2.2.1向量加法运算及其几何意义(7)
- 格式:ppt
- 大小:1.48 MB
- 文档页数:5
向量加法运算及其几何意义向量加法是指将两个或多个向量相加的运算。
在数学中,向量加法遵循以下规则:1.向量加法是可交换的。
即,对于任意向量a和b,a+b=b+a。
2.向量加法是可结合的。
即,对于任意向量a、b和c,(a+b)+c=a+(b+c)。
3.零向量是向量加法的单位元素。
即,对于任意向量a,a+0=0+a=a。
几何意义方面,向量加法可以用于描述物体的位移、力的合成以及速度的合成等。
下面以位移和力的合成为例进行解释:1.位移的合成:假设有一辆汽车沿东西方向行驶了100米,然后又沿南北方向行驶了50米。
我们可以将汽车的东西方向的位移表示为向量a=100i,南北方向的位移表示为向量b=50j。
那么,汽车的总位移可以表示为向量c=a+b,即c=100i+50j。
这个向量c表示汽车最终的位置相对于起始位置的位移。
2.力的合成:假设有两个力F1和F2作用在一个物体上,F1的大小为10牛顿,方向为东,F2的大小为5牛顿,方向为北。
我们可以将力F1表示为向量a=10i,力F2表示为向量b=5j。
那么,两个力的合力可以表示为向量c=a+b,即c=10i+5j。
这个向量c表示两个力的合力的大小和方向。
在几何上,向量加法的结果可以通过平行四边形法则进行图示。
以位移为例,我们可以将向量a和向量b的起点放在同一位置,然后将向量a按照其方向和大小绘制出来,再将向量b按照其方向和大小绘制出来。
通过平行四边形法则,我们可以找到一个平行四边形,其两条对角线的交点即为向量a和向量b的和向量c的终点。
总结起来,向量加法是一种将多个向量相加的运算,它遵循可交换和可结合的规则,并且零向量是其单位元素。
在几何上,向量加法可以用于描述位移和力的合成等。
通过平行四边形法则,我们可以找到向量加法的结果的几何意义。
§2.2 平面向量的线性运算 2.2.1 向量加法运算及其几何意义学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性.知识点一 向量加法的定义及其运算法则 1.向量加法的定义求两个向量和的运算,叫做向量的加法. 2.向量求和的法则为起点的两个已知向量a ,OC →就是a 与b 的和.把这种作两个向量向量加法的三角形法则和平行四边形法则实际上就是向量加法的几何意义. 知识点二 向量加法的运算律 向量加法的运算律思考 |a +b |与|a |,|b |有什么关系?答案 (1)当向量a 与b 不共线时,a +b 的方向与a ,b 不同,且|a +b |<|a |+|b |.(2)当a 与b 同向时,a +b ,a ,b 同向,且|a +b |=|a |+|b |.(3)当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.1.0+a =a +0=a .( √ ) 2.AB →+BC →=AC →.( √ ) 3.AB →+BA →=0.( √ ) 4.AB →+BC →>AC →.( × ) 5.|AB →|+|BC →|=|AC →|.( × )题型一 向量加法的三角形法则和平行四边形法则例1 如图(1)(2),已知向量a ,b ,c ,求作向量a +b 和a +b +c .考点 向量加法的三角形法则和平行四边形法则 题点 向量加法的平行四边形法则解 (1)作法:在平面内任意取一点O ,作OA →=a ,AB →=b ,则OB →=a +b .(2)在平面内任意取一点O ,作OA →=a ,AB →=b ,BC →=c ,则OC →=a +b +c .反思感悟 向量加法的平行四边形法则和三角形法则的区别和联系.区别:(1)三角形法则中强调“首尾相接”,平行四边形法则中强调的是“共起点”.(2)三角形法则适用于任意两个非零向量求和,而平行四边形法则仅适用于不共线的两个向量求和. 联系:(1)当两个向量不共线时,向量加法的三角形法则和平行四边形法则是统一的.(2)三角形法则作出的图形是平行四边形法则作出的图形的一半.跟踪训练1 如图所示,O 为正六边形ABCDEF 的中心,化简下列向量. (1)OA →+OC →=________;(2)BC →+FE →=________; (3)OA →+FE →=________.考点 向量加法的三角形法则和平行四边形法则 题点 向量加法的平行四边形法则 答案 (1)OB → (2)AD →(3)0 题型二 向量加法运算律的应用 例2 化简:(1)BC →+AB →;(2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 考点 向量加法运算及运算律 题点 化简向量解 (1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A → =AF →+F A →=0.反思感悟 (1)根据向量加法的交换律使各向量首尾连接,再运用向量的结合律调整向量顺序后相加.(2)向量求和的多边形法则:A 1A 2—→+A 2A 3—→+A 3A 4—→+…+A n -1A n ———→=A 1A n —→.