 〕100〔B 〕99〔C 〕98〔D 〕97〔4〕某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是〔A 〕〔B 〕〔C 〕〔D 〕〔5〕已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是〔A 〕(–1,3) 〔B 〕(–1,3) 〔C 〕(0,3) 〔D 〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,则它的外表积是 〔A 〕17π〔B 〕18π〔C 〕20π〔D 〕28π 〔7〕函数y =2x 2–e |x |在[–2,2]的图像大致为〔A 〕〔B 〕〔C 〕〔D 〕〔8〕假设101a b c >><<,,则〔A 〕c c a b <〔B 〕c c ab ba <〔C 〕log log b a a c b c <〔D 〕log log a b c c <〔9〕执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足〔A 〕2y x =〔B 〕3y x =〔C 〕4y x =〔D 〕5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为B )213()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为〔A 〕11 〔B 〕9 〔C 〕7 〔D 〕5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =. (14)5(2x 的展开式中,x 3的系数是.〔用数字填写答案〕 〔15〕设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。
1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34 【答案】B 【解析】考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )2【答案】D 【解析】试题分析:因为F 抛物线24y x =的焦点,所以(1,0)F , 又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k=,所以2k =,选D. 考点: 抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y =kx(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.3.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .4.【2016高考四川文科】抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.5.【2016高考山东文数】已知圆M :2220(0)x y ay a 截直线0x y 所得线段的长度是22M 与圆N :22(1)1x y (-1)的位置关系是( )(A )内切(B )相交(C )外切(D )相离 【答案】B 【解析】考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 6.【2016高考北京文数】圆22(1)2x y ++=的圆心到直线3y x =+的距离为( ) A.1 B.2 2 2【答案】C 【解析】试题分析:圆心坐标为(1,0)-,由点到直线的距离公式可知22d ==C.考点:直线与圆的位置关系【名师点睛】点),(00y x 到直线b kx y +=(即0=--b kx y )的距离公式2001||k b kx y d +--=记忆容易,对于知d 求k ,b 很方便.7、【2016高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________. 25【解析】试题分析:利用两平行线间距离公式得12222225d a b 21===++考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.8.【2016高考北京文数】已知双曲线22221x y a b -= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.【答案】1,2a b ==. 考点:双曲线的基本概念【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.9.【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题:①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. ②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 【解析】考点:1.新定义问题;2.曲线与方程.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.10.[2016高考新课标Ⅲ文数]已知直线l :360x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________. 【答案】4 【解析】试题分析:由360x -+=,得36x =-,代入圆的方程,并整理,得23360y -+=,解得1223,3y y ==,所以120,3x x ==-,所以221212||()()23AB x y y y =-+-=l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.11.【2016高考浙江文数】设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______. 【答案】(27,8). 【解析】考点:双曲线的几何性质.【思路点睛】先由对称性可设点P 在右支上,进而可得1F P 和2F P ,再由12F F ∆P 为锐角三角形可得2221212F F FF P +P >,进而可得x 的不等式,解不等式可得12F F P +P 的取值范围.12.【2016高考浙江文数】已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______. 【答案】(2,4)--;5. 【解析】试题分析:由题意22a a =+,12a =-或,1a =-时方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,2a =时方程为224448100x y x y ++++=,2215()(1)24x y +++=-不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得a 的方程,解得a 的值,一定要注意检验a 的值是否符合题意,否则很容易出现错误.13.【2016高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点(0,5)M 在圆C 上,且圆心到直线20x y -= 的距离为455,则圆C 的方程为__________. 【答案】22(2)9.x y -+=考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.14.【2016高考山东文数】已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2 【解析】 试题分析:依题意,不妨设6,4AB AD ==,作出图象如下图所示 则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.15. 【2016高考新课标1文数】设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 .【答案】4π 考点:直线与圆【名师点睛】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到.16.【2016高考天津文数】已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( )(A )1422=-y x(B )1422=-y x (C )15320322=-y x (D )12035322=-y x【答案】A 【解析】试题分析:由题意得2215,2,11241b x yc a b a =⇒==⇒-=,选A.考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0). 17.【2016高考新课标2文数】圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =( )(A )−43 (B )−34(C 3 (D )2【答案】A考点: 圆的方程,点到直线的距离公式.【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.18.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OHON; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【答案】(I )2(II )没有 【解答】试题分析:先确定),(2t p t N ,ON 的方程为x t p y =,代入px y 22=整理得0222=-x t px ,解得01=x ,p t x 222=,得)2,2(2t p t H ,由此可得N 为OH 的中点,即2||||=ON OH .(II ) 把直线MH 的方程x tpt y 2=-,与px y 22=联立得04422=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.考点:直线与抛物线【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.19.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =32k <<.【答案】(Ⅰ)14449;(Ⅱ))32,2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. 考点:椭圆的性质,直线与椭圆的位置关系. 【名师点睛】本题中22233k tk k t=++,分离变量t ,得()332132k k t k -=>-,解不等式,即求得实数k 的取值范围.20.[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.【解析】考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.【2016高考北京文数】(本小题14分)已知椭圆C:22221x ya b+=过点A(2,0),B(0,1)两点.(I)求椭圆C的方程及离心率;(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【答案】(Ⅰ)2214xy+=;32=e(Ⅱ)见解析.【解析】考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.22.【2016高考山东文数】(本小题满分14分)已知椭圆C:(a>b>0)的长轴长为4,焦距为2.(I)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长线QM交C于点B.