2016-2017学年河南省周口市高二下学期期末数学试卷(文科)(解析版)
- 格式:doc
- 大小:339.00 KB
- 文档页数:24
2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
2016-2017学年度下期期末高中抽测调研高二数学(文) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数21iz i=-,则z 的共轭复数为( )A .1i --B .1i -+C .1i +D .1i - 2.已知()ln f x x x =,若()02f x '=,则0x 等于( )A .eB .2e C .ln 22D .ln 23.设命题p :x R ∀∈,2ln x x >,则p ⌝为()A .0x R ∃∈,200ln x x > B .0x R ∃∈,200ln x x ≥ C .0xR ∃∈,200ln x x <D .0xR ∃∈,200ln x x ≤4.阅读如图所示的程序框图,若输出的数据为21,则判断框中应填入的条件为( )A .3k ≤B .4k ≤C .5k ≤D .6k ≤ 5.设a R ∈,“1,2a ,16为等比数列”是“2a =±”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.已知点A 的坐标为()5,2,F 为抛物线22y x =的焦点,若点P 在抛物线上移动,当PA PF +取得最小值时,则点P 的坐标是( )A.( B.)2C .()2,2D .()4,27.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;⑤类比推理是由特殊到特殊的推理.A .①④⑤B .②③④C .②③⑤D .①⑤8.已知各项都为正的等差数列{}na 中,23415aa a ++=,若12a +,34a +,616a +成等比数列,则11a=( )A .22B .21C .20D .199.已知O 为坐标原点,1F ,2F 是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,双曲线C 上一点P 满足12PF PF ⊥,且2122PF PFa ⋅=,则双曲线C 的离心率为( ) AB .2 C. D10.设x ,y 满足约束条件360200,0x y x y x y --⎧⎪-+⎨⎪⎩≤≥≥≥,若目标函数z ax by =+(0a >,0b >)的最大值为12,则32ab+的最小值为( )A .256B .83C .113D .411.已知定义在R 上的函数()f x 的导函数为()f x ',对任意x R ∈满足()()0f x f x '+>,则下列结论正确的是()A .()()2ln 23ln3f f >B .()()2ln 23ln3f f <C .()()2ln 23ln3f f ≥D .()()2ln 23ln3f f ≤12.如图,在ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅=,22sin 3BAC ∠=,32AB =,3BD =,则cos C =( )A .63B .33C .23D .13第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.下表是数据x ,y 的记录表,其中y 关于x 的线性回归方程是ˆ0.60.3yx =+,那么表中t 的值是 .14.学校艺术节对A 、B 、C 、D 四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”; 丙说:“A 、D 两件作品未获得一等奖”; 丁说:“是C 作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是 . 15.不等式xekx ≥对任意实数x 恒成立,则实数的k 取值范围为 .16.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为300元,设备乙每天的租赁费为400元,现该公司至少要生产A 类产品50件,B 类产品140件,则所需租赁费最少为 元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知{}na 是等比数列,13a=,424a =,数列{}n b 满足11b =,48b =-,且{}n n a b +是等差数列。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
2015-2016学年河南省周口市高二(下)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)如果复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,那么实数a的值为()A.﹣2B.1C.2D.1或﹣22.(5分)给出如下四个命题:①若“p∨q”为真命题,则p、q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0≤1”;④“x>0”是“x+≥2”的充要条件.其中不正确的命题是()A.①②B.②③C.①③D.③④3.(5分)对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系4.(5分)下面几种推理中是演绎推理的是()A.由金、银、铜、铁可导电,猜想:金属都可以导电B.