2014年春季学期新版新人教版七年级数学下册9.2一元一次不等式同步试卷5
- 格式:doc
- 大小:80.00 KB
- 文档页数:5
第9章不等式与不等式组9.2一元一次不等式班级:姓名:知识点1一元一次不等式的概念1.下列不等式是一元一次不等式的是()A.x2+x>1B.12x+1>2x+33C.x+y>3D.x()1x+2>3x+12.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④3>2.A.1个B.2个C.3个D.4个3.若3x2a+3-9>6是关于x的一元一次不等式,则a=.4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.知识点2解一元一次不等式5.不等式3x≤2(x-1)的解集为()A.x≤-1B.x≤-1C.x≤-2D.x≥-26.3x-7≥4(x-1)的解集为()A.x≥3B.x≤3C.x≥-3D.x≤-37.不等式3x+22<x的解集是()A.x<-2B.x<-1C.x<0D.x>28.不等式3(x-1)+4≥2x的解集在数轴上表示为()9.不等式x-5>4x-1的最大整数解是()A.-2B.-1C.0D.110.解不等式14(2-x)≥5的过程是:去分母,得;移项,得,系数化为1,得.11.不等式y-26≥y3+1的解集为.12.请你写出一个满足不等式2x-1<6的正整数x的13.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.14.解不等式:2(x-1)<x+1,并求它的非负整数解.15.解不等式x-1≤1+x3,并求其正整数解.16.解不等式2x-13≤3x-46,并把它的解集在数轴上表示出来.17.解不等式2x-13-5x+12≤1,并把它的解集在数轴上表示出来.18.x取什么值时,代数式1-5x2的值不小于代数式3-2x3+4的值.19.已知x=3是关于x的不等式3x-ax+22>2x3的解,求a的取值范围.知识点3列一元一次不等式解决实际问题20.CBA篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计2017—2018赛季全部38场比赛中最少得到57分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(38-x)≥57B.2x-(38-x)≥5721.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,则她最多还可以买支笔()A.1B.2C.3D.422.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折23.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.25.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,现安排10辆车,则甲种运输车至少应安排几辆?26.八年级二班的五名同学参加学校组织的数学抽查测试,其中四名同学的考试分数分别为85, 80,82,86,又知他们五人的平均成绩不低于80分,那么第五名同学至少要考多少分?27.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?综合点1一元一次不等式与一元一次方程(组)的综合28.若关于x,y的二元一次方程组{3x+y=1+a,x+3y=3的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<429.当m为何值时,关于x的方程(m+2)x-2=1-m(4-x)有:(1)负数解;(2)不大于2的解.综合点2已知一元一次不等式的解集求字母的值30.不等式mx-2<3x+4的解集为x>6m-3,求m的最大整数值.综合点3列一元一次不等式与方程(组)的综合31.为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A,B 两种型号家用净水器共160台,A型号家用净水350元/台,购进两种型号的家用净水器共用36 000元.(1)A,B两种型号家用净水器各购进了多少台?(2)为使每台B型号的家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,则每台A型号家用净水器的售价至少是多少元?(毛利润=售价-进价)拓展点1阅读题32.阅读理解:我们把a bcd称作二阶行列式,规定它的运算法则为a bcd=ad-bc.如2345=2×5-3×4=-2.如果有23-x1x>0,求x的解集.拓展点2含字母系数的一元一次不等式33.解关于x的不等式:ax-x-2>0.拓展点3方案设计34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A,B两种树苗刚好用去1220元,问购进A,B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.第9章不等式与不等式组9.2一元一次不等式答案与点拨1.B(点拨:A 中含未知数项的最高次数是2,C 中含有两个未知数,D 中式子不全是整式,它们都不是一元一次不等式.)2.B(点拨:①③是一元一次不等式,注意③化简后再判断.)3.-1(点拨:2a+3=1,a=-1.)4.1(点拨:|m|=1且m+1≠0,所以m=1.)5.C6.D7.A(点拨:去分母得3x+2<2x,移项得3x-2x<-2,合并同类项得x<-2.)8.A(点拨:不等式3(x-1)+4≥2x 的解集是x ≥-1,大于应向右画,包括-1时,应用实心圆点表示-1这一点,故选A.)9.A(点拨:解不等式得解集为x<-43,所以最大整数解为-2.)10.2-x ≥20-x ≥20-2x ≤-1811.y ≤-812.1,2,3中任何一个都可(点拨:不等式的解集为x<72,其正整数解为1,2,3.)13.去括号得2x-2-3<1,移项、合并同类项得2x<6,系数化为1得x<3.在数轴上把解集表示出来为:14.去括号,得2x-2<x+1,移项、合并同类项,得x<3.因此不等式的非负整数解是0,1,2.15.去分母得3(x-1)≤1+x,去括号得3x-3≤1+x,移项得3x-x ≤1+3,合并同类项得2x ≤4,系数化为1得x ≤2,符合x ≤2的正整数解有1,2.16.去分母,得2(2x-1)≤3x-4.去括号,得4x-2≤3x-4.移项,合并同类项,得x ≤-2.∴不等式的解集为x ≤-2.该解集在数轴上表示如下:17.去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,得4x-15x ≤6+2+3.合并同类项,得-11x ≤11.系数化为1,得x ≥-1.这个不等式的解集在数轴上表示如下:18.由题意得1-5x 2≥3-2x3+4.去分母,得3(1-5x)≥2(3-2x)+24.去括号、移项、合并同类项,-11x ≥27.系数化为1,得x ≤-2711.∴当x ≤-2711时,1-5x 2≥3-2x 3+4.19.因为x=3是关于x 的不等式3x-ax +22>2x 3的解,所以9-3a +22>2,解得a<4.故a 的取值范围是a<4.21.D(点拨:设可买x支笔,则有3x+4×2≤21,即3x+8≤21,3x≤13,x≤133,所以x可取最大的整数为4,她最多可买4支笔.故选D.)22.B(点拨:设可打x折,则有1200x·0.1≥800(1+0.05),解得x≥7.故选B.)23.14(点拨:根据本次竞赛规则可知竞赛得分=10×答对的题数+(-5)×答错(或不答)的题数,得分要超过100分,列出不等式求解即可.设要答对x道题,则10x+(-5)×(20-x)>100,解得x>1313.∵x是整数,∴x=14.)24.3(点拨:设小宏能买x瓶甲饮料,则买乙饮料(10-x)瓶.根据题意,得7x+4(10-x)≤50,解得x≤31 3 .所以小宏最多能买3瓶甲饮料.)25.设甲种运输车安排x辆,则5x+4×(10-x)≥46,解得x≥6.答:甲种运输车至少应安排6辆.26.设第五名同学要考x分,则85+80+82+86+x≥80×5,解得x≥67.