(i)设直线PM、QM的斜率分别为k、k',证明为定值.(ii)求直线AB的斜率的最小值.【答案】(Ⅰ)22142x y+=.(Ⅱ)(i)见解析;(ii)直线AB6【解析】此时'3kk=-,所以'kk为定值3-.所以直线AB 的斜率的最小值为6 2考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.基本不等式.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用,,,a b c e的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到参数的解析式或方程是关键,易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、基本计算能力、分析问题解决问题的能力等.23.【2016高考天津文数】(设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA e OA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.【答案】(Ⅰ)22143x y +=(Ⅱ)64± 【解析】(2)设直线的斜率为(0)k k ≠,则直线l 的方程为(2)y k x =-,设(,)B B B x y ,由方程组221,43(2),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 考点:椭圆的标准方程和几何性质,直线方程【名师点睛】解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.24.【2016高考浙江文数】(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x轴交于点M .求M 的横坐标的取值范围.【答案】(I )2p =;(II )()(),02,-∞+∞.【解析】设M(m,0),由A,M,N 三点共线得:222222231t t t t t m t t +=+--- , 于是2221t m t =-,经检验,m<0或m>2满足题意. 综上,点M 的横坐标的取值范围是()(),02,-∞+∞.考点:抛物线的几何性质、直线与抛物线的位置关系.【思路点睛】(I )当题目中出现抛物线上的点到焦点的距离时,一般会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到y 轴的距离;(II )通过联立方程组可得点B 的坐标,进而可得点N 的坐标,再利用A ,M ,N 三点共线可得m 用含有t 的式子表示,进而可得M 的横坐标的取值范围.25.【2016高考上海文科】(本题满分14分)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
最新高考数学“平面解析几何”解答题专项训练(20道题,后附答案)一、解答题(共20题;共195分)1.已知在△ABC中,点A(﹣1,0),B(0,√3),C(1,﹣2).(Ⅰ)求边AB上高所在直线的方程;(Ⅱ)求△ABC的面积S△ABC.2.已知三角形△ABC的三个顶点是A(4,0),B(6,7),C(0,8).(1)求BC边上的高所在直线的方程;(2)求BC边上的中线所在直线的方程.3.已知椭圆C:x2a +y2b=1(a>b>0)的右焦点为F(√2,0),过点F且垂直于x轴的直线与椭圆相交所得的弦长为2.(1)求椭圆C的方程;(2)过椭圆内一点P(0,t),斜率为k的直线l交椭圆于M,N两点,设直线OM,PN(O为坐标原点)的斜率分别为k1,k2,若对任意k,存在实数λ,使得k1+k2=λk,求实数λ的取值范围.4.在平面直角坐标系中,△ABC三个顶点分别为A(2,4),B(1,﹣3),C(﹣2,1).(1)求BC边上的高所在的直线方程;(2)设AC中点为D,求△DBC的面积.5.焦距为2c的椭圆Γ:x2a2+y2b2=1( a>b>0),如果满足“ 2b=a+c”,则称此椭圆为“等差椭圆”.(1)如果椭圆Γ:x2a2+y2b2=1( a>b>0)是“等差椭圆”,求ba的值;(2)如果椭圆Γ:x2a +y2b=1( a>b>0)是“等差椭圆”,过D(0,a)作直线l与此“等差椭圆”只有一个公共点,求此直线的斜率;(3)椭圆Γ:x2a2+y2b2=1( a>b>0)是“等差椭圆”,如果焦距为12,求此“等差椭圆”的方程;(4)对于焦距为12的“等差椭圆”,点A为椭圆短轴的上顶点,P为椭圆上异于A点的任一点,Q为P关于原点O的对称点(Q也异于A),直线AP、AQ分别与x轴交于M、N两点,判断以线段MN为直径的圆是否过定点?说明理由.6.在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.7.已知圆心为C的圆经过A(0,1)和B(3,4),且圆心C在直线l:x+2y−7=0上.(1)求圆C的标准方程;(2)求过原点且与圆C相切的直线方程.8.已知椭圆C:x2a2+y2b2=1(a>b>0),F(﹣c,0)为其左焦点,点P(﹣a2c,0),A1,A2分别为椭圆的左、右顶点,且|A1A2|=4,|PA1|= 2√33|A1F|.(1)求椭圆C的方程;(2)过点A1作两条射线分别与椭圆交于M、N两点(均异于点A1),且A1M⊥A1N,证明:直线MN恒过x轴上的一个定点.9.已知动点P与两个定点O(0,0),A(3,0)的距离的比为12.(1)求动点P的轨迹C的方程;(2)过点B(−2,1)的直线l与曲线C交于M、N两点,求线段MN长度的最小值;(3)已知圆Q的圆心为Q(t,t)(t>0),且圆Q与x轴相切,若圆Q与曲线C有公共点,求实数t的取值范围.10.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,过右焦点且垂直于长轴的直线与椭圆C交于P,Q两点,且|PQ|=√2.(1)求椭圆C的方程;(2)A,B是椭圆C上的两个不同点,若直线OA,OB的斜率之积为−12(以O为坐标原点),M是OA的中点,连接BM并延长交椭圆C于点N,求|BN||BM|的值.11.已知抛物线y2=2px(p>0)上的两个动点A(x1,y1)和B(x2,y2),焦点为F.线段AB的中点为M(3,y0),且A,B两点到抛物线的焦点F的距离之和为8.(1)求抛物线的标准方程;(2)若线段AB 的垂直平分线与x 轴交于点C ,求 △ABC 面积的最大值. 12.已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的长轴长为4,焦距为 2√3 .(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)设直线 l : y =kx +m 与椭圆 C 交于 P , Q 两个不同的点,且 OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0 , O 为坐标原点,问:是否存在实数 λ ,使得 |PQ ⃗⃗⃗⃗⃗ |=λ|OP ⃗⃗⃗⃗⃗ |⋅|OQ ⃗⃗⃗⃗⃗⃗ | 恒成立?若存在,请求出实数 λ ,若不存在,请说明理由.13.在平面直角坐标系xOy 中,已知椭圆E : x 2a 2+y 2b 2=1 (a >b >0)的离心率为 12 ,且椭圆E 的短轴的端点到焦点的距离等于2. (1)求椭圆E 的标准方程;(2)己知A ,B 分别为椭圆E 的左、右顶点,过x 轴上一点P (异于原点)作斜率为k(k≠0)的直线l 与椭圆E 相交于C ,D 两点,且直线AC 与BD 相交于点Q .①若k =1,求线段CD 中点横坐标的取值范围;②判断 OP⇀⋅OQ ⇀ 是否为定值,并说明理由. 14.已知椭圆M :x 2a 2+y 2b 2 =1(a >b >0)的离心率为 12 ,左焦点F 1到直线 x =−a 2c 的距离为3,圆N 的方程为(x ﹣c )2+y 2=a 2+c 2(c 为半焦距),直线l :y=kx+m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆M 的方程和直线l 的方程;(2)在圆N 上是否存在点P ,使 |PB||PA|=2√2 ,若存在,求出P 点坐标,若不存在,说明理由.15.已知抛物线 E 的顶点在原点,焦点 F 在 x 轴上,若点 P(2,2) 在抛物线上.(1)求抛物线 E 的方程;(2)如图,过点 P 且斜率为 k(−2≤k ≤−12) 的直线 l 与抛物线 E 的另一个交点为 A ,过点 P 与直线 l 垂直的直线 m 交 y 轴于点 B ,求直线 AB 的斜率的取值范围. 16.已知双曲线与椭圆x 225+y 29=1 有相同焦点,且经过点(4,6).(1)求双曲线方程;(2)若双曲线的左,右焦点分别是F 1 , F 2 , 试问在双曲线上是否存在点P ,使得|PF 1|=5|PF 2|.请说明理由.17.过抛物线 C:y 2=2px(p >0) )的焦点F 且斜率为 1 的直线交抛物线C 于M ,N 两点,且 |MN|=2 .(1)求p 的值;(2)抛物线C 上一点 Q(x 0,1) ,直线 l:y =kx +m (其中 k ≠0 )与抛物线C 交于A ,B 两个不同的点(A ,B 均与点Q 不重合).设直线QA ,QB 的斜率分别为 k 1,k 2 , k 1k 2=−12 .直线l 是否过定点?如果是,请求出所有定点;如果不是,请说明理由; 18.椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的离心率为 12 ,且过点 (−1,32) .(1)求椭圆 C 的方程;(2)设 P(x,y) 为椭圆 C 上任一点, F 为其右焦点,点 P ′ 满足 PP ′⇀=(4−x,0) .①证明: |PP ′⇀||PF ⇀| 为定值; ②设直线 y =12x +m 与椭圆 C 有两个不同的交点 A 、B ,与 y 轴交于点 M .若 |AF|,|MF|,|BF| 成等差数列,求 m 的值. 19.已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2 √2 。
2016年学易高考三轮复习系列:讲练测之核心热点 【江苏版】热点九 平面解析几何【名师精讲指南篇】【高考真题再现】例1 【2013江苏高考】双曲线221169x y -=的两条渐近线的方程为[答案] 34y x =±[解析]依题意,4a =,3b =,∴双曲线221169x y -=的两条渐近线的方程为34y x =±.例2 【2013江苏高考】在平面直角坐标系xoy 中,椭圆C 的标准方程为22221(0,0)x y a b a b+=>>,右焦点为F ,右准线为l ,短轴的一个端点B . 设原点到直线BF 的距离为1d ,F 点到l 的距离为2d . 若21d =,则椭圆C 的离心率为[答案]例3【2014江苏高考】在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 .【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为d ,所求弦长为l ===.例4 【2015江苏高考】在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 【答案】22(1) 2.x y -+=【解析】由题意得:==≤≤,当且仅当1m =时取等号,所以半径最大为r =22(1) 2.x y -+=例5 【2015江苏高考】在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。