猜想数列5,7,9,11,…的通项公式为a n=2n+3C.由正三角形的性质得出正四面体的性质D.半径为r的圆的面积S=π•r2,则单位圆的面积S=π5.(5分)因为a,b∈R+,a+b≥2,…大前提x+≥2,…小前提所以x+≥2,…结论以上推理过程中的错误为()A.小前提B.大前提C.结论D.无错误6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.7.(5分)设S n是等差数列{a n}的前n项和,S5=3(a2+a8),则的值为()A.B.C.D.8.(5分)在△ABC中,B=,c=150,b=50,则△ABC为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形9.(5分)阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前5项的和C.计算数列{2n﹣1}前6项的和D.计算数列{2n﹣1}前6项的和10.(5分)函数f(x)=sin x+2x,若对于区间[﹣π,π]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是()A.4πB.2πC.πD.011.(5分)已知两点F1(﹣1,0),F(1,0),且|F1F2|是|PF1|与|PF2|的等差数列中项,则动点P所形成的轨迹的离心率是()A.B.2C.D.12.(5分)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)曲线y=在点(0,0)处的切线方程为.14.(5分)以模型y=ce kx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=.15.(5分)设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r =;类比这个结论可知:四面体P﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,四面体P﹣ABC的体积为V,则r=.16.(5分)若函数f(x)=e x(mx3﹣x﹣2)在区间(2,3)上不是单调函数,则实数m的取值范围是.三、解答题(共5小题,满分60分)17.(12分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(12分)某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:若广告费支出x与销售额y回归直线方程为y=6.5x+a(a∈R).(I)试预测当广告费支出为12万元时,销售额是多少?(Ⅱ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.19.(12分)某工厂于去年下半年对生产工艺进行了改造(每半年为一个生产周期),从去年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示,如图所示.已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润10元,生产一件合格品可获利润5元,生产一件次品要亏损5元(Ⅰ)试完成这个样本的50件产品的利润的频率分布表:(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.附:K2=.20.(12分)已知点F1,F2分别为椭圆C:的左右焦点,P是椭圆C 上的一点,且的面积为(Ⅰ)求椭圆C的方程;(Ⅱ)点M的坐标为,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的是否为定值?若是求出这个定值;若不是说明理由.21.(12分)已知函数f(x)=e x+ax﹣1(e为自然对数的底数).(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求实数a的取值范围.[选修4-1:几何证明选讲]22.(10分)如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.(1)求证:△EFG为等腰三角形;(2)求线段MG的长.[选修4-4:极坐标系与参数方程]23.在极坐标系中,曲线C:ρ=2a cosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().2015-2016学年河南省周口市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.【解答】解:∵复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,∴a2+a﹣2=0且a2﹣3a+2≠0,∴a=﹣2,故选:A.2.【解答】解:①“p∨q”为真命题,p、q二者中只要有一真即可,故不正确;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”,正确;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0<1”,故不正确;④“x>0”时,“x+≥2”,若“x+≥2”,则“x>0”,∴“x>0”是“x+≥2”的充要条件,故正确.故选:C.3.【解答】解:样本中心点在直线上,故A正确,残差平方和越小的模型,拟合效果越好,故B正确,R2越大拟合效果越好,故C不正确,当r的值大于0.75时,表示两个变量具有线性相关关系,故选:C.4.