特别地,当A n 和A 1重合时,A 1A 2—→+A 2A 3—→+A 3A 4—→+…+A n -1A 1———→=0.跟踪训练2 向量(AB →+PB →)+(BO →+BM →)+OP →化简后等于( ) A.BC → B.AB →C.AC →D.AM →考点 向量加法运算及运算律 题点 化简向量 答案 D解析 向量(AB →+PB →)+(BO →+BM →)+OP →=AB →+BO →+OP →+PB →+BM →=AM →. 题型三 向量加法的实际应用例3 在静水中船的速度为20 m /min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向. 考点 向量加法的定义及几何意义的应用 题点 向量的加法在运动学中的应用解 作出图形,如图所示.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt △ACD 中,|CD →|=|AB →|=|v 水|=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. ∴船是沿与水流的方向成120°的角的方向行进的. 引申探究1.若本例中条件不变,则经过1 h ,该船的实际航程是多少? 解 由例3知v 船=20 m/min ,v 实际=20×sin 60°=103(m/min), 故该船1 h 行驶的航程为103×60=6003(m)=335(km). 2.若本例中其他条件不变,改为若船沿垂直水流的方向航行,求船实际行进的方向与岸方向的夹角的正切值.解 如图,作平行四边形ABDC ,则AD →=v 实际,设船实际航向与岸方向的夹角为α,则tan α=|BD →||AB →|=2010=2.即船实际行进的方向与岸方向的夹角的正切值为2.反思感悟 向量既有大小又有方向的特性在实际生活中有很多应用,准确作出图象是解题关键.跟踪训练3 如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小.(绳子的重量忽略不计)考点 向量加法的定义及几何意义的应用 题点 向量的加法在物理学中的应用解 如图所示,设CE →,CF →分别表示A ,B 所受的力,10 N 的重力用CG →表示,则CE →+CF →=CG →.由题意可得∠ECG =180°-150°=30°,∠FCG =180°-120°=60°. ∴|CE →|=|CG →|cos 30°=10×32=53(N),|CF →|=|CG →|cos 60°=10×12=5(N).∴A 处所受的力为5 3 N ,B 处所受的力为5 N.三角形形状的判断典例 已知|AB →|=1,|AC →|=1,且|AB →+AC →|=3,判断△ABC 的形状.解 由向量加法的平行四边形法则及|AB →|=|AC →|=1,知构成的四边形为菱形,且最长的对角线长度为|AB →+AC →|=3,则∠BAC =60°,故△ABC 为等边三角形.[素养评析] 本题主要考查向量加法的应用,突出考查直观想象的核心素养,培养学生从图形与图形关系中抓住问题本质,从而更好地理解向量加法的平行四边形法则.1.化简AE →+EB →+BC →等于( ) A.AB → B.BA → C .0 D.AC → 考点 向量加法运算及运算律 题点 化简向量 答案 D解析 AE →+EB →+BC →=AB →+BC →=AC →.2.如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( )A .0 B.BE → C.AD →D.CF →考点 向量加法运算及运算律 题点 几何图形中的向量加法运算 答案 D解析 BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF →=CF →. 3.若正方形ABCD 的边长为1,则|AB →+AD →|等于( ) A .1 B. 2 C .3D .2 2 考点 向量加法的三角形法则和平行四边形法则 题点 利用向量的加法求模长 答案 B解析 在正方形ABCD 中,AB =1,可知AC =2, 所以|AB →+AD →|=|AC →|=AC = 2.4.如图所示,在四边形ABCD 中,AC →=AB →+AD →,则四边形为( )A .矩形B .正方形C .平行四边形D .菱形考点 向量加法的三角形法则和平行四边形法则 题点 利用向量的加法求模长 答案 C解析 ∵AC →=AB →+AD →,∴DC →=DA →+AC →=DA →+AB →+AD →=DA →+AD →+AB →=AB →, 即DC →=AB →,∴AB =DC ,AB ∥DC , ∴四边形ABCD 为平行四边形.5.已知向量a 表示“向东航行3 km ”,b 表示“向南航行3 km ”,则a +b 表示__________. 考点 向量加法的定义及几何意义的应用 题点 向量的加法在物理学中的应用 答案 向东南航行3 2 km解析 根据题意由于向量a 表示“向东航行3 km ”,向量b 表示“向南航行3 km ”,那么可知a +b 表示向东南航行3 2 km.1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时,常选用三角形法则;当两个向量共起点时,常选用平行四边形法则. 