若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为【热点深度剖析】1. 平面解析几何在13-15年均是以填空题、解答题的形式进行考查,题目多为中高档题,着重考查学生运算求解能力、推理论证能力,涉及到等价转化和数形结合思想. 平面解析几何一般不与其它章节知识结合考查,常单独设置题目.2. 对于解析几何的复习,一、“直线与方程”和“圆的方程”是高考C 级考点,考查频率高,考查知识点较多,但试题不一定有难度,复习时要在解题中注意数形结合,体会代数与几何的相互转化方法,二、圆锥曲线涉及的基本量较多,关系有差异但较为相似,不可张冠李戴,三、运算求解能力是基本能力,它会制约整个解题过程.复习中加强计算能力的培养,特别是在带字母的运算中,不仅要关注算,更重要的是关注算理,四、处理圆锥曲线的核心方法是将涉及的几何问题代数化,通过代数运算解决几何问题,加强对问题的代数转化能力.3. 预计16年考查直线的方程,点到直线距离,直线与圆的位置关系,椭圆的标准方程与几何性质的可能性较大.直线的斜率与倾斜角,直线的平行关系与垂直关系,双曲线的标准方程与几何性质也有可能考查. 【最新考纲解读】【重点知识整合】 一、1.椭圆的定义:(1)第一定义:平面内到两定点F 1,F 2的距离之和为定值2a(2a >|F 1F 2|)的点的轨迹. (2)第二定义:平面内与定点和直线的距离之比为定值e 的点的轨迹.(0<e <1). 2.图形与方程(以一个为例)图形标准方程:12222=+by a x (b a >>0)3. 几何性质:(1)范围 ,a x a b y b -≤≤-≤≤ (2)中心 坐标原点(0,0)O(3)顶点 (,0),(,0),(0,),(0,)a a b b --(4)对称轴 x 轴,y 轴,长轴长2a ,短轴长2b (5)焦点 12(,0),(,0)F c F c - 焦距 2c ,(c =)(6)离心率 ce a=,(01e <<) (7)准线 2a x c=±(8)焦半径 00,r a ex r a ex =+=-左右(9)通径 22b a(10)焦参数 2a c二、1.双曲线的定义:(1)第一定义:平面内到两定点F 1,F 2的距离之差的绝对值为定值2a(2a <|F 1F 2|)的点的轨迹. (2)第二定义:平面内与定点和直线的距离之比为定值e 的点的轨迹.(e >1). 2.图形与方程(以一个为例)图形标准方程:22221(0,0)x y a b a b-=>>3. 几何性质:(1)范围 x a ≥,y R ∈ (2)中心 坐标原点(0,0)O (3)顶点 (,0),(,0)a a -(4)对称轴 x 轴,y 轴,实轴长2a ,虚轴长2b(5)焦点 12(,0),(,0)F c F c - 焦距 2c ,(c =(6)离心率 ce a=,(01e <<) (7)准线 2a x c=±(8)焦半径 00,r ex a r ex a =+=-左右(9)通径 22b a(10)焦参数 2a c三、1. 抛物线的定义:平面内与定点和直线的距离相等的点的轨迹. (e =1) 2.图形与方程(以一个为例)图形标准方程:22(0)y px p => 3. 几何性质:(1)范围 0x ≥经,y R ∈ (2)中心 无 (3)顶点 (0,0)O (4)对称轴 x 轴 (5)焦点 (,0)2pF 焦距 无 (6)离心率 1e = (7)准线 2p x =-(8)焦半径 02p r x =+ (9)通径 2p (10)焦参数 p 【应试技巧点拨】一、(1)要能够灵活应用圆锥曲线的两个定义(及其“括号”内的限制条件)解决有关问题,如果涉及到其两焦点(或两相异定点),那么优先选用圆锥曲线第一定义;如果涉及到焦点三角形的问题,也要重视第一定义和三角形中正余弦定理等几何性质的应用,尤其注意圆锥曲线第一定义与配方法的综合运用。
专题七十五平面解析几何综合题【考纲解读】解析几何是高考的必考内容,它包括直线、圆、圆锥曲线和圆锥曲线综合应用等内容.高考常设置三个客观题和一个解答题,对解析几何知识和数学思想方法的应用进行考查,其分值约为27分,约占总分的16%.近几年高考解析几何试题的考查特点,一是设置客观题,考查两直线位置关系、点线距离、圆有关的概念、性质及其简单应用;考查圆锥曲线即椭圆、双曲线、抛物线的概念、性质及其简单应用等基础知识;二是以直线与圆位置关系、直线与圆锥曲线位置关系为载体,在代数、三角函数、向量等知识的交汇处设置解答题,考查圆锥曲线性质和向量有关公式、性质的应用,考查解决轨迹、不等式、参数范围、探索型等综合问题的思想方法,并且注重测试逻辑推理能力.高考解析几何综合试题主要考查解决直线与圆锥曲线位置关系、轨迹方程和探索型等问题的思想方法.为此,我们应掌握圆锥曲线的定义、性质,明确解决直线与圆锥曲线位置关系的思想方法,把握曲线轨迹方程的各种求法,沟通知识间的横纵联系,借助方程理论、不等式性质,向量工具和数形结合、化归转化等思想方法,就能从容应对高考.【高频考点突破】考点一圆锥曲线中的定点、定值问题例1、已知动圆过定点A(4,0), 且在y轴上截得弦MN的长为8.(1) 求动圆圆心的轨迹C的方程;(2) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是∠PBQ的角平分线,证明直线l过定点.【方法分析】题目条件:动圆被y轴截弦长为8,A(4,0)在圆上,B(-1,0),x轴平分∠PBQ.解题目标:(1)求动圆圆心轨迹方程C.(2)求证直线l过定点.关系探究:(1)设动圆心为O1,题意转化为|O1M|=|O1N|=|O1A|=r,建立方程.(2)设直线l的斜率,x轴平分∠PBQ,转化为k BQ=-k BP,用根与系数的关系,转化直线方程中的系数.【回归反思】(1)本题求轨迹使用了求曲线方程的直接法,利用圆的半径建立方程.(2)直线y=kx+b过定点,解题目标寻找k与b的等式关系,不一定是具体求k或b.(3)联立方程组是解决直线与圆锥曲线位置关系的主要方法,并结合根与系数的关系和判别式来转化条件.考点二圆锥曲线中变量的取值范围与最值问题例2、已知F 1,F 2分别是椭圆E :x 25+y 2=1的左、右焦点,F 1,F 2关于直线x +y -2=0的对称点是圆C 的一条直径的两个端点.(1)求圆C 的方程;(2)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b.当ab 最大时,求直线l 的方程. 【方法分析】 题目条件:F 1、F 2关于x +y -2=0对称,F 1′,F 2′是圆C 的直径,直线l 截椭圆的弦长为a ,截圆的弦长为b.解题目标:(1)求圆C 的方程. (2)当ab 最大时,求l 的方程.关系探究:(1)由F 1,F 2关于x +y -2=0的对称点,转化为0,关于直线的对称点为圆心,直径为|F 1F 2|. (2)直线l 若设为y =k(x -2),则要考虑斜率不存在时x =2,若设为x =my +2,则可直接表示弦长a ,b ,转化基本不等式求最值.【回归反思】 (1)F 1、F 2关于直线x +y -2=0的对称点为直径端点,则F 1F 2的中点O 关于直线的对称点即为圆心.(2)过F 2的直线设为x =my +2,则可省略x =2的讨论,求弦长则可用公式d =(1+1k2)(y 1-y 2)2.(3)求ab 的最大值,建立ab 是m 的函数形式构造基本不等式进行求解. 考点三 圆锥曲线的探究性存在性问题例3、如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12,直线l 的方程为x =4. (1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3,问:是否存在实数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,请说明理由.【方法分析】 题目条件:点P ⎝⎛⎭⎫1,32在椭圆上,离心率e =12,弦AB 过点F ,交l 于M. 解题目标:求椭圆方程,求k 1,k 2和k 3,并探究k 1+k 2与k 3的关系.关系探究:(1)点P ⎝⎛⎭⎫1,32在椭圆上,转化为关于a ,b 的方程,离心率e 转化为a 、c 的方程. (2)设直线AB 的方程,由A 、F 、B 三点共线转化A 、B 两点坐标间的关系,用k 表示k 1,k 2及k 3,待定λ.或者设B(x 0,y 0)――→求M 点――→求A 、B 坐标――→求k 1、k 2和k 3.【回归反思】 ①第(2)问中方法一:把A ,B 两点坐标表示的斜率k 1,k 2与根与系数的关系式结合起来是难点,即k 1+k 2=y 1-32x 1-1+y 2-32x 2-1变形为y 1x 1-1+y 2x 2-1-32⎝⎛⎭⎫1x 1-1+1x 2-1是技巧,也是难点,其目的是用k 来表示k 1+k 2的值.②求出λ=2,即说存在λ.③方法二:设B(x 0,y 0)建立FB 的方程,则一线求三点M ,A ,B.思维简捷,但化简量较大. 考点四 解析几何中向量知识的应用例4、如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P′Q ,求圆Q 的标准方程.【方法分析】 题目条件:已知通径|AA′|和离心率e ;⊙Q 过P 、P′,且在椭圆内,PQ ⊥P′Q. 解题目标:(1)求椭圆方程. (2)求圆Q 方程.关系探究:(1)|AA′|=4,即A(-c ,2)在椭圆上,建立方程组.(2)椭圆上的点在⊙Q 外,转化为|MQ|有最小值时是M 在P 点处,PQ ⊥P′Q ,转化为PQ →·P′Q →=0进而转化为P 点坐标方程求解.【回归反思】 (1)|AA′|=4为椭圆通径长,即2b 2a=4,结合离心率求椭圆方程.(2)为了表示椭圆在圆外,借用了椭圆上的点M 与Q 点的距离,|MQ|2=12(x -2x 0)2-x 20+8,当M 在P 点时|MQ|有最小值.(3)PQ ⊥P′Q 转化为PQ →·P′Q →=0成为坐标之间的等式,可不用担心斜率是否存在的问题,利用向量研究垂直是首选的方法.【真题感悟】1.【2015高考湖北,理14】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为 ; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号)2.【2015高考广东,理20】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.3.【2015高考新课标2,理20】(本题满分12分)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.4.【2015江苏高考,18】(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.5.【2015高考福建,理18】已知椭圆E:22221(a0)x yba b+=>>过点,且离心率为.xyBAOG(Ⅰ)求椭圆E的方程;(Ⅱ)设直线1x my m R=-?,()交椭圆E于A,B两点,判断点G9(4-,0)与以线段AB为直径的圆的位置关系,并说明理由.6.【2015高考浙江,理19】已知椭圆2212xy+=上两个不同的点A,B关于直线12y mx=+对称.(1)求实数m的取值范围;(2)求AOB∆面积的最大值(O为坐标原点).7.【2015高考山东,理20】平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b +=>>,左、右焦点分别是12,F F ,以1F 错误!未找到引用源。