答:第五名同学至少要考67分.27.设购买球拍x个,依题意得:1.5×20+22x≤200.解之得:x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.28.D(点拨:将两个方程相加,得4x+4y=4+a,从而有x+y=4+a4,然后解不等式4+a4<2,得a<4.)29.解方程得x=3-4m2.(1)由3-4m2<0得m>34.(2)由3-4m2≤2得m≥-14.30.2(点拨:由题意得m-3<0,即m<3.)31.(1)设A种型号家用净水器购进了x台,则B种型号的净水器购进了(160-x)台.由题意,得150x+350(160-x)=36000.解得x=100.所以160-x=60.所以A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润为z元,则每台B型号家用净水器的毛利润为2z元.由题意,得100z+60×2z≥11000,解得z≥50.150+50=200(元).所以,每台A型号家用净水器的售价至少为200元.32.由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项、合并同类项得:3x>3,x的系数化为1得:x>1.33.ax-x-2>0,(a-1)x>2.当a-1=0时,ax-x-2>0无解;当a-1>0时,x>2a-1;当a-1<0时,a<2a-1.34.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得17-x<x,解得x>81 2 .购进A,B两种树苗所需费用为80x+60(17-x)=20x+1020.费用最省则需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)一、单选题1.下列说法正确的是( )A .x=4是不等式2x >﹣8的一个解B .x=﹣4是不等式2x >﹣8的解集C .不等式2x >﹣8的解集是x >4D .2x >﹣8的解集是x <﹣4【答案】A【解析】根据不等式的基本性质,可知2x >-8的解集为x >-4,所以x=4是它的一个解;x=-4不是其解集.故选A.2.不等式311x x ->+的解集在数轴上表示为( )A .B .C .D . 【答案】C【解析】试题解析:由3x ﹣1>x +1,可得2x >2,解得x >1,所以一元一次不等式3x ﹣1>x +1的解在数轴上表示为:故选C.点睛:首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.3.在方程组2122x y mx y+=-⎧⎨+=⎩中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.【答案】B【解析】【详解】解:2122x y mx y+-⎧⎨+⎩=①=②,①+②得,3(x+y)=3-m,解得x+y=1-3m,∵x+y>0,∴1-3m>0,解得m<3,在数轴上表示为:.故选B.4.不等式x -7<3x -2的负整数解有( )A.1个B.2个C.3个D.4个【答案】B【解析】分析:先求解一元一次不等式,然后再求出其符合条件的非负整数解即可.详解:x -7<3x -2x-3x<-2+7-2x<5x>-52∴负整数解为:-2,-1.共有2个.故选:B.点睛:此题主要考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.5.把不等式2x -1> x+2的解集在数轴上表示正确的是( )A.B.C.D.【答案】C【解析】分析:先将不等式移项,然后将不等式系数化为1求得其解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可判断答案.详解:解不等式2x -1> x+22x-x>2+1得:x>3,表示在数轴上为:.故选:C.点睛:本题主要考查解一元一次不等式及再数轴上表示不等式解集的能力,掌握“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则是解题的关键.6.不等式2x+5>4x﹣1的正整数解是()A.0、1、2 B.1、2 C.1、2、3 D.x<3【答案】B【解析】分析:移项合并后,将x系数化为1求出不等式的解集,找出解集中的正整数解即可.详解:不等式2x+5>4x-1,移项合并得:-2x>-6,解得:x<3,则不等式的正整数解为1,2.故选B.点睛:此题考查了一元一次不等式的整数解,求出不等式的解集是解本题的关键.7.满足不等式3x-5> -1的最小整数是()A.-1 B.1 C.2 D.3【答案】C【解析】【分析】首先解不等式3x-5>-1,求得解集,即可确定不等式的最小整数解.【详解】解不等式3x-5>-1,移项得:3x>-1+5,则3x>4,∴x>4,3则最小的整数是2,故选:C.【点睛】考查了不等式的解法,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.8.不等式x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】∵x-2≤0,∴两边同时加2得,x≤2.故选:D.【点睛】考查了解不等式及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.不等式2x﹣3≥﹣1的解集是()A.x≥﹣12B.x≤-12C.x≥1D.x≤1【答案】C【解析】【分析】不等式移项合并,把x系数化为1,即可求出解.【详解】2x-3≥-1,2x≥2,x≥1.故选:C.【点睛】考查了解一元一次不等式,熟练掌握解不等式的步骤(①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.)是解本题的关键.10.某种毛巾原零售价为每条6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”.若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( )A.4条B.5条C.6条D.7条【答案】D【解析】【分析】设购买毛巾x条,根据题意可得不等关系:2条毛巾的价格+(x-2)条毛巾的价格×0.7<x条毛巾打8折的价格,根据题意列出不等式即可.【详解】设购买毛巾x条,由题意得:6×2+6×0.7(x-2)<6×0.8x,解得x>6,∵x为整数,∴至少要购买毛巾7条,故选D.【点睛】本题主要考查了一元一次不等式的应用,关键是弄清题意,找出题目中的不等关系,列出不等式.。
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
绝密★启用前9.2一元一次不等式班级:姓名:一、单项选择题1.已知两个不等式的解集在数轴上如图表示,由这两个不等式构成的不等式组的解集为()A.x1B.x 1C.3 x≤1D.x32.若实数2是不等式3x a4<0 的一个解,则 a 可取的最小正整数是()A.1B.2C.3D.43.若对于 x 的不等式mx+1 > 0的解集是 x1.则对于 x 的不等式(m1)x 1 m 的解集是()5A.x 2B.x22D.x2 33C.x334.不等式的解集在数轴上表示正确的选项是()A.B.C.D.5.若是对于的方的解,则对于的不等式的最大整数解为()A. 1B. 2C.3D.46.符号 [ x] 为不超出 x 的最大整数,如 [2.8]2,[ 3.8] 4 .对于随意实数x,以下式子中错误的是()A. [ x] x B. 0 x [ x] 1C. [ x 1] [ x] 1D. [ x y] [ x] [ y]7.不等式2x 53 x 3 的解集中,正整数解的个数是()A.1 个B.2 个C.3 个D.4 个满()A . xaa C . x100a 100aB . x100 aD . x100 a100 a100 a二、填空题9.不等式 2x+9> 3( x+4)的最大整数解是 _____.10.在二元一次方程 12x y 8 中,当 y 0时, x 的取值范围是 _____.11.若 (m 1)x 2m 1 1>5 是对于 x 的一元一次不等式,则该不等式的解集是__________.12.