2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.3.使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.一、选择题1.化简CB →+AD →+BA →等于( ) A.DB → B.CA →C.DC →D.CD →考点 向量加法运算及运算律 题点 化简向量 答案 D2.如图,四边形ABCD 是梯形,AD ∥BC ,对角线AC 与BD 相交于点O ,则OA →+BC →+AB →+DO →等于( )A.CD →B.DC →C.DA →D.DO → 考点 向量加法运算及运算律 题点 几何图形中的向量加法运算 答案 B解析 OA →+BC →+AB →+DO →=DO →+OA →+AB →+BC →=DA →+AB →+BC →=DB →+BC →=DC →. 3.下列说法正确的个数为( )①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 或b 的方向相同; ②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 一定为一个三角形的三个顶点; ④若a ,b 均为非零向量,则|a +b |=|a |+|b |. A .0 B .1 C .2 D .3 考点 向量加法运算及运算律 题点 几何图形中的向量加法运算 答案 B解析 ①错,若a +b =0,则a +b 的方向是任意的;②正确;③错,当A ,B ,C 三点共线时,也满足AB →+BC →+CA →=0;④错,|a +b |≤|a |+|b |. 4.若在△ABC 中,AB =AC =1,|AB →+AC →|=2,则△ABC 的形状是( )A .正三角形B .锐角三角形C .斜三角形D .等腰直角三角形考点 向量加法的定义及几何意义的应用 题点 向量的加法在平面几何中的应用 答案 D解析 以AB ,AC 为邻边作平行四边形ABDC ,∵AB =AC =1,AD =2,∴∠ABD 为直角,该四边形为正方形,∴∠BAC =90°,△ABC 为等腰直角三角形,故选D. 5.已知四边形ABCD 为菱形,则下列等式中成立的是( ) A.AB →+BC →=CA → B.AB →+AC →=BC → C.AC →+BA →=AD →D.AC →+AD →=DC →考点 向量的加法运算与运算律 题点 几何图形中的向量加法运算 答案 C解析 对于A ,AB →+BC →=AC →≠CA →;对于B ,AB →+AC →≠BC →;对于C ,AC →+BA →=BA →+AC →=BC →,又AD →=BC →,所以AC →+BA →=AD →;对于D ,AC →+AD →≠DC →.6.在矩形ABCD 中,|AB →|=4,|BC →|=2,则向量AB →+AD →+AC →的长度为( ) A .2 5 B .4 5 C .12 D .6考点 向量加法的三角形法则和平行四边形法则 题点 利用向量的加法求模长 答案 B解析 因为AB →+AD →=AC →,所以AB →+AD →+AC →的长度为AC →的模的2倍. 又|AC →|=42+22=25,所以向量AB →+AD →+AC →的长度为4 5.7.长度相等的三个非零向量OA →,OB →,OC →满足OA →+OB →+OC →=0,则由A ,B ,C 三点构成的△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形 考点 向量加法的定义及几何意义的应用 题点 向量的加法在平面几何中的应用 答案 B解析 如图所示,作OA →,OB →的和向量OD →,因为OA →+OB →+OC →=0, 所以OD →+OC →=0,即OD →与OC →长度相等,方向相反. 所以|OA →|=|OD →|,所以△AOD 为等边三角形, 所以∠OAB =12∠OAD =30°,同理,∠OAC =∠OCA =∠OCB =∠OBC =∠OBA =30°, 所以∠BAC =∠ABC =∠ACB =60°,即△ABC 为等边三角形. 二、填空题8.如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →+CD →=________; (2)AC →+BA →+DA →=________. 考点 向量的加法运算与运算律 题点 几何图形中的向量加法运算 答案 (1)AD →(2)09.已知点G 是△ABC 的重心,则GA →+GB →+GC →=______. 考点 向量的加法运算与运算律 题点 几何图形中的向量加法运算 答案 0解析 如图所示,连接AG 并延长交BC 于点E ,点E 为BC 的中点,延长AE 到点D ,使GE =ED ,则GB →+GC→=GD →,GD →+GA →=0,∴GA →+GB →+GC →=0.10.