解答题专项突破(五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、X 围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型1 圆锥曲线中的定点问题典例1(2019·高考)抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解题思路 (1)根据抛物线C 过点(2,-1),列方程求p ,得抛物线C 的方程,进而得出其准线方程.(2)设直线l 的方程,与抛物线C 的方程联立,用根与系数的关系推出关于M ,N 两点坐标的等量关系,设所求定点坐标为(0,n ),利用DA →·DB →=0列方程式求n的值.规X 解答 (1)由抛物线C :x 2=-2py 经过点(2,-1),得22=-2p (-1),解得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明:抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA→=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB→=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB→=x 1x 2y 1y2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2 =-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).典例2(2019·某某模拟)Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA→=AP →,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点⎝ ⎛⎭⎪⎫0,-35的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?假设是,求出定点的坐标;假设不是,请说明理由.解题思路 (1)设Q (x 0,y 0),P (x ,y ),利用所给条件建立两点坐标之间的关系,利用Q 在圆上可得x ,y 的方程,即为所求.(2)设定点为H ,及直线l 的方程,与椭圆方程联立,利用根与系数的关系,及HM →·HN→=0,得出恒等式,求得定点的坐标. 规X 解答 (1)设Q (x 0,y 0),P (x ,y ),那么x 20+y 20=1,由BA →=AP →,得⎩⎨⎧x 0=x2,y 0=-y ,代入x 20+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)假设存在满足条件的定点,由对称性可知,该定点在y 轴上,设定点为H (0,m ),当直线l 的斜率存在时,设直线l 的方程为y =kx -35, 由⎩⎪⎨⎪⎧y =kx -35,x 24+y 2=1,得(1+4k 2)x 2-245kx -6425=0,设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=24k 51+4k 2,x 1x 2=-64251+4k 2,∴y 1+y 2=k (x 1+x 2)-65=-651+4k2,y 1y 2=⎝ ⎛⎭⎪⎫kx 1-35⎝ ⎛⎭⎪⎫kx 2-35=k 2x 1x 2-35k (x 1+x 2)+925=9-100k 2251+4k 2, ∵HM →=(x 1,y 1-m ),HN →=(x 2,y 2-m ), ∴HM →·HN →=x 1x 2+y 1y 2-m (y 1+y 2)+m 2=100m 2-1k 2+25m 2+30m -55251+4k2=0,∵对任意的k 恒成立,∴⎩⎪⎨⎪⎧100m 2-1=0,25m 2+30m -55=0,解得m =1,即定点为H (0,1),当直线l 的斜率不存在时,以MN 为直径的圆也过定点(0,1). 综上,以MN 为直径的圆过定点(0,1). 热点题型2 圆锥曲线中的定值问题典例1 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段FP 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解题思路 (1)R 是线段FP 的中点,且RQ ⊥FP →RQ 是线段PF 的垂直平分线→|PQ |=|QF |→点Q 的轨迹是以F 为焦点,l 为准线的抛物线→确定焦准距,根据抛物线的焦点坐标,求出抛物线的方程.(2)①求|TS |的依据:a =2r 2-d 2,其中a 为弦长,r 为圆的半径,d 为圆心到弦所在直线的距离.②策略:设曲线C 上点M (x 0,y 0),用相关公式求r ,d ;用x 0,y 0满足的等量关系消元.规X 解答 (1)依题意知,点R 是线段FP 的中点, 且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=x 0-12+y 20, 那么|TS |=2r 2-d 2=2y 20-2x 0+1,∵点M 在曲线C 上, ∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.典例2(2019·某某三模)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a2+b2的圆为椭圆C的“准圆〞.假设椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.(1)求椭圆C的方程和其“准圆〞方程;(2)假设点P是椭圆C的“准圆〞上的动点,过点P作椭圆的切线l1,l2交“准圆〞于点M,N.证明:l1⊥l2,且线段MN的长为定值.解题思路(1)根据椭圆的几何性质求a,c,再用b2=a2-c2求b,可得椭圆C 的方程,进而可依据定义写出其“准圆〞方程.(2)分以下两种情况讨论:①l1,l2中有一条斜率不存在;②l1,l2斜率存在.对于①,易知切点为椭圆的顶点;对于②,可设出过P与椭圆相切的直线,并与椭圆方程联立后消元,由Δ=0推出关于椭圆切线斜率的方程,利用根与系数的关系进行证明.规X解答(1)∵椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.∴c=2,a=3,∴b=a2-c2=1,∴椭圆方程为x23+y2=1,∴“准圆〞方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,那么l1:x=±3,当l1:x=3时,l1与“准圆〞交于点(3,1),(3,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l 1:x =-3时,直线l 1,l 2垂直. ②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中x 20+y 20=4.设经过点P (x 0,y 0)与椭圆相切的直线为 y =t (x -x 0)+y 0,∴由⎩⎨⎧y =t x -x 0+y 0,x 23+y 2=1,得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-x 20)t 2+2x 0y 0t +1-y 20=0,∵x 20+y 20=4,∴有(3-x 20)t 2+2x 0y 0t +(x 20-3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-x 20)t 2+2x 0y 0t +(x 20-3)=0,∴t 1·t 2=-1,即l 1,l 2垂直. 综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆〞于点M ,N ,且l 1,l 2垂直. ∴线段MN 为“准圆〞x 2+y 2=4的直径,|MN |=4, ∴线段MN 的长为定值.热点题型3 圆锥曲线中的证明问题典例1抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)假设AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD |,|AB |.由△ABD 的面积为1,列方程求p ,得抛物线的方程.(2)将直线AB 的方程与抛物线C 的方程联立,消去y 并整理,结合根与系数的关系用k ,p 表示M ,N 的坐标.求k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规X 解答 (1)∵AB ∥l ,∴△ABD 为等腰三角形,且FD ⊥AB ,又|FD |=p ,|AB |=2p .∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p 2,A ⎝ ⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p .由⎩⎨⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝ ⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22px 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线的斜率k ′=x 1p . ∴直线AN 与抛物线相切.典例2(2019·某某二模)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(1<a <5)上,该椭圆的左顶点A 到直线x -y +5=0的距离为322.(1)求椭圆C 的标准方程;(2)假设线段MN 平行于y 轴,满足(ON →-2OM →)·MN →=0,动点P 在直线x =23上,满足ON →·NP→=2.证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 解题思路 (1)根据椭圆的左顶点A 到直线x -y +5=0的距离为322,列关于a 的等量关系求解,得椭圆C 的方程.(2)设出M ,N ,P 的坐标(注意M 与N 的横坐标相同,P 的横坐标).先用(ON →-2OM →)·MN →=0和ON →·NP →=2推出坐标之间的关系,再利用这些等量关系证明NF →·OP→=0. 规X 解答 (1)设左顶点A 的坐标为(-a,0), ∵|-a +5|2=322,∴|a -5|=3,解得a =2或a =8(舍去), ∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:由题意,设M (x 0,y 0),N (x 0,y 1),P (23,t ),且y 1≠y 0,由(ON →-2OM →)·MN →=0,可得(x 0-2x 0,y 1-2y 0)·(0,y 1-y 0)=0,整理可得y 1=2y 0,由ON →·NP →=2,可得(x 0,2y 0)·(23-x 0,t -2y 0)=2,整理,得23x 0+2y 0t =x 20+4y 20+2=6,由(1)可得F (3,0), ∴NF →=(3-x 0,-2y 0), ∴NF →·OP →=(3-x 0,-2y 0)·(23,t )=6-23x 0-2y 0t =0, ∴NF ⊥OP ,故过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 热点题型4 圆锥曲线中的最值与X 围问题典例1(2019·某某二模)设F 为抛物线C :y 2=2px 的焦点,A 是C 上一点,F A 的延长线交y 轴于点B ,A 为FB 的中点,且|FB |=3.