若式子 3x 5的值大于 3 ,则 x 的取值范围是 __________.13. x 的1与 5 的和不大于 3,用不等式表示为 ______________214.假如对于 x 的不等式 x < a +5 和 2x < 4 的解集同样,则a =_____.三、解答题15.解不等式,并把解集在数轴上表示出来.1x2x 7 .2316.某大型商业中心开业,为吸引顾客,特在一指定地区搁置一批按摩休闲椅,供顾客有偿体验, 收费以以下图:( 1)若在此按摩椅上连续歇息了1 小时,需要支付多少元?( 2)某人在该椅前一次性花费18 元,那么他在该椅子上最多歇息了多久?( 3)张先生到该商场会见一名客人,结果客人见告暂时有事,估计4.5 小时后才能到来;那么假如张先生要在该休闲椅上歇息直至客人到来,他起码需要支付多少钱?一、单项选择题1.不等式 1x 2x 8的正整数解有()A . 1 个B . 2 个C .3 个D .无数多个2.对于 x 的一元一次不等式组的解集在数轴上的表示以下图,则不等式组的解集是()A . x1B . x 3C . 1 x 3D . 1 x 33.若代数x 91的值不小于x 11的值,则 x 的取值范围是()2317 17 A . x >37B . x ≥﹣ 37C .x >D .x ≥554.有一本书共有 300 页,小明要在 10 天内(包含第 10 天)把它读完,他前 5 天共读了 100 页,从第 6 天起的后 5 天中每日要起码读多少页?设从第 6 天起每日要读 x 页,依据题意得不等式为 ()A . 5× 100+5x > 300B . 5× 100+5x ≥ 300C .100+5x > 300D .100+5x ≥ 3005.甲在市集上先买了3 只羊,均匀每只 a 元,稍后又买了 2 只,均匀每只羊 b 元,以后他以每只ab2元的价钱把羊全卖给了乙,结果发现赔了钱,赔钱的原由是()A . a bB . a bC . a bD .与 a 、 b 大小没关4x 5)6.不等式1的正整数解有(12A .2 个B .3 个C .4 个D .5 个7.以下说法正确的选项是()A . x =1 是不等式- 2x <1 的解集B . x = 3 是不等式- x < 1 的解集C . x >- 2 是不等式1x 1的解集2D .不等式- x < 1 的解集是 x <- 18.若不等式组的解集为 -1≤ x ≤3,则图中表示正确的选项是( )A .B .C .D .二、填空题9.若 (2a-1)x<2a-1 的解集是 x>1 ,则 a 的取值范围是 _______.10.甲乙两队进行篮球抗衡赛,竞赛规则规定每队胜一场得 3 分,平一场得1 分,负一场得 0 分, 两队一共竞赛了 10 场,甲队保持不败,得分不低于24分,甲队起码胜了___________场.11.已知 4a+b=2,且 b≤6,则 a 的取值范围是 _______ .12.不等式2x 1 6 的全部正整数解之和为__________.13.使代数式13x的值不小于﹣7且不大于9的x的最小整数值是_____.5三、解答题14.解以下不等式,并把它们的解集在数轴上表示出来.( 1)5x15 4x13( 2)y 12 y 51 6415.为美化校园,某学校将要购进A、 B 两个品种的树苗,已知一株 A 品种树苗比一株 B 品种树苗多 20 元,若买一株 A 品种树苗和 2 株 B 品种树苗共需 110 元.( 1)问 A、 B 两种树苗每株分别是多少元?( 2)学校若花销不超出4000 元购入 A、B 两种树苗,已知 A 品种树苗数目是 B 品种树苗数目的一半,问此次至多购置 B 品种树苗多少株?参照答案1-5.ACAAC6-8.DCC9. -4210. x>311.x612.x 8 3x13.+53214. -315. x≤﹣ 4,解集在数轴上略.16.( 1) 12 元;( 2) 90 分钟;( 3) 69 元 .1-5.BDBDC6-8.CCD1 9. a<.2 10. 7 11. a≥-1 12. 6 13.﹣1414.( 1)x5 28 ;(2)y415.(1) A 种树苗每株50 元, B 种树苗每株30 元;( 2)此次至多购置 B 品种树苗72 株.。
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。
9.2 一元一次不等式总分:100分班级:__________ 姓名:__________ 学号:__________ 得分:__________一、选择题(共10小题;共30分)1. 下列式子(1)7>4;(2)3x≥2x+1;(3)x+y>1;(4)x2+3>2x中是一元一次不等式的有( )A. 1个B. 2个C. 3个D. 4个2. 关于x的方程2x+4=m−x的解为负数,则m的取值范围是( )A. m>4B. m<4C. m>43D. m<433. 若(m+1)x m2−3>0是关于x的一元一次不等式,则m的值为( )A. ±1B. 1C. −1D. 04. 若不等式(a+1)x>2的解集为x<2a+1,则a的取值范围是( )A. a<1B. a>1C. a<−1D. a>−15. 小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月存钱30元,直到她至少存有1080元,设x个月后小丽至少有1080元,则可列计算月数的不等式为( )A. 30x+750>1080B. 30x−750≥1080C. 30x−750≤1080D. 30x+750≥10806. 已知导火线的燃烧速度是0.7cm/秒,爆破员点燃后跑开的速度为每秒5米,为了点火后跑到130米以外的安全地带,则导火线至少应有( )A. 18cmB. 19cmC. 20cmD. 21cm7. 关于x的不等式2x−a≤−1的解集如图所示,则a的取值是( )A. 0B. −3C. −2D. −18. 某抢险地段实行爆破,操作人员点燃导火线后,要在炸药爆炸前跑到400米外的安全区域..已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( )A. 66厘米B. 76厘米C. 86厘米D. 96厘米9. 不等式3x−1≥x+3的解集是( )A. x≤4B. x≥4C. x≤2D. x≥210. 已知实数x,y同时满足三个条件:①x−y=4−p;②x+y=2+3p;③x>y,那么实数p的取值范围是( )A. p>43B. p<43C. p>4D. p<4二、填空题(共6小题;共18分)11. 写出一个解集为x>1的一元一次不等式.(写出一个即可)12. 如果(m+1)x∣m∣>2是一元一次不等式,则m=.13. 要使代数式2x−6的值不大于5x−3的值,则x的取值范围是.14. 当m时,不等式(m+3)x>2的解集是x<2m+3.15. 某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题加10分,答错(或不答)一题扣5分,小明参加本次竞赛得分要不低于140分.设他答对x道题,则根据题意,可列出关于x的不等式为.16. 不等式3x−6>0的最小整数解是.三、解答题(共6小题;共52分)17. 不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.18. 解不等式2x−1>3x−12,并把它的解集在数轴上表示出来.19. 解不等式1+x+12≥2−x+73,并求出其最小整数解.20. 用甲、乙两种原料配制某饮料,已知这两种原料的维生素C的含量及购买价格如下表:(1)现配制这种饮料10kg,要求至少含有4200单位维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)现配制这种饮料10kg,要求购买甲、乙两种原料的费用不超过72元,试写出所需甲种原料的质量x(kg)应满足的不等式.21. 已知关于x的不等式(2a−b)x>a−2b的解集是x<52,求关于x的不等式ax+b<0的解集.22. 若(m−1)x∣m∣<2014是关于x的一元一次不等式,求m的值.答案第一部分1. A2. B3. B4. C5. D6. B7. D 【解析】不等式2x−a≤−1,解得,x≤a−1,2由数轴可知,x≤−1,=−1,所以,a−12解得,a=−1.8. D9. D10. D【解析】①+②得:x=3+p,把x=3+p代入①得:y=−1+2p,∵x>y,∴3+p>−1+2p,∴p<4.