如图,已知在矩形ABCD 中,|AD →|=43,设AB →=a ,BC →=b ,BD →=c ,则|a +b +c |=________.考点 向量加法的三角形法则和平行四边形法则题点 利用向量的加法求模长答案 8 3解析 因为a +b +c =AB →+BC →+BD →=AC →+BD →,延长BC 至E ,使CE =BC ,连接DE .由于CE→=BC →=AD →,所以四边形ACED 是平行四边形,所以AC →=DE →,所以AC →+BD →=DE →+BD →=BE →,所以|a +b +c |=|BE →|=2|BC →|=2|AD →|=8 3.11.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________.考点 向量加法的三角形法则和平行四边形法则题点 利用向量的加法求模长答案 1解析 在菱形ABCD 中,连接BD ,∵∠DAB =60°,∴△BAD 为等边三角形,又∵|AB →|=1,∴|BD →|=1,即|BC →+CD →|=|BD →|=1.12.设非零向量a ,b ,c ,若p =a |a|+b |b|+c |c|,则|p |的取值范围为____________. 考点 向量加法的三角形法则和平行四边形法则题点 利用向量的加法求模长答案 [0,3]解析 因为a |a|,b |b|,c |c|是三个单位向量,因此当三个向量同向时,|p |取最大值 3.当三个向量两两成120°角时,它们的和为0,故|p |的最小值为0.三、解答题13.如图所示,已知电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ,绳BO 与墙壁垂直,所受拉力|F 2|=12 N .求F 1和F 2的合力大小.考点 向量加法的定义及几何意义的应用题点 向量的加法在物理学中的应用解 如图,根据向量加法的平行四边形法则,得到合力F =F 1+F 2=OC →.在△OCA 中,|OA →|=24,|AC →|=12,∠OAC =60°,∴∠OCA =90°,∴|OC →|=12 3.∴F 1与F 2的合力大小为12 3 N ,方向为与F 2成90°角竖直向上.14.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.考点 向量加法运算及运算律题点 证明几何图形中的向量等式证明 AB →=AP →+PB →,AC →=AQ →+QC →,∴AB →+AC →=AP →+PB →+AQ →+QC →.∵PB →与QC →大小相等,方向相反,∴PB →+QC →=0,故AB →+AC →=AP →+AQ →+0=AP →+AQ →.15.如图,已知D ,E ,F 分别为△ABC 的三边BC ,AC ,AB 的中点,求证:AD →+BE →+CF →=0.考点 向量加法的定义及几何意义的应用题点 向量的加法在平面几何中的应用证明 由题意知,AD →=AC →+CD →,BE →=BC →+CE →,CF →=CB →+BF →.由平面几何知识可知,EF →=CD →,BF →=F A →,所以AD →+BE →+CF →=(AC →+CD →)+(BC →+CE →)+(CB →+BF →) =(AC →+CD →+CE →+BF →)+(BC →+CB →)=(AE →+EC →+CD →+CE →+BF →)+0=AE →+CD →+BF →=AE →+EF →+F A →=0.。
2.2.1 向量加法运算及其几何意义●温故知新1.既有_______,又有_______的量叫做向量.向量可以用_____线段来表示,但起点字母必须放在终点字母的______,手写体上面的______ 不能漏写.2.____________或____________的非零向量叫做平行向量,零向量与任一向量______.3.___________且___________的向量叫做相等向量.4.平行向量也叫__________.表示两个非零平行向量的有向线段所在直线的位置关系是_______或_______.●教材新知1.求两个向量____的运算,叫做向量的加法.2.零向量与任一向量a,规定:0=0a++a=_____.3.当在数轴上表示两个共线向量时,它们的加法与数的加法有什么关系?两个数相加其结果是一个数,对应于数轴上的一个_____.两个向量相加,它们的和仍然是一个向量,对应于数轴上的一条_________.4.当向量a、b(1)三角形法则:两向量首尾相接,和向量为首向量的_______指向末向量的_______.(2)平行四边形法则:两向量共始点,以它们为邻边作平行四边形,和向量为平行四边形的_______________.向量加法的几何意义就是________和____________.任意两个向量相加,所得的和一定是一个_______.(3)任一向量都可以写成两个首尾相接向量的和,即AB=____+____.5.向量加法的运算律(1)交换律:=a+b____+____.(2)结合律:()=a+b+c a+_______.结论:(1)当a与b_______时,a+b与a、b同向,且=a+b a+b.