(1)求抛物线C 的方程;(2)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于M ,N 两点,直线l 2与C 交于D ,E 两点,求四边形MDNE 面积的最小值.解题思路(1)由题意画出图形,结合条件列式求得p ,那么抛物线C 的方程可求.(2)由直线l 1的斜率存在且不为0,设其方程为y =k (x -1),与抛物线方程联立,求出|MN |,同理可求|DE |⎝ ⎛⎭⎪⎫实际上,在|MN |的表达式中用-1k 代替k 即可,可得四边形MDNE 的面积表达式,再利用基本不等式求最值.规X 解答 (1)如图,∵A 为FB 的中点,∴A 到y 轴的距离为p4, ∴|AF |=p 4+p 2=3p 4=|FB |2=32,解得p =2. ∴抛物线C 的方程为y 2=4x . (2)由直线l 1的斜率存在且不为0, 设其方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.∵Δ>0,设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=2+4k 2,那么|MN |=x 1+x 2+2=4⎝ ⎛⎭⎪⎫1+1k 2; 同理设D (x 3,y 3),E (x 4,y 4),∴x 3+x 4=2+4k 2, 那么|DE |=x 3+x 4+2=4(1+k 2).∴四边形MDNE 的面积S =12|MN |·|DE |=8⎝ ⎛⎭⎪⎫2+k 2+1k 2≥32.当且仅当k =±1时,四边形MDNE 的面积取得最小值32.典例2 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),假设S △P AM ∶S △PBN =λ,某某数λ的取值X 围.解题思路 (1)求点B 的坐标→根据k AB =12列方程→由题意得a =2,a 2=b 2+c 2,解方程组求a ,b ,c ,写出椭圆C 的标准方程.(2)S △P AM ∶S △PBN =λ――→面积公式PM →与PN →的关系→点M ,N 坐标之间的关系→直线MN 的方程与椭圆C 的方程联立,消去y 整理→用根与系数的关系得出点M ,N 的坐标之间的关系式→推出λ与k 的关系,并根据k >12求X 围,找到λ所满足的不等式,求出λ的取值X 围.规X 解答 (1)因为BF 1⊥x 轴,所以点B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以⎩⎪⎨⎪⎧ a =2,b 2a a +c=12,a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1. (2)因为S △P AM S △PBN=12|P A |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN=2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2), 所以PM→=-λ2PN →. 由(1)可知P (0,-1),设直线MN :y =kx -1⎝ ⎛⎭⎪⎫k >12,M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx -1,x 24+y 23=1,化简得,(4k 2+3)x 2-8kx -8=0.得⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM →=(x 1,y 1+1),PN →=(x 2,y 2+1), 有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,2-λ2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),那么1<2-λ2λ<4且λ>2⇒4<λ<4+2 3.综上所述,实数λ的取值X 围为(4,4+23). 热点题型5 圆锥曲线中的探索性问题典例1(2019·某某一模)抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.(1)假设过抛物线E的焦点F的直线l与圆C相切,求直线l的方程;(2)在(1)的条件下,假设直线l交抛物线E于A,B两点,x轴上是否存在点M(t,0)使∠AMO=∠BMO(O为坐标原点)?假设存在,求出点M的坐标;假设不存在,请说明理由.解题思路(1)求得抛物线的焦点,设出直线l的方程,运用直线l和圆C相切的条件:d=r,解方程可得所求直线方程.(2)设出A,B的坐标,联立直线l的方程和抛物线E的方程,运用根与系数的关系和直线的斜率公式,依据∠AMO=∠BMO,即k AM+k BM=0列方程化简整理,解方程可得t,即得点M的坐标,从而得到结论.规X解答(1)由题意,得抛物线的焦点F(1,0),当直线l的斜率不存在时,过F的直线不可能与圆C相切,所以直线l的斜率存在.设直线l的斜率为k,方程为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线l的距离为d=|3k-k|1+k2=2|k|1+k2,当直线l与圆C相切时,d=r=1,解得k=±3 3,即直线l的方程为y=±33(x-1).(2)由(1),当直线l的方程为y=33(x-1)时,设A(x1,y1),B(x2,y2),联立抛物线E的方程可得x2-14x+1=0,那么x 1+x 2=14,x 1x 2=1,x 轴上假设存在点M (t,0)使∠AMO =∠BMO , 即有k AM +k BM =0, 得y 1x 1-t+y 2x 2-t =0, 即y 1(x 2-t )+y 2(x 1-t )=0, 由y 1=33(x 1-1),y 2=33(x 2-1), 可得2x 1x 2-(x 1+x 2)-(x 1+x 2-2)t =0,即2-14-12t =0,即t =-1,M (-1,0)符合题意;当直线l 的方程为y =-33(x -1)时,由对称性可得M (-1,0)也符合条件. 所以存在定点M (-1,0)使∠AMO =∠BMO .典例2(2019·某某模拟)点A (0,-1),B (0,1),P 为椭圆C :x 22+y 2=1上异于点A ,B 的任意一点.(1)求证:直线P A ,PB 的斜率之积为-12;(2)是否存在过点Q (-2,0)的直线l 与椭圆C 交于不同的两点M ,N ,使得|BM |=|BN |?假设存在,求出直线l 的方程;假设不存在,请说明理由.解题思路(1)设点P (x ,y )(x ≠0),代入椭圆方程,由直线的斜率公式,即可得证. (2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交,讨论直线的斜率是否为0,联立直线方程和椭圆方程,运用根与系数的关系和两直线垂直的条件:由|BM |=|BN |想到在△BMN 中,边MN 所在直线的斜率与MN边上的中线所在直线的斜率之积为-1,可得所求直线方程.规X 解答 (1)证明:设点P (x ,y )(x ≠0), 那么x 22+y 2=1,即y 2=1-x 22, ∴k P A ·k PB =y +1x ·y -1x =y 2-1x 2 =⎝ ⎛⎭⎪⎫1-x 22-1x 2=-12,故得证.(2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交.①当直线l 的斜率k ≠0时,设直线l 为y =k (x +2),联立椭圆方程x 2+2y 2=2,化简得(1+2k 2)x 2+8k 2x +8k 2-2=0, 由Δ=64k 4-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22(k ≠0), 设点M (x 1,y 1),N (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k2,∴y 1+y 2=k (x 1+x 2)+4k =k ·-8k 21+2k 2+4k =4k 1+2k 2, 取MN 的中点H ,即H ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,那么y1+y22-1x1+x22·k=-1,即2k1+2k2-1-4k21+2k2·k=-1,化简得2k2+2k+1=0,无实数解,故舍去.②当k=0时,M,N为椭圆C的左、右顶点,显然满足|BM|=|BN|,此时直线l的方程为y=0.综上可知,存在直线l满足题意,此时直线l的方程为y=0.。
几何证明选讲第一节相似三角形的判定及有关性质基础盘查一 平行线分线段成比例定理(一)循纲忆知了解平行线截割定理(平行线等分线段定理、平行线分线段成比例定理). (二)小题查验 1.判断正误(1)梯形的中位线平行于两底,且等于两底和( )(2)若一条直线截三角形的两边(或其延长线)所得对应线段成比例,则此直线与三角形的第三边平行( )答案:(1)× (2)√2.如图,F 为▱ABCD 的边AD 延长线上的一点,DF =AD ,BF 分别交DC ,AC 于G ,E 两点,EF =16,GF =12,则BE 的长为________.解析:由DF =AD ,AB ∥CD 知BG =GF =12,又EF =16知EG =4,故BE =8.答案:83.(人教A 版教材习题改编)如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF =12 cm ,则BC 的长为________ cm.解析:∵⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED⇒E 为AD 中点,M 为BC 的中点,又EF ∥BC ⇒EF =MC =12 cm. ∴BC =2MC =24 cm. 答案:24基础盘查二 相似三角形的判定及性质 (一)循纲忆知理解相似三角形的定义与性质,会证明并应用直角三角形射影定理. (二)小题查验 1.判断正误(1)在△ABC 中,AD 是BC 边上的高,若AD 2=BD ·CD ,则∠A 为直角( ) (2)在直角三角形ABC 中,AC ⊥BC ,CD ⊥AD ,则BC 2=BD ·AB ( ) (3)若两个三角形的相似比等于1,则这两个三角形全等( ) 答案:(1)√ (2)× (3)√2.(人教A 版教材习题改编)如图,D ,E 分别是△ABC 的边AB ,AC上对应学生用书P161的点,DE ∥BC 且AD DB=2,那么△ADE 与四边形DBCE 的面积比是________.解析:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23, ∴S △ADE S △ABC =49,故S △ADE S 四边形DBCE =45. 答案:45考点一 平行线分线段成比例定理的应用|(基础送分型考点——自主练透)[必备知识]1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等. 推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例. [提醒] 在使用平行线截割定理时易出现对应边的对应顺序混乱,导致错误.[题组练透]1.如图,在△ABC 中,点D 是AC 的中点,点E 是BD 的中点,AE 交BC 于点F ,求BFFC的值.解:如图,过点D 作DM ∥AF 交BC 于点M . ∵点E 是BD 的中点,∴在△BDM 中,BF =FM . 又点D 是AC 的中点,对应学生用书P161∴在△CAF 中,CM =MF , ∴BF FC =BF FM +MC =12.2.