【解答】解:选项A是由特殊到一般的推理过程,为归纳推理,选项B,是由特殊到一般的推理过程,为归纳推理,选项C:是由特殊到与它类似的另一个特殊的推理过程,是类比推理,选项D半径为r圆的面积S=πr2,因为单位圆的半径为1,则单位圆的面积S=π中,半径为r圆的面积S=πr2,是大前提单位圆的半径为1,是小前提单位圆的面积S=π为结论.故选:D.5.【解答】解:∵,这是基本不等式的形式,注意到基本不等式的使用条件,a,b都是正数,是小前提,没有写出x的取值范围,∴本题中的小前提有错误,故选:A.6.【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选:A.7.【解答】解:设等差数列{a n}的公差为d.由等差数列{a n}的性质可得:a2+a8=2a5,∴S5=3(a2+a8)=6a5,∴5a1+=6(a1+4d),化为a1=﹣14d.则===.故选:D.8.【解答】解:由已知及正弦定理可得:sin C===.∵c=150>b=50,∴<C<π,可解得:C=或.∴解得:A=或.故选:B.9.【解答】解:由算法的流程知,第一次运行,A=2×0+1=1,i=1+1=2;第二次运行,A=2×1+1=3,i=2+1=3;第三次运行,A=2×3+1=7,i=3+1=4;第四次运行,A=2×7+1=15,i=5;第五次运行,A=2×15+1=31,i=6;第六次运行,A=2×31+1=63,i=7;满足条件i>6,终止运行,输出A=63,∴A=1+2+22+…+25==26﹣1=64﹣1=63.故选:C.10.【解答】解:对于区间[﹣π,π]上的任意x1,x2,都有|f(x1}﹣f(x2)|≤t,等价于对于区间[﹣π,π]上,f(x)max﹣f(x)min≤t,∵f(x)=sin x+2x,∴f′(x)=cos x+2≥0,∴函数在[﹣π,π]上单调递增,∴f(x)max=f(π)=2π,f(x)min=f(﹣π)=﹣2π,∴f(x)max﹣f(x)min=4π,∴t≥4π,∴实数t的最小值是4π,故选:A.11.【解答】解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,∴a=2∵c=1∴e==.故选:C.12.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选:D.二、填空题(共4小题,每小题5分,满分20分)13.【解答】解:求导得:y′=,把x=0代入得:k=1,则线y=在点(0,0)处的切线方程为y=x,即x﹣y=0,故答案为:x﹣y=014.【解答】解:∵y=ce kx,∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,令z=lny,可得z=lnc+kx,∵z=0.3x+4,∴lnc=4,∴c=e4.故答案为:e4.15.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为(S1+S2+S3+S4)r∴r=.故答案为:.16.【解答】解:函数的导数f′(x)=e x(mx3﹣x﹣2)+e x(3mx2﹣1)=e x(mx3+3mx2﹣x﹣3)=e x•(mx2﹣1)(x+3),若f(x)在区间(2,3)上不是单调函数,则f′(x)=0在区间(2,3)上有解,由f′(x)=e x•(mx2﹣1)(x+3)=0得mx2﹣1=0,即mx2=1,即x2=,则m>0,此时x=±,若f′(x)=0在区间(2,3)上有解,则2<<3,平方得4<<9,即<m<,故实数m的取值范围是(,),故答案为:(,).三、解答题(共5小题,满分60分)17.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.18.【解答】解:(Ⅰ)∵,,点(5,50)在回归直线上,代入回归直线方程求得a=17.5,所求回归直线方程为:…(3分)当广告支出为12时,销售额约为万元.…(5分)(Ⅱ)实际值和预测值对应表为:在已有的五组数据中任意抽取两组的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个,…(10分)两组数据其预测值与实际值之差的绝对值都超过5的有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为.…(12分)19.【解答】解:(Ⅰ)上半年的数据为:43,44,48,51,52,56,57,59,61,64,65,65,65,68,72,73,75,76,76,83,84,87,88,91,93其“中位数”为65,优质品有6个,合格品有10个,次品有9个.下半年的数据为:43,49,50,54,54,58,59,60,61,62,63,63,65,66,67,70,71,72,72,73,77,79,81,88,92其“中位数”为65,优质品有9个,合格品有11个,次品有5个.则这个样本的50件产品的利润的频率分布表为:…(6分)(Ⅱ)由题意得:由于0.857<3.841所以没有95%的把握认为“优质品与生产工艺改造有关”.…(12分)20.【解答】解:(Ⅰ)设|PF1|=m,|PF2|=n,在三角形PF1F2中,由余弦定理得4=m2+n2﹣2mn cos,由三角形的面积为所以,所以mn=,所以m+n=2,所以a=;又c=1,所以b=1,椭圆C的方程为;(Ⅱ)由F2(1,0),直线l的方程为y=k(x﹣1).