(2)当a与b_______时,若a>b,则a+b与a同向,且-a+b a b;=若a<b,则a+b与b同向,且-a+b b a;=若a=b,则a+b=____.(3)当a、b不共线时,a+b____a+b.(4)任意两个向量的和,结果是_______.6.向量链:若干个向量首尾_________,且构成一个_________.组成向量链的所有向量的和为_______.●题组集训(1)若向量a表示向东走1km,向量b表示向南走1km,则向量a+b表示()A.2B.向东南走2kmC.2D.向东北走2km (2)下列式子不能化简为AD的是()A.()AD MB BC CM+++++ B.()()AB CD BCC.MB AD MB++++ D.OC AO CD(3)在四边形ABCD中,AC AB AD=+,则一定有()A.四边形ABCD是矩形B.四边形ABCD是菱形C.四边形ABCD是正方形D.四边形ABCD是平行四边形(4)已知下列各式:①AB BC CA ++;②()AB MB BO OM +++;③OA OC BO ++;④AB + CA BD DC ++.其中结果为0的个数为( )A.1B.2C.3D.4(5)在ABC ∆中,CB =a ,AC =b ,则AB =________.●课堂精讲【例1】(1)如图,已知a 、b ,用向量加法的三角形法则作出a +b .(2)如图,已知a 、b ,用向量加法的平行四边形法则作出a +b .【例2】四边形ABCD 是边长为1的正方形,设AB =a ,BC =b ,AC =c .求作向量++a b c ,并求++a b c .【例3】一条渔船距对岸4km ,以2km /h 的速度向垂直于对岸的方向划去,到达对岸时,船的 实际航程为8km ,求河水的流速.●课后反馈(1)下列结论中,正确的是( )A.0+=00B.对于任意向量a 、b ,a+b =b+aC.对于任意向量a 、b ,0a +b >D.若向量AB ‖BC ,且1AB =,2014BC =,则2015AB BC +=(2)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( )A.AB CD =,BC AD =B.AD OD DA +=C.AO OD AC CD +=+D.AB BC CD DA ++=(3)设()()AB CD BC DA +++=a ,b 是一非零向量,则在下列结论中,正确的结论为( ) ①a ‖b ;②a+b =a ;③a+b =b ;④a +b <a +b .A.①②B.③④C.②④D.①③(4)如图,已知ABC ∆是直角三角形且90A ∠=︒.则在下列各结论中, 正确的结论个数为( )①AB AC BC +=; ②AB BC CA +=;③AB CA BC +=; ④222AB AC BC +=.A.4个B.3个C.2个D.1个(5)已知ABC ∆是正三角形,则下列各等式中不成立的为( )A.AB BC BC CA +=+B.AC CB BA BC +=+C.AB AC CA CB +=+D.AB BC AC CB BA CA ++=++(6)若O 是ABC ∆内一点,且OA OB OC ++=0,则O 是ABC ∆的( )A.内心B.外心C.垂心D.重心(7)如图,正六边形ABCDEF 中,BA CD EF ++=( )A.0B.BEC.ADD.CF(8)若O 是ABC ∆内一点,D 为BC 边上中点,2OA OB OC ++=0,则( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =(9)如图,已知梯形ABCD ,OA AB BC ++=______.(10)化简AB CD BC DB EF BF FA ++++++=______.(11)向量a 、b 满足6=a ,10=b ,则a +b 的最大值是______, 最小值是______.(12)如图,在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、 Q 、M 、N 分别是线段OA 、OB 、OC 、OD 的中点.在A 、P 、 M 、C 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为 F .设G 为满足向量OG OE OF =+的点,则在上述的点G 组成的 集合中的点,落在平行四边形ABCD 外(不含边界)的概率是 ______.(13)如图,在重300N 的物体上栓两根绳子,这两根绳子在 铅垂线的两侧,与铅垂线的夹角分别为30︒、60︒,当整个系 统处于平衡状态时,求两根绳子的拉力.。
全国⾼中数学教师优秀教案-《向量加法运算及其⼏何意义》教案(河南省杜志国)
第五届全国⾼中青年数学教师优秀课观摩活动教案
《向量加法运算及其⼏何意义》
河南省商丘市实验中学
杜志国
《2.2.1向量加法运算及其⼏何意义》教案
授课教师:河南省商丘市实验中学杜志国
⼀、教学⽬标
知识⽬标:理解向量加法的含义,会⽤向量加法的三⾓形法则和平⾏四边形法则作出两个向量的和;掌握向量加法的交换律与结合律,并会
⽤它们进⾏向量运算.