如图,等边三角形DEF 内接于△ABC ,且DE ∥BC ,已知AH ⊥BC 于点H ,BC =4,AH =3,求△DEF 的边长.解:设DE =x ,AH 交DE 于点M ,显然MH 的长度与等边三角形DEF 的高相等, 又DE ∥BC ,则DE BC =AM AH =AH -MHAH,∴x4=3-32x 3=2-x 2,解得x =43. 3.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,求EFBC +FGAD的值.解:由平行线分线段成比例定理得EF BC =AF AC ,FG AD =FC AC, 故EF BC +FG AD =AF AC +FC AC =ACAC=1.[类题通法]对于平行线分线段成比例定理,往往会以相似三角形为载体,通过三角形相似来构建相应线段比,从而解决问题.解题时要充分利用中点来作辅助线,建立三角形的中位线或梯形的中位线,从而有效利用平行线分线段成比例定理.考点二 相似三角形的判定及性质|(重点保分型考点——师生共研)[必备知识]1.相似三角形的判定定理判定定理1:两角对应相等的两个三角形相似; 判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似. 2.相似三角形的性质定理性质定理1:相似三角形对应边上的高、中线和它们周长的比都等于相似比; 性质定理2:相似三角形的面积比等于相似比的平方.结论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方.[提醒] 在解决相似三角形的判定或应用时易出现对应边和对应角的对应失误.[典题例析]如图,已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.解:(1)因为DE ⊥BC ,D 是BC 的中点,所以EB =EC ,所以∠B =∠BCE .又因为AD =AC ,所以∠ADC =∠ACB .所以△ABC ∽△FCD .(2)如图,过点A 作AM ⊥BC ,垂足为点M . 因为△ABC ∽△FCD ,BC =2CD ,所以S △ABC S △FCD =⎝ ⎛⎭⎪⎫BC CD 2=4. 又因为S △FCD =5,所以S △ABC =20. 因为S △ABC =12BC ·AM ,BC =10,所以20=12×10×AM ,所以AM =4.因为DE ∥AM ,所以DE AM =BD BM. 因为DM =12DC =52,BM =BD +DM ,所以DE 4=55+52,解得DE =83.[类题通法]证明两个三角形相似的关键是根据判定定理找(证)两个三角形的边和角之间的数量关系.有的证明起来比较简单方便,但有的找边角关系比较困难,这就要求我们必须提高读图、识图、添加必要辅助线的能力.对计算问题则要灵活使用有关定理,掌握相似三角形的性质定理.[演练冲关](2015·浙江模拟)如图,在梯形ABCD 中,AB ∥CD ,AB =3,CD =4.过AC 与BD 的交点O 作EF ∥AB ,分别交AD ,BC 于点E ,F ,求EF 的长.解:因为AB ∥CD ,EF ∥AB ,所以△EDO ∽△ADB ,因此有EO AB =ODBD,又AB =3,CD =4,不妨设DO =4m ,OB =3m ,EO AB =OD BD =47,因此可得EO =127,则EF =247.考点三 射影定理的应用|(重点保分型考点——师生共研)[必备知识]射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上的射影与斜边的比例中项.[提醒] 射影定理是直角三角形中的一个重要结论,其实质就是三角形的相似.但要注意满足直角三角形射影定理结论的三角形不一定是直角三角形,所以要搞清楚定理中的条件和结论之间的关系,不能乱用.[典题例析]如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,DF ⊥AC 于F ,DE ⊥AB 于E ,试证明:(1)AB ·AC =BC ·AD ; (2)AD 3=BC ·CF ·BE .证明:(1)在Rt △ABC 中,AD ⊥BC , ∴S △ABC =12AB ·AC =12BC ·AD .∴AB ·AC =BC ·AD .(2)Rt △ADB 中,DE ⊥AB ,由射影定理可得BD 2=BE ·AB ,同理CD 2=CF ·AC ,∴BD 2·CD 2=BE ·AB ·CF ·AC .又在Rt △BAC 中,AD ⊥BC ,∴AD 2=BD ·DC , ∴AD 4=BE ·AB ·CF ·AC ,又AB ·AC =BC ·AD . 即AD 3=BC ·CF ·BE .[类题通法]1.在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”.2.证题时,要注意作垂线构造直角三角形是解直角三角形时常用的方法.[演练冲关]如图,在Rt △ABC 中 ,∠BAC =90°,AD 是斜边BC 上的高,若AB ∶AC =2∶1,求AD ∶BC .解:设AC =k ,则AB =2k ,BC =5k , ∵∠BAC =90°,AD ⊥BC , ∴AC 2=CD ·BC , ∴k 2=CD ·5k ,∴CD =55k , 又BD =BC -CD =455k ,∴AD 2=CD ·BD =55k ·455k =45k 2, ∴AD =255k ,∴AD ∶BC =2∶5.1.如图,在四边形ABCD 中,E 是AB 上一点,EC ∥AD ,DE ∥BC ,若S △BEC =1,S △ADE =3,求S △CDE .解:∵EC ∥AD , ∴S △DCE ∶S △ADE =EC ∶AD .∵DE ∥BC ,∴S △BCE ∶S △CDE =BC ∶ED ,又因为∠ECB =∠DEC =∠ADE ,∠BEC =∠EAD ,∴△BEC ∽△EAD ,∴EC ∶AD =BC ∶ED ,∴S △DCE ∶S △ADE =S △BCE ∶S △CDE ,得S △CDE = 3.2.在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,求tan ∠BCD 的值. 解:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶9,令BD =x ,则AD =9x (x >0). ∴CD 2=9x2,CD =3x .对应B 本课时跟踪检测(六十二)Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13. 3.如图,M 是平行四边形ABCD 的边AB 的中点,直线l 过点M 分别交AD ,AC 于点E ,F ,交CB 的延长线于点N .若AE =2,AD =6,求AF AC的值.解析:∵AD ∥BC ,∴△AEF ∽△CNF , ∴AF CF =AE CN, ∴AF AF +CF =AEAE +CN. ∵M 为AB 的中点,∴AE BN =AMBM=1,∴AE =BN ,∴AF AC =AF AF +CF =AE AE +BN +BC =AE2AE +BC.∵AE =2,BC =AD =6,∴AF AC =22×2+6=15.4.已知△ABC 中,BF ⊥AC 于点F ,CE ⊥AB 于点E ,BF 和CE 相交于点P ,求证:(1)△BPE ∽△CPF; (2)△EFP ∽△BCP .证明:(1)∵BF ⊥AC 于点F ,CE ⊥AB 于点E , ∴∠BFC =∠CEB . 又∵∠CPF =∠BPE , ∴△BPE ∽△CPF .(2)由(1)得△BPE ∽△CPF , ∴EP BP =FP CP.又∵∠EPF =∠BPC , ∴△EFP ∽△BCP .5.如图所示,在△ABC 中,AD 为BC 边上的中线,F 为AB 上任意一点,CF 交AD 于点E .求证:AE ·BF =2DE ·AF .证明:过点D 作AB 的平行线DM 交AC 于点M ,交FC 于点N .在△BCF 中,D 是BC 的中点,DN ∥BF , ∴DN =12BF .∵DN ∥AF ,∴△AFE ∽△DNE , ∴AE AF =DE DN.又DN =12BF ,∴AE AF =2DEBF ,即AE ·BF =2DE ·AF .6.△ABC 中,D ,E ,F 分别是BC ,AB ,AC 上的点,AD ,EF 交于P ,若BD =DC ,AE =AF . 求证:AB AC =PF PE.证明:过F 作MN ∥AD 交BA 的延长线及DC 于M ,N .对△MEF 有PF PE =AM AE, 因为AE =AF ,所以PF PE =AM AF. 对△MBN 有AB AM =BD DN, 因为BD =DC ,所以AB AM =DC DN. 对△ADC 有AC AF =DC DN ,所以AB AM =AC AF. 所以AB AC =AM AF ,所以AB AC =PFPE.7.已知:如图,在△ABC 中,AB =AC ,∠BAC =90°,D ,E ,F 分别在AB ,AC ,BC 上,AE =13AC ,BD =13AB ,且CF =13BC .求证:(1)EF ⊥BC ;(2)∠ADE =∠EBC . 证明:设AB =AC =3a , 则AE =BD =a ,CF =2a .(1)CE CB =2a 32a =23,CF CA =2a 3a =23. 又∠C 为公共角,故△BAC ∽△EFC , 由∠BAC =90°得∠EFC =90°,故EF ⊥BC . (2)由(1)得EF =FCAC·AB =2a , 故AE EF=a2a=22,AD BF =2a 22a =22, ∴AE EF =AD BF, ∴△ADE ∽△FBE , 所以∠ADE =∠EBC .8.如图,在梯形ABCD 中,点E ,F 分别在AB ,CD 上,EF ∥AD ,假设EF 做上下平行移动.(1)若AE EB =12,求证:3EF =BC +2AD ;(2)请你探究一般结论,即若AE EB =mn,那么你可以得到什么结论? 解:过点A 作AH ∥CD 分别交EF ,BC 于点G ,H .(1)证明:因为AE EB =12,所以AE AB =13.又EG ∥BH ,所以EG BH =AE AB =13,即3EG =BH .又EG +GF =EG +AD =EF , 从而EF =13(BC -HC )+AD ,所以EF =13BC +23AD ,即3EF =BC +2AD .(2)因为AE EB =m n ,所以AE AB =mn +m.又EG ∥BH ,所以EG BH =AE AB ,即EG =mm +nBH .所以EF =EG +GF =EG +AD =m m +n(BC -AD )+AD ,所以EF =mm +n BC +nm +nAD ,即(m +n )EF =mBC +nAD .第二节直线与圆的位置关系基础盘查 圆幂定理 (一)循纲忆知会证明和应用有关圆的定理 (1)圆周角定理;(2)圆的切线判定定理与性质定理; (3)相交弦定理;(4)圆内接四边形的性质定理与判定定理; (5)切割线定理. (二)小题查验 1.判断正误(1)同弧所对的圆心角与圆周角相等( )(2)若一个四边形的一个外角等于它的内角,则这个四边形的四个顶点共圆( ) (3)经过切点且垂直于切线的直线必经过圆心( ) (4)弦切角等于它所夹的弧所对的圆周角的一半( )(5)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的乘积( )答案:(1)× (2)× (3)√ (4)× (5)×2.如图,P 是圆O 外一点,过P 引圆O 的两条割线PB ,PD ,PA =AB对应学生用书P163=5,CD =3,则PC 的长为________.解析:设PC =x ,由割线定理知PA ·PB =PC ·PD . 即5×25=x (x +3),解得x =2或x =-5(舍去). 