由消去y,(2k2+1)x2﹣4k2x+2(k2﹣1)=0设A(x1,y1),B(x2,y2)则x1+x2=,x1x2=∴=(x1﹣,y1)(x2﹣,y2)=(x1﹣)(x2﹣)+y1y2=(x1﹣)(x2﹣)+k2(x1﹣1)(x2﹣1)=(k2+1)﹣++k2==由此可知=﹣为定值.21.【解答】解:(I)当a=1时,f(x)=e x+x﹣1,f(1)=e,f'(x)=e x+1,f'(1)=e+1,函数f(x)在点(1,f(1))处的切线方程为y﹣e=(e+1)(x﹣1),即y=(e+1)x﹣1,设切线与x轴、y轴的交点分别为A、B,∴A,B(0,﹣1),∴,∴过点(1,f(1))处的切线与坐标轴围成的三角形的面积为.(II)由f(x)≥x2得,令h(x)=,,令k(x)=x+1﹣e x…(6分)k'(x)=1﹣e x,∵x∈(0,1),∴k'(x)<0,∴k(x)在(0,1)上是减函数,∴k(x)<k(0)=0.因为x﹣1<0,x2>0,所以,∴h(x)在(0,1)上是增函数.所以h(x)<h(1)=2﹣e,所以a≥2﹣e…(12分)[选修4-1:几何证明选讲]22.【解答】(1)证明:连接AF,OF,则A,F,G,M共圆,∴∠FGE=∠BAF∵EF⊥OF,∴∠EFG=∠BAF,∴∠EFG=∠FGE∴EF=EG,∴△EFG为等腰三角形;(2)解:由AB=10,CD=8可得OM=3,∴ED=OM=4EF2=ED•EC=48,∴EF=EG=4,连接AD,则∠BAD=∠BFD,∴MG=EM﹣EG=8﹣4.[选修4-4:极坐标系与参数方程]23.【解答】解:(Ⅰ)曲线C:ρ=2a cosθ(a>0),变形ρ2=2ρa cosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.[选修4-5:不等式选讲]24.【解答】解:(Ⅰ)f(x)+f(x+4)=|x﹣1|+|x+3|=,当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;当﹣3≤x≤1时,f(x)≤8不成立;当x>1时,由2x+2≥8,解得x≥3.所以,不等式f(x)+f(x+4)≤4的解集为{x|x≤﹣5,或x≥3}.(Ⅱ)f(ab)>|a|f(),即|ab﹣1|>|a﹣b|.因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以|ab﹣1|>|a﹣b|,故所证不等式成立.。
中原名校2016—2017学年期末检测高二数学(文)试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合U R =,集合{}2|40M x x =-≤,则U C M = A. {}|22x x -<< B. {}|22x x -≤≤ C. {}|22x x x <->或 D.{}|22x x x ≤-≥或 2.设复数z 满足()()225z i i --=,则z =A. 23i +B. 23i -C. 32i +D.32i -3.为了判断两个分类变量与Y 之间是否有关系,应用独立性检验法算得2K 的观测值为6,附:临界值表如下:则下列说法正确的是A. 有95%的把握认为与Y 有关系B. 有99%的把握认为与Y 有关系C.有99.5%的把握认为与Y 有关系D. 有99.9%的把握认为与Y 有关系 4.设x R ∈,向量()()1,,2,6a x b ==-,且//a b ,则a b ⋅=A. -4B.C.D.20 5.下列四个结论:①若“p q ∧”是真命题,则p ⌝可能是真命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∃∈--≥”;③“5a >且5b >-”是“0a b +>”的充要条件;④当0a <时,幂函数ay x =在区间()0,+∞上单调递减.其中正确的结论个数是A.0个B.1个C. 2个D. 3个6.已知函数()133xxf x ⎛⎫=- ⎪⎝⎭,则()f xA. 是偶函数,且在R 上是增函数B. 是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D. 是奇函数,且在R 上是减函数7. 在单调递减等差数列{}n a 中,若32431,4a a a ==,则1a = A. 1 B. 2 C.32D. 3 8.已知()f x 是定义在R 上的奇函数,且当()0,x ∈+∞时,()20182018log xf x x =+,则函数()f x 的零点的个数是 A. 1 B. 2 C. 3 D. 4 9.函数22sin 33,00,1441x y x xππ⎛⎫⎡⎫⎛⎤=∈-⎪ ⎪⎢⎥⎣⎭⎝⎦⎝⎭+的图象大致是10.若将函数sin y x x =的图象向右平移()0ϕϕ>个单位长度得到函数sin y x x =-的图象,则ϕ的最小值为A. 6πB. 2πC. 3πD.23π11.如果函数()f x 在区间D 上是增函数,且()f x x在区间上是减函数,则称函数()f x 在区间D 上是缓增函数,区间D 叫做缓增区间.若函数()21322f x x x =-+在区间D 上是缓增函数,则缓增区间D 是A.[)1,+∞B. ⎡⎣C. []0,1D.⎡⎣12.已知函数()22ln x e f x k x x x ⎛⎫=-+ ⎪⎝⎭,若2x =是函数()f x 的唯一极值点,则实数k 的取值范围是A. (],e -∞B. []0,eC. (),e -∞D.[)0,e二、填空题:本大题共4小题,每小题5分,共20分.13.已知()f x 的定义域为[]1,1-,则()2log f x 的定义域为 . 14.若曲线ln y x =的切线过原点,则此切线的斜率为 .15.