第二部分11. x−1>012. 113. x≥−114. <−315. 10x−5(20−x)≥14016. 3第三部分17. 如图1所示,x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈,不包括3这个数;而x≤3的解集是小于或等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数,把它们表示在数轴上如图2所示:18. 去分母,得2(2x −1)>3x −1.去括号,得4x −2>3x −1.移项,合并同类项,得x >1.解集在数轴上表示如下图:19.1+x +12≥2−x +73,6+3(x +1)≥12−2(x +7),6+3x +3≥12−2x −14,5x ≥−11,x≥−115. 故不等式的最小整数解为 −2.20. (1) 600x +400(10−x )≥4200.(2) 8x +4(10−x )≤72.21. 由 (2a −b )x >a −2b 的解集是 x <52,可知 2a −b <0, 即 x <a−2b 2a−b ,∴a−2b 2a−b =52,∴ b =8a ,代入 ax +b <0 得 ax +8a <0. 又 ∵2a −b <0,∴2a −8a <0,∴a >0,∴ax <−8a .∴x <−8.22. 由题意可知 {∣m ∣=1,m −1≠0.∴m =±1 ,且 m ≠1 .∴m =−1 .。
9.2一元一次不等式基础练习一、选择题1.不等式的解集为x>2,则m的值为()A.4 B.2 C.D.2.若关于x,y的二元一次方程组的解满足x+y>﹣,满足条件的m的所有正整数值为()A.1,2,3,4,5 B.0,1,2,3,4 C.1,2,3,4 D.1,2,33.不等式+1<的负整数解有()A.1个B.2个C.3个D.4个4.若不等式2x+4<a的解集是x<2,那么a必须满足()A.a=8 B.a>8 C.a<8 D.a=05.某次知识竞赛共有30道选择题,答对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为()A.10x﹣3(30﹣x)>70 B.10x﹣3(30﹣x)≤70C.10x﹣3x≥70 D.10x﹣3(30﹣x)≥706.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量.若设原来每天最多能生产x辆,则关于x的不等式为()A.15x>20(x+6)B.15(x+6)≥20xC.15x>20(x﹣6)D.15(x+6)>20x7.已知方程组的解x,y满足x+2y≥0,则m的取值范围是()A.m≥B.≤m≤1 C.m≤1 D.m≥﹣18.关于x的一元一次不等式+2≤的解为()A.x≤B.x≥C.x≤D.x≥二、填空题9.若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是.10.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出环的成绩.11.若代数式﹣的值不小于﹣1,则t的取值范围是12.若关于x的不等式2x﹣a≤0的正整数解是1、2、3,则a的取值范围是.13.光明电器超市准备采购每台进价分别为190元、160元的A、B两种型号的电风扇,若用不多于5070的金额采购这两种型号的电风扇共30台,则最多能采购A中型号的电风扇台.14.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为.三、解答题15.解不等式:3x﹣1≥2(x﹣1),并把它的解集在数轴上表示出来.16.已知关于x、y的方程组的解x、y满足x﹣2y<﹣8,求m的取值范围.17.先阅读下面解题过程,再回答问题.解不等式第一步:4ax﹣9≥6①第二步:4ax≥15②第三步:x ≥③问:(1)上述解题过程中从哪一步开始出现错误?请写出该步的代号;(2)错误的原因是;(3)本题正确的结论是什么?18.假期某班主任带领几名同学到恒仁县五女山旅游,甲旅行社说:如果有一人付全额,其余到人可半价优惠;乙旅行社说:所有的人一律按全额的6折收费,已知全额到费用为240元.问题:(1)班主任说:选甲旅行社比较合算.请问:班主任至少带领几名同学到五女山旅游?(2)请问:在什么情况下,选乙旅行社合算?19.国庆长假期间,徐州彭城旅行社为吸引市民组团去安徽黄山风景区旅游,推出了如下收费标准:垞城煤矿工会组织今年的劳模旅游,共支付给彭城旅行社旅游费用27 000元,请问我矿这次共有多少劳模去黄山旅游?20.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A15 9 57000B10 16 68000 (1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?。
9.2 一元一次不等式 同步练习一、选择题1.已知对于 x 的不等式 ( m1)x |m| 0 是一元一次不等式,那么m 的值是 ().A . m =1B .m =± 1C . m =-1D.不可以确立2.由 mn 获得 ma 2 na 2 ,则 a 应当知足的条件是() .A . a > 0B . a < 0C . a ≠ 0 D. a 为随意实数3.已知 y 12 x 5 , y 2 2x3 ,假如 y 1 y 2 ,则 x 的取值范围是() .A . x > 2B . x < 2C . x > -2D . x < -24.设 a , b 是常数,不等式+ > 0 的解集为 x < ,则对于 x 的不等式 bx-a < 0 的解集是()A . x >B .x < -C . x > -D .x <5.不等式>﹣ 1 的正整数解的个数是()A .1 个B .2 个C .3 个D .4 个6. 对于 x 的不等式2x a 2 的解集如下图,则 a 的值是().A .0B .2C .-2 D.-4二、填空题7.不等式> +2 的解是.8.若不等式( 3m-2) x < 7 的解集为 x > ,则 m 的值为 .9.比较大小: 3a 23b 2 6 ________ 2a 2 4b 2 1.10.已知 -4 是不等式 ax5 的解集中的一个值,则 a 的范围为 ________.11.若对于 x 的不等式 3x a 0 只有六个正整数解,则 a 应知足 ________.12. 已知 x a 的解集中的最小整数为 2 ,则 a 的取值范围是 .三、解答题13.若 m 、n 为有理数,解对于 x 的不等式 2> n .( - m - 1)x14. 当 x 为什么值时,代数式 - x+3 的值比 6x-3 的值大.10k k( x 5)15. 当2(k 3)时,求对于 x 的不等式x k 的解集.3416. 已知 A= 2x2+ 3x+ 2, B= 2x2- 4x- 5,试比较 A 与 B 的大小.参照答案一、选择题1.【答案】C;【分析】m1, m 10,所以m1;2.【答案】 C;【分析】由 m n 获得ma2na2,不等式两边同乘以a2,不等号方向没变,所以a20,即 a0;3.【答案】 B;【分析】 y1y2,即2x52x 3 ,解得: x 2.4.【答案】 B;【分析】解:解不等式+ > 0,移项得:> -,∵解集为x<,∴- = ,且 a< 0.∴b= -5a > 0, =- .解不等式bx-a < 0,移项得: bx< a,两边同时除以 b 得: x<,即 x< - .应选 B.5.【答案】 D .【分析】解:去分母得:3(x+1)> 2(2x+2 )﹣ 6,去括号得: 3x+3 > 4x+4﹣ 6,移项得: 3x﹣ 4x> 4﹣ 6﹣ 3,归并同类项得:﹣x>﹣ 5,系数化为 1 得: x< 5,故不等式的正整数解有1、2、3、4 这 4个.6. 【答案】 A;【分析】由于不等式2x a 2 的解集为a2x,再察看数轴上表示的解集为2a2,解得 a 0x1 ,所以12二、填空题【分析】去分母,得:3( 3x+13)> 4x+24 ,去括号,得: 9x+39 >4x+24 ,移项,得: 9x﹣ 4x >24﹣ 39,归并同类项,得:5x>﹣ 15,系数化为1,得: x>﹣ 3,故答案为: x>﹣ 3.8.