能⼒⽬标:经历向量加法概念、法则的建构过程,感受和体会将实际问题抽象为数学概念的思想⽅法,培养学⽣发现问题、分析问题、解决
问题的能⼒.
情感⽬标:经历运⽤数学来描述和刻画现实世界的过程,体验探索的乐趣,激发学⽣的学习热情.培养学⽣勇于探索、敢于创新的个性品质.⼆、重点与难点
重点:向量加法的定义与三⾓形法则的概念建构;以及利⽤法则作两个向量的和向量.
难点:理解向量的加法法则及其⼏何意义.
三、教法学法
教法运⽤了“问题情境教学法”、“启发式教学法”和“多媒体辅助教学法”.学法采⽤以“⼩组合作、⾃主探究”为主要⽅式的⾃主学习模式.
四、教学过程
新课程理念下的教学过程是⼀个内容活化、创⽣的过程,是⼀个学⽣思考、体验的过程,更是⼀个师⽣互动、发展的过程.基于此,我设定了5个教学环节:
⼀、创设情境引⼊课题
师:在前⼀节课中我们学习了⼀个新的量——向量,今天就让我们共同来探究向量的加法运算,⾸先,请看课件.(出⽰)
师:他是谁?
⽣:丁俊晖.
师:对,著名的台球神童——
看他好像遇到了难题?(出⽰)。
2.2.1 向量加法运算及其几何意义教学目标:知识与技能:理解向量加法的定义;会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量;理解向量加法的运算律,并能够熟练地运用。
培养类比、迁移、分类、归纳等能力。
过程与方法:经历向量加法三角形法则和平行四边形法则的归纳过程;通过实例到概念,由具体到抽象,培养学生数形结合的学习方法,情感态度与价值观:理解、体验实际问题抽象为数学概念的过程和思想,增强数学应用意识。
通过师生、生生互动,形成学生的体验性认识,体会成功的愉悦。
教学重点:向量加法的三角形法则和平行四边形法则;向量加法的运算律。
教学难点:向量的加法法则及其几何意义。
学法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法,借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章的接受向量的加法定义。
结合图形掌握向量加法的三角形法则和平行四边形法则;联系数的运算律理解和掌握向量加法运算的交换律和结合律。
教学方法:启发探究式教学和多媒体辅助教学法授课类型:新授课教学过程复习回顾:1 向量的概念:既有大小又有方向的量叫做向量。
2 相等向量:长度相等且方向相同的向量叫做相等向量强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等;我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置情景设置,导入新课:数能进行运算,与数的运算类比,向量是否也能进行运算呢?人们从向量的物理背景和数的运算中得到启发,引进了向量的运算,今天我们就来首先学习向量的加法运算。
导入1:飞机从上海(点O)经过香港(点A)到台湾(点B),两次位移→OA,→AB的结果与位移→OB的比较?答:结果相同。
问:两次位移的位置关系是什么?如何作出它们的和位移?学生讨论、探究得出结论:两次位移首尾相连,其和位移是由起点指向终点。