故PC =2. 答案:23.(2015·陕西模拟)如图所示,A ,B 是两圆的交点,AC 是小圆的直径,D ,E 分别是CA ,CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,则AB =________.解析:设x =BC =AD ,由圆外一点向圆引两条割线的结论得到x (x +10)=4(x +4),∴x =2,∴AB =42-22=2 3.答案:2 34.(2014·湖北高考)如图,P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B .过PA 的中点Q 作割线交⊙O 于C ,D 两点.若QC =1,CD =3,则PB =________.解析:由切割线定理,得QA 2=QC ·QD =4⇒QA =2, 则PB =PA =2QA =4. 答案: 4考点一 圆周角、弦切角和圆的切线问题|(基础送分型考点——自主练透)[必备知识]1.圆周角定理圆上一条弧所对的圆周角等于它所对的圆心角的一半. 2.圆心角定理圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等. 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 3.弦切角定理对应学生用书P164弦切角等于它所夹的弧所对的圆周角. 4.圆的切线的性质及判定定理性质定理 圆的切线垂直于经过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.[提醒] 圆周角定理与弦切角定理多用于证明角的关系,从而证明三角形全等或相似,也可用于求线段的长或角的大小及与圆的切线有关的问题.[题组练透]1.(2015·湖北黄冈模拟)已知点C 在圆O 的直径BE 的延长线上,直线CA 与圆O 相切于A ,∠ACB 的平分线分别交AB ,AE 于D ,F 两点,求∠AFD .解:因为AC 为圆的切线, 由弦切角定理,得∠B =∠EAC .又因为CD 平分∠ACB ,则∠ACD =∠BCD , 所以∠B +∠BCD =∠EAC +∠ACD . 根据三角形外角定理,∠ADF =∠AFD . 因为BE 是圆O 的直径,则∠BAE =90°, 所以△ADF 是等腰直角三角形. 所以∠ADF =∠AFD =45°.2.如图,在圆内接梯形ABCD 中,AB ∥DC .过点A 作圆的切线与CB 的延长线交于点E .若AB =AD =5,BE =4,求弦BD 的长.解:因为在圆内接梯形ABCD 中,AB ∥DC ,所以AD =BC ,∠BAD +∠BCD =180°,∠ABE =∠BCD .所以∠BAD +∠ABE =180°. 又因为AE 为圆的切线,所以AE 2=BE ·EC =4×9=36,故AE =6. 在△ABE 中,由余弦定理得cos ∠ABE =AB 2+BE 2-AE 22AB ·BE =18,cos ∠BAD =cos(180°-∠ABE )=-cos ∠ABE =-18,在△ABD 中,BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD = 2254,所以BD =152.3.(2014·江苏高考)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点.证明:∠OCB=∠D.证明:因为B,C是圆O上的两点,所以OB=OC.故∠OCB=∠B.又因为C,D是圆O上位于AB异侧的两点,故∠B,∠D为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB=∠D.[类题通法]1.圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.2.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端作圆周角或弦切角.考点二圆内接四边形的性质及判定|(重点保分型考点——师生共研)[必备知识]圆内接四边形的性质与判定定理性质定理1:圆的内接四边形的对角互补.性质定理2:圆内接四边形的外角等于它的内角的对角.判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.判定定理的推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.[提醒] 利用其性质或判定定理解决四点共圆问题时,要弄清四边形的外角和它的内对角的位置.注意圆周角、圆心角、弧、弦、弦心距之间的关系以及与垂径定理的联系与应用.[典题例析](2015·开封模拟)如图,AB是⊙O的直径,G是AB延长线上的一点,GCD是⊙O的割线,过点G作AG的垂线,交直线AC于点E,交直线AD于点F,过点G作⊙O的切线,切点为H.(1)求证:C,D,E,F四点共圆;(2)若GH=6,GE=4,求EF的长.解:(1)证明:连接DB,∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ABD和Rt△AFG中,∠ABD=∠AFE,又∵∠ABD=∠ACD,∴∠ACD=∠AFE.∴C,D,E,F四点共圆.(2)∵C,D,E,F四点共圆,∴GE·GF=GC·GD.∵GH是⊙O的切线,∴GH2=GC·GD,∴GH2=GE·GF.又GH=6,GE=4,∴GF=9.∴EF=GF-GE=9-4=5.[类题通法]证明四点共圆的常用方法(1)若四个点到一定点等距离,则这四个点共圆.(2)若一个四边形的一组对角的和等于180°,则这个四边形的四个顶点共圆.(3)若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆.(4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.(5)若AB,CD两线段相交于点P,且PA·PB=PC·PD,则A,B,C,D四点共圆.(6)若AB,CD两线段延长后相交于点P,且PA·PB=PC·PD,则A,B,C,D四点共圆.(7)若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆.[演练冲关](2015·银川模拟)如图,在正△ABC中,点D,E分别在边AC,AB上,且AD =13AC ,AE =23AB ,BD ,CE 相交于点F .(1)求证:A ,E ,F ,D 四点共圆;(2)若正△ABC 的边长为2,求A ,E ,F ,D 所在圆的半径. 解:(1)证明:∵AE =23AB ,∴BE =13AB .∵在正△ABC 中,AD =13AC ,∴AD =BE ,又∵AB =BC ,∠BAD =∠CBE , ∴△BAD ≌△CBE ,∴∠ADB =∠BEC ,即∠ADF +∠AEF =π,所以A ,E ,F ,D 四点共圆. (2)如图,取AE 的中点G ,连接GD ,则AG =CE =12AE .∵AE =23AB ,∴AG =GE =13AB =23,∵AD =13AC =23,∠DAE =60°,∴△AGD 为正三角形,∴GD =AG =AD =23,即GA =GE =GD =23,所以点G 是△AED 外接圆的圆心,且圆G 的半径为23.由于A ,E ,F ,D 四点共圆,即A ,E ,F ,D 四点共圆G ,其半径为23.考点三 与圆有关的比例线段|(重点保分型考点——师生共研)[必备知识]1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.3.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.4.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这点的连线平分两条切线的夹角.[提醒] 相交弦定理、切割线定理主要用于与圆有关的比例线段的计算与证明,解决问题时要注意相似三角形的知识及相关圆的性质的综合应用.[典题例析](2014·新课标全国卷Ⅱ)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:(1)BE =EC ; (2)AD ·DE =2PB 2.证明:(1)连接AB ,AC .由题设知PA =PD , 故∠PAD =∠PDA .因为∠PDA =∠DAC +∠DCA ,∠PAD =∠BAD +∠PAB ,∠DCA =∠PAB , 所以∠DAC =∠BAD ,从而BE =EC . 因此BE =EC .(2)由切割线定理得PA 2=PB ·PC . 因为PA =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.[类题通法]以圆为载体与三角形、四边形相结合的综合性题目,往往要综合运用多个定理以及添加相应的辅助线才能解决,在解题时要注意总结一些添加辅助线的技巧.在实际应用中,见到圆的两条相交弦就要想到相交弦定理;见到两条割线就要想到割线定理;见到切线和割线时就要想到切割线定理.[演练冲关](2015·大同调研)如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于D ,DE ⊥AC 交AC 延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线;(2)若AC AB =35,求AFDF的值.解:(1)证明:连接OD ,∵OA =OD ,∴∠ODA =∠OAD .∵∠BAC 的平分线是AD , ∴∠OAD =∠DAC ,∴∠DAC =∠ODA ,可得OD ∥AE . 又∵DE ⊥AE ,∴DE ⊥OD . ∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线.(2)连接BC ,DB ,过D 作DH ⊥AB 于H , ∵AB 是⊙O 的直径, ∴∠ACB =90°,Rt △ABC 中,cos ∠CAB =AC AB =35∵OD ∥AE ,∴∠DOH =∠CAB , ∴cos ∠DOH =cos ∠CAB =35.∵Rt △HOD 中,cos ∠DOH =OH OD, ∴OH OD =35,设OD =5x ,则AB =10x ,OH =3x , ∴Rt △HOD 中,DH = OD 2-OH 2=4x ,AH =AO +OH =8x ,Rt △HAD 中,AD 2=AH 2+DH 2=80x 2. ∵∠BAD =∠DAE ,∠AED =∠ADB =90°, ∴△ADE ∽△ABD ,可得AD AE =ABAD,∴AD 2=AE ·AB =AE ·10x . 而AD 2=80x 2,∴AE =8x 又∵OD ∥AE ,∴△AEF ∽△DOF ,可得AF DF =AE DO =85.对应A 本课时跟踪检测(六十三)1.(2014·重庆高考改编)过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 分别交圆于B ,C .若PA =6,AC =8,BC =9,求AB 的长.解:如图所示,由切割线定理得PA 2=PB ·PC =PB ·(PB +BC ),即62=PB ·(PB +9),解得PB =3(负值舍去).由弦切角定理知∠PAB =∠PCA ,又∠APB =∠CPA ,故△APB ∽△CPA ,则AB CA =APCP,即AB8=63+9,解得AB =4. 2.(2015·广州综合测试)如图,PC 是圆O 的切线,切点为点C ,直线PA 与圆O 交于A ,B 两点,∠APC 的角平分线交弦CA ,CB 于D ,E 两点,已知PC =3,PB =2,求PE PD的值.