【答案】 - ;【分析】解:∵(3m-2)x< 7 的解集为x>,∴x>,∴=- ,解得 m=- .故答案为: -.9.【答案】>;【分析】 (3a23b26)(2 a24b21)a2b2 5 0 ,所以 3a23b262a24b2 1 .10.【答案】5;a45【分析】将 -4代入得:4a 5 ,所以 a.11. 【答案】18a21;4【分析】由已知得:x a,6a7,即18a2133.12. 【答案】3a2【分析】画出数轴剖析得出正确答案.三、解答题13.【分析】解: Q m2 1 0, ∴ m2 1 0.2∴ ( - m-1)x > n ,两边同除以负数(-m2- 1)得:x n n.m2 1m21∴原不等式的解集为:n. x14. 【分析】m21解:由题意得,-x+3> 6x-3 ,去分母得, -x+18 > 6( 6x-3 ),去括号得, -x+18 > 36x-18 ,移项得, -x-36x > -18-18 ,归并同类项,-37x >-36 ,把 x 的系数化为 1 得, x<.所以,当<时,代数式 - x+3 的值比 6x-3 的值大.15.【分析】解: 2(k10k3)3 6k -18<10-kk<4k (x5)k4xkx-5k>4x-4k ( k4) x> k<k.4k16.【分析】解: A B 7x 7,当 x 1 时, A B ;当 x 1 时, A B ;当 x 1 时, A B .。
人教新版七年级下学期《9.2 一元一次不等式》同步练习卷一.选择题(共16小题)1.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元2.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.13.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.4.不等式﹣2x+6>0的正整数解有()A.无数个B.0个C.1个D.2个5.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()A.9B.8C.7D.66.不等式+1<的负整数解有()A.1个B.2个C.3个D.4个7.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>18.解不等式的过程如下:①去分母,得3x﹣2≤11x+7,②移项,得3x﹣11x≤7+2,③合并同类项,得﹣8x≤9,④系数化为1,得.其中造成错误的一步是()A.①B.②C.③D.④9.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90D.10x﹣(20﹣x)>9010.三个连续自然数的和小于11,这样的自然数组共有()A.1组B.2组C.3组D.4组11.一元一次不等式2x+1≥3的最小整数解为()A.﹣2B.﹣1C.1D.212.某商品的进价是500元,标价为750元,商店要求以利润不低于5%的售价打折出售,此商品最低可以打()A.6折B.7折C.8折D.9折13.我们把不相等的两个实数a,b中较大的实数a记作max{a,b}=a,例如:max{2,3}=3,max{﹣1,﹣2}=﹣1,那么关于x的方程max{x,2x}=3x+1的解是()A.x=B.x=C.x=D.x=﹣14.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件15.若|4﹣2m|=2m﹣4,那么m的取值范围是()A.不小于2B.不大于2C.大于2D.等于216.x与5的和的一半是负数,用不等式表示为()A.x+>0B.(x+5)≥0C.(x+5)>0D.(x+5)<0二.填空题(共20小题)17.用不等式表示“比x的5倍大1的数不小于4”:.18.不等式>1的解集是.19.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为20.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有块.21.一元一次不等式﹣x≥2x+3的最大整数解是.22.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打折.23.已知:3(5x+2)+5<4x﹣6(x+1),化简:|3x+1|﹣|1﹣3x|=.24.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.25.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.26.现规定一种新的运算:=ad﹣bc,≤18,则x的取值范围.27.若3﹣2x<﹣6+x,化简:|x﹣2|﹣|2﹣x|=.28.不等式4x﹣6≥7x﹣1的最大整数解是.29.若不等式≥4x+6的解集为a≤﹣4,则a的值为.30.已知关于x的方程x+m=3(x﹣2)的解是正数,则m的取值范围.31.当x时,代数式的值为正数.32.如图所示的程序中,要使输出值y大于70,则输入的最小正整数x是.33.已知﹣1≥x﹣,求|x﹣1|﹣|x+3|的最小值.34.一列火车共有n节车厢,每节车厢有108个座位,在春运的某天,这列火车上有m个人,其中有一些人没有座位,上述关系可用不等式表示为.35.用不等式表示“a的3倍与16的差是一个非负数”.36.当x时,代数式2x﹣5的值为0,当x时,代数式2x﹣5的值不大于0.三.解答题(共14小题)37.“小麦绕村苗郁郁,柔桑满陌椹累累”宋朝诗人陆游在《闲咏》诗中咏诵的“小麦”是我省北方某实验区种植的重要经济作物.据相关部门公布的信息:我省2018年实验区内种植“专用品种小麦”和“一般品种小麦”共2600万亩,其中“一般品种小麦”的种植面积比“专用品种小麦”的种植面积的3倍还多200万亩.请回答下列问题(1)求我省2018年“专用品种小麦”和“一般品种小麦”的种植面积;(2)若我省“专用品种小麦”每亩产量是300千克,要保证我省小麦的总产量不低于1100万吨,则“一般品种小麦”的亩产量至少是多少千克?38.解不等式:3﹣≥,并把解集在数轴上表示出来.39.某公司为了更好治理污水质,改善环境,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少1万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过78万元,你认为该公司有哪几种购买方案;(3)在(2)间的条件下,若每月要求处理的污水量不低于1620吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.40.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.41.某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元(1)求购买1个篮球和1个足球各需多少元?(2)若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?42.合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?43.解不等式1﹣≤,并把解集在数轴上表示出来.44.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m﹣11的值.45.为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)46.某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花共需13元;2盆A种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?47.某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.48.为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.49.