已知()f x 是R 上的偶函数,()g x 是R 上的奇函数,且()()1g x f x =-,若()22f -=,则()2018f = .16.已知函数()ln 2x f x -=的定义域为A,不等式()21log a x x -<在x A ∈时恒成立,则实数a 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)设函数()()22280f x x ax aa =-->,记不等式()0f x ≤的解集为A.(1)当1a =时,求集合A;(2)若()1,1A -⊆,求实数a 的取值范围.18.(本题满分12分)若二次函数()()2,f x ax bx c a b R =++∈满足()()12f x f x x +-=,且()0 1.f =(1)求()f x 的解析式;(2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.19.(本题满分12分) 如图,在长方体1111ABCD A B C D -中,,E F 分别为111,DD C D 的中点.(1)证明:平面11ADC B ⊥平面1A BE ; (2)证明:1//B F 平面1A BE ;(3)若正方体棱长为1,求四面体11A B BE -的体积.20.(本题满分12分)已知椭圆C 的中心在原点,一个焦点为()2,0F -,且长轴与短轴长的比是2(1)求椭圆C 的方程;(2)设点(),0M m 在 椭圆C 的长轴上,点P 是椭圆上任意一点,当PM 最小时,点P 恰好落在椭圆的右顶点上,求实数m 的取值范围.21.(本题满分12分)已知()()2ln , 3.f x x x g x x ax ==-+-(1)求函数()f x 在区间[](),20t t t +>上的最小值;(2)对一切实数()()()0,,2x f x g x ∈+∞≥恒成立,求实数a 的取值范围.22.(本题满分10分)选修4-4:参数方程与极坐标系在平面直角坐标系xoy 中,直线1l 的参数方程为2x ty kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mmy k =-+⎧⎪⎨=⎪⎩(m 为参数),设直线1l ,2l 的交点为P,当变化时,P 的轨迹为曲线.(1)写出曲线C 的普通方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为3l 与C 的交点,求M 的极径.23.(本题满分10分)选修4-5:不等式选讲已知函数()()24,1 1.f x x ax g x x x =-++=++-(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含,求实数a 的取值范围.中原名校2016—2017学年下期期末检测高二数学(文)答案一、选择题1.C2.A3.A4.D5.B6.B7.B8.C9.A10.D 11.D 12.A1.C 【解析】因为{}240M x x =-≤{}22x x =-≤≤,全集U R =,所以U C M ={}22x x x <->或,故选C.2.A 【解析】利用方程思想求解复数并化简.由(-2i)(2-i)=5,得=2i +52-i =2i +5(2+i)(2-i)(2+i)=2i +2+i =2+3i.3.A 【解析】依题意,2=6,且P (2≥3.841)=0.05,因此有95%的把握认为“和Y 有关系”,选A .4.D 【解析】∵a =(1,),b =(2,-6)且a ∥b ,∴-6-2=0,=-3,∴a =(1,-3),a ·b =20,故选D . 5.B 【解析】①若p q ∧是真命题,则p 和q 同时为真命题,p ⌝必定是假命题; ②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”; ③“5a >且5b >-”是“0a b +>”的充分不必要条件;④a y x =1'a y a x -⇒=⋅,当0a <时,'0y <,所以在区间()0+∞,上单调递减. 选B .6.B 【解析】()()113333xxxx f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.7.B 【解析】由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递减,∴a 4=12,a 2=32.∴公差d =a 4-a 22=-12.∴a 1=a 2-d =2.8.C 【解析】作出函数y =2 018和y =-log 2 018的图象如图所示,可知函数f ()=2 018+log 2 018在∈(0,+∞)上存在一个零点,又f ()是定义在R 上的奇函数,所以f ()在∈(-∞,0)上只有一个零点,又f (0)=0,所以函数f ()的零点个数是3,故选C.9.A 【解析】因为函数22sin ()11xy f x x==+可化简为222sin ()1x x f x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+ 3222(2sin cos cos )(1)x x x x x x x ++=+,则当(0,)2x π∈ '()0f x >,可知函数在2x π=处 附近单调递增,排除答案B 和D ,故答案选A .10.D 【解析】因为y =sin +3cos =2sin ⎝ ⎛⎭⎪⎫x +π3,y =sin -3cos =2sin ⎝ ⎛⎭⎪⎫x -π3,所以把y =2sin ⎝ ⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝ ⎛⎭⎪⎫x -π3的图象.所以选D 。