解:由切割线定理可得PC 2=PA ·PB ⇒PA =PC 2PB =322=92,由于PC 切圆O 于点C ,由弦切角定理可知∠PCB =∠PAD ,由于PD 是∠APC 的角平分线,则∠CPE =∠APD ,所以△PCE ∽△PAD , 所以PE PD =PC PA =392=3×29=23.3.如图,AB 是⊙O 的直径,弦BD ,CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F .(1)求证:BE ·DE +AC ·CE =CE 2.(2)若D 是BE 的中点,求证E ,F ,C ,B 四点共圆. 证明:(1)由割线定理得EA ·EC =DE ·BE , ∴BE ·DE +AC ·CE =EA ·CE +AC ·CE =CE 2, ∴BE ·DE +AC ·CE =CE 2. (2)如图,连接CB ,CD .∵AB 是⊙O 的直径,∴∠ECB =90°,∴CD =12EB .∵EF ⊥BF ,∴FD =12BE .∴E ,F ,C ,B 四点与点D 等距离. ∴E ,F ,C ,B 四点共圆.4.(2015·忻州模拟)如图,直线AB 经过⊙O 上的点C ,并且OA =OB,CA =CB ,⊙O 交直线OB 于E ,D ,连接EC ,CD .(1)求证:直线AB 是⊙O 的切线;(2)若tan ∠CED =12,⊙O 的半径为3,求OA 的长.解:(1)证明:如图,连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB . ∵OC 是⊙O 的半径, ∴AB 是⊙O 的切线.(2)由弦切角定理得∠BCD =∠E , 又∠CBD =∠EBC ,∴△BCD ∽△BEC ,∴BC BE =BD BC = CD EC.∵tan ∠CED =CD EC =12,∴BC BE = BD BC =CD EC =12,设BD =x ,则BC =2x ,∴BC 2=BD ·BE ,即(2x )2=x (x +6), ∴BD =2,∴OA =OB =BD +OD =2+3=5.5.(2014·辽宁高考)如图,EP 交圆于E ,C 两点,PD 切圆于D ,G为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .证明:(1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA , 又由于∠PGD =∠EGA ,故∠DBA =∠EGA , 所以∠DBA +∠BAD =∠EGA +∠BAD , 从而∠BDA =∠PFA .由于AF ⊥EP ,所以∠PFA =90°,于是∠BDA =90°.故AB 是直径.(2)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°. 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB , 于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . 由于AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角. 于是ED 为直径.由(1)得ED =AB .6.(2014·新课标全国卷Ⅰ)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC 的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知CB=CE得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.7.(2015·洛阳模拟)在圆内接四边形ABCD中,AC与BD交于点E,过点A作圆的切线交CB的延长线于点F,若AB=AD,AD∥FC,AF=18,BC=15,求AE的长.解:∵AF是圆的切线,且AF=18,BC=15,∴由切割线定理知AF2=FB·FC,即182=FB·(FB+15),解得FB=12.∵AB=AD,∴∠ABD=∠ADB.又∵AF是圆的切线,∴∠FAB=∠ADB.则∠FAB=∠ABD,∴AF∥BD,又∵AD∥FC,∴四边形ADBF为平行四边形,∴AD=FB=12.又∠ACF=∠ADB=∠F,∴AC=AF=18.∵AD∥FC,∴AE18-AE =ADBC,解得AE=8.8.(2015·山西模拟)如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=10,PB=5,∠BAC的角平分线与BC和圆O21 分别交于点D 和E .(1)求证:AB AC =PA PC ;(2)求AD ·AE 的值.解:(1)证明:∵PA 为圆O 的切线,∴∠PAB =∠ACP , 又∠P 为公共角,∴△PAB ∽△PCA ,∴AB AC =PA PC .(2)∵PA 为圆O 的切线,PC 是过点O 的割线, ∴PA 2=PB ·PC ,∴PC =20,BC =15,又∵∠CAB =90°,∴AC 2+AB 2=BC 2=225, 又由(1)知AB AC =PA PC =12,∴AC =65,AB =35,连接EC ,则∠CAE =∠EAB ,∴△ACE ∽△ADB ,AB AE =AD AC ,∴AD ·AE =AB ·AC =35×65=90.。
解答题规范专练(五) 平面解析几何
1.已知椭圆C :x 24
+y 2
=1的上、下顶点分别为A ,B ,点P 在椭圆
上,且异于点A ,B ,直线AP ,BP 与直线l :y =-2分别交于点M ,N .
(1)设直线AP ,BP 的斜率分别为k 1,k 2,求证:k 1k 2为定值;
(2)求线段MN 长的最小值.
2.(2015·北京西城模拟)已知A ,B 是抛物线W :y =x 2上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k (k >0).设抛物线W 的焦点在直线AB 的下方.
(1)求k 的取值范围;
(2)设C 为W 上一点,且AB ⊥AC ,过B ,C 两点分别作W 的切线,记两切线的交点为D ,判断四边形ABDC 是否为梯形,并说明理由.
3.(2014·辽宁高考)圆x 2+y 2
=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线C 1:x 2a 2-y 2
b 2=1过点P 且离心率为 3.
(1)求C 1的方程;
(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.
答案
1.解:(1)由题意,A (0,1),B (0,-1),令P (x 0,y 0),则x 0≠0,
∴直线AP 的斜率k 1=y 0-1x 0,BP 的斜率k 2=y 0+1x 0
.
又点P 在椭圆上,∴x 204+y 2
0=1(x 0≠0), 从而有k 1k 2=y 2
0-1x 20
=1-x 204-1x 20=-14. 即k 1k 2为定值. (2)由题设可以得到直线AP 的方程为y -1=k 1(x -0), 直线BP 的方程为y -(-1)=k 2(x -0),
由⎩⎪⎨⎪⎧
y -1=k 1x ,y =-2得⎩⎪⎨⎪⎧ x =-3k 1,y =-2,
由⎩⎪⎨⎪⎧ y +1=k 2x ,y =-2得⎩⎪⎨⎪⎧ x =-1k 2,y =-2,
∴直线AP 与直线l 的交点M ⎝ ⎛⎭
⎪⎫-3k 1,-2, 直线BP 与直线l 的交点N ⎝ ⎛⎭
⎪⎫-1k 2,-2. 又k 1k 2=-14
, ∴|MN |=⎪⎪⎪⎪⎪⎪-3k 1+1k 2=⎪⎪⎪⎪⎪⎪3k 1+4k 1=⎪⎪⎪⎪
⎪⎪3k 1+|4k 1| ≥2⎪⎪⎪⎪
⎪⎪3k 1·|4k 1|=43, 当且仅当⎪⎪⎪⎪
⎪⎪3k 1=|4k 1|,即k 1=±32时等号成立, 故线段MN 长的最小值是4 3.
2.解:(1)抛物线y =x 2的焦点为⎝ ⎛⎭
⎪⎫0,14. 由题意,得直线AB 的方程为y -1=k (x -1),
令x =0,得y =1-k ,即直线AB 与y 轴相交于点(0,1-k ). 因为抛物线W 的焦点在直线AB 的下方,
所以1-k >14,解得k <34. 因为k >0,所以0<k <34
. 即k 的取值范围是⎝ ⎛⎭
⎪⎫0,34.
(2)结论:四边形ABDC 不可能为梯形.
理由如下:
假设四边形ABDC 为梯形.
由题意,设B (x 1,x 21),C (x 2,x 22),D (x 3,y 3), 联立方程⎩⎪⎨⎪⎧ y -1=k x -1 ,
y =x 2,
消去y ,得x 2-kx +k -1=0,
由根与系数的关系,得1+x 1=k ,所以x 1=k -1.
同理,得x 2=-1k
-1. 对函数y =x 2求导,得y ′=2x ,
所以抛物线y =x 2在点B 处的切线BD 的斜率为2x 1=2k -2,
抛物线y =x 2在点C 处的切线CD 的斜率为2x 2=-2k
-2. 由四边形ABDC 为梯形,得AB ∥CD 或AC ∥BD .
若AB ∥CD ,则k =-2k
-2, 即k 2+2k +2=0,
因为方程k 2+2k +2=0无解,所以AB 与CD 不平行.
若AC ∥BD ,则-1k
=2k -2,即2k 2-2k +1=0, 因为方程2k 2-2k +1=0无解,所以AC 与BD 不平行. 所以四边形ABDC 不是梯形,与假设矛盾.
因此四边形ABDC 不可能为梯形.
3.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0), 则切线斜率为-x 0y 0,
切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,
此时,两个坐标轴的正半轴与切线围成的三角形面积为 S =12·4x 0·4y 0=8
x 0y 0
. 由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值, 因此点P 的坐标为(2,2).
由题意知⎩⎪⎨⎪⎧ 2a 2-2b 2=1,a 2+b 2=3a 2,
解得a 2=1,b 2=2, 故C 1的方程为x 2-y 22
=1. (2)由(1)知C 2的焦点坐标为(-3,0),(3,0), 由此设C 2的方程为x 23+b 21+y 2
b 21
=1,其中b 1>0. 由P (2,2)在C 2上,得23+b 21+2b 21
=1, 解得b 21=3,因此C 2的方程为x 26+y 23=1. 显然,l 不是直线y =0.
设l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧ x =my +3,
x 26+y 23=1,得(m 2+2)y 2
+23my -3=0. 又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧
y 1+y 2=-23m m 2+2, ①y 1y 2=-3m 2+2. ② 由x 1=my 1+3,x 2=my 2+3,得 ⎩⎪⎨⎪⎧ x 1+x 2=m y 1+y 2 +23=43m +2, ③x 1x 2=m 2
y 1y 2+3m y 1+y 2 +3=6-6m 2m 2+2. ④ 因为 AP =(2-x 1,2-y 1), BP =(2-x 2,2-y 2),
由题意知 AP · BP =0,
所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0,⑤ 将①②③④代入⑤式整理得
2m 2
-26m +46-11=0,
解得m =362-1或m =-62
+1. 因此直线l 的方程为
x -⎝ ⎛⎭⎪⎫362-1y -3=0或x +⎝ ⎛⎭⎪⎫62-1y -3=0.。