为了提倡低碳经济,某公司为了更好得节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你设计一种最省钱的购买方案.50.x取哪些非负整数时,的值大于与1的差.人教新版七年级下学期《9.2 一元一次不等式》2019年同步练习卷参考答案与试题解析一.选择题(共16小题)1.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元【分析】设可降价x元,根据利润率=×100%结合售后利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:设可降价x元,根据题意得:×100%≥20%,解得:x≤120.故选:D.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.1【分析】设骑车x分钟,根据题意列出不等式解答即可.【解答】解;设骑车x分钟,可得:210x+90(18﹣x)≥2100,故选:B.【点评】此题考查一元一次不等式的应用,关键是根据题意找出不等关系列出不等式.3.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【分析】首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再根据解集画出数轴即可.【解答】解:3x≥x+2,移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:,故选:A.【点评】此题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.不等式﹣2x+6>0的正整数解有()A.无数个B.0个C.1个D.2个【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣6,系数化为1,得:x<3,则不等式的正整数解为2,1,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()A.9B.8C.7D.6【分析】设共有x人,分别计算选择包场和选择人数的费用,然后根据选择包场计费方案会比人数计费方案便宜,列不等式求解.【解答】解:设共有x人,若选择包场计费方案需付:50×4+5x=5x+200(元),若选择人数计费方案需付:20×x+(4﹣2)×6×x=32x(元),∴5x+200<32x,解得:x>=7.∴至少有8人.故选:B.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.6.不等式+1<的负整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:x﹣9+2<3x﹣2,移项、合并,得:﹣2x<5,系数化为1,得:x>﹣,∴不等式的负整数解为﹣2、﹣1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>1【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出a+1<0是解题的关键.8.解不等式的过程如下:①去分母,得3x﹣2≤11x+7,②移项,得3x﹣11x≤7+2,③合并同类项,得﹣8x≤9,④系数化为1,得.其中造成错误的一步是()A.①B.②C.③D.④【分析】根据等式的基本性质即可作出判断.【解答】解:去分母,得3x﹣2≤11x+7,移项,得3x﹣11x≤7+2,合并同类项,得﹣8x≤9,系数化为1,得x≥﹣.故选:D.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.9.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90D.10x﹣(20﹣x)>90【分析】小英答对题的得分:10x;小英答错或不答题的得分:﹣5(20﹣x).不等关系:小英得分不低于90分.【解答】解:设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥90.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.10.三个连续自然数的和小于11,这样的自然数组共有()A.1组B.2组C.3组D.4组【分析】设最小的自然数是x,根据三个连续自然数的和小于11,可列出不等式.【解答】解:设最小的自然数是x,x+x+1+x+2<11x<2.x可以为0或1或2.所以有三组.故选:C.【点评】本题考查理解题意的能力,关键是设出最小的自然数,根据和小于11,列出不等式求出可能情况.11.一元一次不等式2x+1≥3的最小整数解为()A.﹣2B.﹣1C.1D.2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:∵2x≥2,∴x≥1,则不等式的最小整数解为x=1,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.某商品的进价是500元,标价为750元,商店要求以利润不低于5%的售价打折出售,此商品最低可以打()A.6折B.7折C.8折D.9折【分析】设可以打x折出售,根据题意可得:折后价﹣进价≥5%的利润,据此列不等式求解.【解答】解:设可以打x折出售,由题意得,750×0.1x﹣500≥500×0.05,解得:x≥7.即:最低可以打7折出售.故选:B.【点评】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.13.我们把不相等的两个实数a,b中较大的实数a记作max{a,b}=a,例如:max{2,3}=3,max{﹣1,﹣2}=﹣1,那么关于x的方程max{x,2x}=3x+1的解是()A.x=B.x=C.x=D.x=﹣【分析】根据新定义分x>2x、2x>x两种情况,分别列出方程求解即可.【解答】解:①当x>2x,即x<0时,有:x=3x+1,解得:x=﹣;②当2x>x,即x>0时,有2x=3x+1,解得:x=﹣1(不合题意);综上,关于x的方程max{x,2x}=3x+1的解是﹣,故选:B.【点评】本题主要考查对新定义的理解及解分式方程的能力,由新定义会分类讨论是前提,准确解分式方程及方程的解的取舍是关键.14.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【分析】购买5件需要15元,27元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【解答】解:设可以购买x(x为整数)件这样的商品.3×5+(x﹣5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选:C.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.15.若|4﹣2m|=2m﹣4,那么m的取值范围是()A.不小于2B.不大于2C.大于2D.等于2【分析】由于4﹣2m与2m﹣4互为相反数,那么已知条件|4﹣2m|=2m﹣4即为一个数的绝对值等于它的相反数,根据绝对值的定义可知4﹣2m≤0,解此不等式即可求出m的取值范围.【解答】解:∵|4﹣2m|=2m﹣4,∴4﹣2m≤0,解得m≥2.故选:A.【点评】本题考查了绝对值的定义及一元一次不等式的解法,根据绝对值的定义得到4﹣2m≤0是解题的关键.16.x与5的和的一半是负数,用不等式表示为()A.x+>0B.(x+5)≥0C.(x+5)>0D.(x+5)<0【分析】理解:负数值小于0.【解答】解:由题意知.故选D.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.二.填空题(共20小题)17.用不等式表示“比x的5倍大1的数不小于4”:5x+1≥4.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.18.不等式>1的解集是x>10.【分析】根据解一元一次不等式得基本步骤依次计算可得.【解答】解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.【点评】本题考查了解一元一次不等式:有分母先去分母,再去括号,然后进行移项,把含未知数的项移到不等式的左边,再进行合并同类项,最后把未知数的系数化为1可得到不等式的解集.19.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.20.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有105块.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+500(x﹣60)>55000,解得x>104.故这批电话手表至少有105块,故答案为:105.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.21.一元一次不等式﹣x≥2x+3的最大整数解是﹣1.【分析】首先移项,然后合并同类项,系数化为1,即可求得不等式的解.【解答】解:移项得:﹣x﹣2x≥3即﹣3x≥3,解得x≤﹣1,∴不等式﹣x≥2x+3的最大整数解是﹣1,故答案为:﹣1【点评】本题考查了解一元一次不等式,一元一次不等式的整数解的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键.22.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打8.8折.【分析】设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【解答】解:要保持利润率不低于10%,设可打x折.则500×﹣400≥400×10%,解得x≥8.8.故答案是:8.8.【点评】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.23.已知:3(5x+2)+5<4x﹣6(x+1),化简:|3x+1|﹣|1﹣3x|=﹣2.【分析】去括号出15x+6+5<4x﹣6x﹣6,移项、合并同类项得到17x<﹣17,求出x<﹣1,去绝对值符号得出﹣(3x+1)﹣(1﹣3x),求出即可.【解答】解:3(5x+2)+5<4x﹣6(x+1),∵去括号得:15x+6+5<4x﹣6x﹣6,移项得:15x﹣4x+6x<﹣6﹣6﹣5,合并同类项得:17x<﹣17,∴x<﹣1,∴|3x+1|﹣|1﹣3x|,=﹣(3x+1)﹣(1﹣3x),=﹣3x﹣1﹣1+3x,=﹣2,故答案为:﹣2.【点评】本题考查了绝对值和解一元一次不等式的应用,关键是根据x的范围去掉绝对值符号,当x<﹣1时,|3x+1|﹣|1﹣3x|,=﹣(3x+1)﹣(1﹣3x),注意:负数的绝对值等于它的相反数,正数的绝对值等于它本身,0的绝对值是0,24.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价6元出售该商品.【分析】先设最多降价x元出售该商品,则降价出售获得的利润是22.5﹣x﹣15元,再根据利润率不低于10%,列出不等式即可.【解答】解:设降价x元出售该商品,则22.5﹣x﹣15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.25.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对12道题,成绩才能在60分以上.【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x﹣2(15﹣x)>60,求解即可.【解答】解:设答对x道.故6x﹣2(15﹣x)>60解得:x>所以至少要答对12道题,成绩才能在60分以上.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.26.现规定一种新的运算:=ad﹣bc,≤18,则x的取值范围x≤8.【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.【解答】解:根据题意知﹣10﹣4(1﹣x)≤18,﹣10﹣4+4x≤18,4x≤18+10+4,4x≤32,x≤8,故答案为:x≤8.【点评】本题主要考查解一元一次不等式,解题的关键是根据新定义列出关于x的不等式及解不等式的步骤.27.若3﹣2x<﹣6+x,化简:|x﹣2|﹣|2﹣x|=0.【分析】先求出不等式的解集,再去掉绝对值符号,即可求出答案.【解答】解:解3﹣2x<﹣6+x得x>3,∴|x﹣2|﹣|2﹣x|=x﹣2﹣(x﹣2)=0,故答案为:0.【点评】本题考查了解一元一次不等式和绝对值,能正确去掉绝对值符号是解此题的关键.28.不等式4x﹣6≥7x﹣1的最大整数解是﹣2.【分析】先求出不等式的解集,然后求其最大整数解.【解答】解:∵不等式4x﹣6≥7x﹣1的解集是x≤﹣,∴不等式的最大整数解是﹣2.故答案为﹣2.【点评】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.29.若不等式≥4x+6的解集为a≤﹣4,则a的值为22.【分析】先求出不等式的解集,根据已知得出关于a的方程,求出即可.【解答】解:≥4x+6,2x﹣a≥12x+18,﹣10x≥18+a,x≤,∵不等式的解集为a≤﹣4,∴=﹣4,解得:a=22,故答案为:22.【点评】本题考查了解一元一次不等式和解一元一次方程,能得出关于a的方程是解此题的关键.30.已知关于x的方程x+m=3(x﹣2)的解是正数,则m的取值范围m>﹣6.【分析】求出方程的解,根据方程的解是正数得出3+m>0,求出即可.【解答】解:x+m=3(x﹣2),∴x+m=3x﹣6,∴﹣2x=﹣6﹣m,∴x=3+m,∵方程的解是正数,∴3+m>0,∴m>﹣6.即m的取值范围是m>﹣6,故答案为m>﹣6.【点评】本题考查了解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.31.当x>时,代数式的值为正数.【分析】根据题意列出不等式,求出不等式的解集即可.【解答】解:根据题意得:>0,解得:x>,故答案为:>.【点评】本题考查了解一元一次不等式,能根据题意列出不等式是解此题的关键.32.如图所示的程序中,要使输出值y大于70,则输入的最小正整数x是21.【分析】根据题意列出不等式,求出不等式的最小整数解即可.【解答】解:根据题意得:4x﹣11>70,x>20.25,∴x的最小整数为21,故答案为:21.【点评】本题考查了一元一次不等式的整数解的应用,能根据题意列出不等式是解此题的关键.33.已知﹣1≥x﹣,求|x﹣1|﹣|x+3|的最小值﹣3.【分析】解不等式得出x的范围,由绝对值的性质分类讨论,根据一次函数的性质得出其最小值.【解答】解:解不等式得x≤,令y=|x﹣1|﹣|x+3|,当x<﹣3时,y=1﹣x+x+3=4,当﹣3<x≤时,y=1﹣x﹣x﹣3=﹣2x﹣2,∵y随x的增大而减小,∴当x=时,y取得最小值,最小值为﹣3,故答案为:﹣3.【点评】本题主要考查解一元一次不等式、绝对值的性质及一次函数的性质,根据绝对值性质分类讨论并熟练掌握一次函数的性质是解题的关键.34.一列火车共有n节车厢,每节车厢有108个座位,在春运的某天,这列火车上有m个人,其中有一些人没有座位,上述关系可用不等式表示为108n<m.【分析】直接利用一列火车共有n节车厢,每节车厢有108个座位,得出总的座位数为:108n,进而利用这列火车上有m个人,其中有一些人没有座位,得出不等关系.【解答】解:由题意可得:108n<m.故答案为:108n<m.【点评】此题主要考查了由实际问题抽象出一元一不等式,正确表示出座位数是解题关键.35.用不等式表示“a的3倍与16的差是一个非负数”3a﹣16≥0.【分析】理解:差是一个非负数,即差应大于或等于0.【解答】解:根据题意,得3a﹣16≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序,不等关系,才能把文字语言。
9.2实际问题与一元一次不等式
教学目标
1、知识目标:
能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.
2、能力目标:
通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、情感目标:
在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
教学重点
一元一次不等式在实际问题中的应用。
教学难点
在实际问题中抽象出一元一次不等式的数量关系。
教学过程
一.复习回顾
1.不等式的性质
性质 1 不等式两边加(或减)同一个数 (或式子),不等号的方向不
变。
如果a >b ,那么a ±c >b ±c.
性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。
如果a >b ,c > 0,那么ac >bc.(或 > )
性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
如果a >b,c < 0,那么ac <bc.(或 < )
2.列方程(组)解应用题的步骤:
审、设、列、解、验 、答
二.新知探究
问题:甲、乙两商店以同样价格出售同样的商品,并且又各自推出
不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。
顾客怎样选择商店购物能获得更大优惠?
思考1.能否确定在甲店购买更合算或在乙店购买更合算?
思考2.根据什么标准进行分类?如何分?
甲商场优惠方案的起点为购物款达100元后
乙商场优惠方案的起点为购物款达50元后
分三种情况:
(1)累计购物不超过50元;
此时在甲乙两个商店花费一样,均没有优惠。
(2)累计购物超过50元但不超过100元;
此时甲商店没有优惠,显然在乙商店购物花费小
(3)累计购物超过100元.
思考3.当购物款超过100元时,在甲店购物一定更合算吗?
c a c b c a c b
思考4.当购物款超过100元时,建立怎样的数学模型来解决问题?
设累计购物x 元(x>100)
则在甲商场的花费为 在乙商场的花费为 (1)如果在甲商店花费小,则
解得
(2)如果在乙商店花费小,则
解得
(3)如果在两店花费一样,则
解得
思考5 .顾客怎样选择商店购物能获得更大优惠?
(1)当购物款不超过50元时,在两店花费一样;
(2)当购物款超过50元而不超过100元时,在乙店购物合算;
(3)当购物款超过100元而不足150元时,在乙店购物合算;
(4)当购物款恰好为150元时,在两店花费一样;
(5)当购物款超过150元时,
在甲店购物合算.
注:由上题可以看出,由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题。
然后通过解不等式可以得到实际问题的答案。
归纳:列不等式解决实际问题的一般步骤:
1.审题
2.设未知数
3.找不等关系,列不等式
4.解不等式
5.检验
6.答
例1、2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?
问题1.未知数应该设成什么?
2008年比2002年增加的空气质量良好的天数,设成x 。
问题2.2002年北京空气质量良好的天数是多少? 元%]90)100
(100[⨯-+x 元
%]95)50(50[⨯-+x %95)50x (50%90)100x (100⨯-+<⨯-+150
x >%95)50x (50%90)100x (100⨯-+>⨯-+150
x <%95)50x (50%90)100x (100⨯-+=⨯-+150x =
365×0.55
问题3.2008年北京空气质量良好的天数是多少?
x+365×0.55
问题4.与x 有关的哪个式子的值应超过70℅?这个式子表示什么?
注意:2008年是闰年,全年有366天。
解:设2008年空气质量良好的天数比2002年增加x 天。
根据题意有
>70% 去分母,得:x+200.75>256.2
移项,合并,得:x >55.45
(思考:2008年空气质量良好的天数比2002年增加了多少天呢?)
由x 是正整数,得:x ≥56
答:2008年空气质量良好的天数至少要比2002年增加56天,才能使这一年空气质量良好的天数超过全年天数的70%。
注意:用不等式解应用问题时,要注意实际问题对未知数的限制条件。
例2.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分。
小明得分要超过90分,他至少要答对多少道题?
问题1.未知数应该设成什么?
问题2.不等关系是什么?
问题3.未知数有什么限制条件?
解:设小明答对x 道题。
则他答错或不答的题数为:20-x 。
由他的得分要超过90,得:
10x-5(20-x)>90
解得: x>
由于x 应是正整数而且不能超过20,所以小明至少要答对13道题。
归纳:
1.解一元一次方程,要根据等式的性质,将方程逐步化为 x = a 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步转化为 x < a (或x >a )的形式。
2.用不等式解应用题时,要注意对未知数的限制条件,使得解出的未知数的值既符合不等式又符合生活实际。
例3. 电脑公司销售一批计算机,第一个月以每台5500元的价格出售60台,第二个月降价后以每台5000元的价格将这批计算机全部售出,销售款总量超过55万元。
这批计算机最少有多少台?
解:设这批计算机有X 台,由题意得:
5500×60+5000(X-60)>550000 36655.0365⨯+x 366
55.0365⨯+x 3
212
解得X>104
由X应为不小于105的正整数,得x=105
答:这批计算机最少有105台.
三.课堂小结
1.不等式的应用问题与方程的应用题的解法类似,所不同的是:一个是列方程,另一个是列不等式。
这类问题是通过题意中的不等量关系列出不等式,解不等式,得到问题答案。
2.步骤;审、设、列、解、验、答
四.课外作业
课本:第135页5、6、7、8题。