2017-2018学年河南省周口市高二(下)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,复数z满足z﹣i=|1+2i|,则z的共轭复数在复平面上对应点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)命题“∀x∈R,x2﹣2x+3≤0”的否定是()A.∀x∈R,x2﹣2x+3≥0B.∃x∈R,x2﹣2x+3>0C.∀x∈R,x2﹣2x+3≤0D.∃x∉R,x2﹣2x+3>03.(5分)设x∈R,则“x<1”是“x|x|﹣2<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D.以上三种说法都不正确5.(5分)抛物线y=x2的准线方程是()A.B.C.x=﹣1D.y=﹣16.(5分)有一段“三段论”,其推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点…大前提因为函数f(x)=x3满足f′(0)=0,…小前提所以x=0是函数f(x)=x3的极值点”,结论以上推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误7.(5分)按流程图的程序计算,若开始输入的值为x=3,则输出的x的值是()A.6B.21C.156D.2318.(5分)两个变量y和x进行回归分析,得到一组样本数据(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本点的中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9462,则变量y和x之间具有线性相关关系9.(5分)某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.B.C.D.10.(5分)已知定义在R上的函数f(x﹣1)的图象关于x=1对称,且当x>0时,f(x)单调递减,若a=f(log0.53),b=f(0.5﹣1.3),c=f(0.76),则a,b,c的大小关系是()A.c>a>b B.b>a>c C.a>c>b D.c>b>a11.(5分)已知函数f(x)=x2﹣ax(≤x≤e,e为自然对数的底数)与g(x)=e x的图象上存在关于直线y=x对称的点,则实数a取值范围是()A.[1,e+]B.[1,e﹣]C.[e﹣,e+]D.[e﹣,e] 12.(5分)点P是双曲线的右支上一点,其左,右焦点分别为F1,F2,直线PF1与以原点O为圆心,a为半径的圆相切于A点,线段PF1的垂直平分线恰好过点F2,则离心率的值为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)直线y=kx+1与圆(x﹣2)2+y2=1有公共点,则实数k的取值范围是.14.(5分)甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.则做好事的是.(填甲、乙、丙中的一个)15.(5分)已知命题,命题q:(x﹣a)(x﹣a﹣1)≤0,若¬p是¬q的必要不充分条件,则实数a的取值范围是.16.(5分)已知正实数a,b满足a>b,且ab=,则的最小值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知p:函数的定义域是R,q:方程表示焦点在x轴上的双曲线.(1)若p是真命题,求实数m的取值范围;(2)若“(¬p)∧q”是真命题,求实数m的取值范围.18.(12分)为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且y与x有很强的线性相关关系.(Ⅰ)求y关于x的线性回归方程;(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?参考数据:,.参考公式:,.19.(12分)在三棱柱ABC﹣A 1B1C1中,已知,点A1在底面ABC 的投影是线段BC的中点O.(1)证明:在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求三棱柱ABC﹣A1B1C的侧面积.20.(12分)已知椭圆的离心率,且经过点.(1)求椭圆方程;(2)过点P(0,2)的直线与椭圆交于M、N两个不同的点,求线段MN的垂直平分线在x轴上截距的范围.21.(12分)已知函数f(x)=lnx+,a∈R.(1)讨论函数f(x)的单调性;(2)当a>0时,证明f(x)≥.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为ρ=﹣4cosθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|•|MB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=log2(|x﹣1|+|x﹣5|﹣a)(1)当a=5时,求函数f(x)的定义域;(2)当函数f(x)的值域为R时,求实数a的取值范围.2017-2018学年河南省周口市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由z﹣i=|1+2i|=,得z=,∴,则z的共轭复数在复平面上对应点的坐标为(),所在的象限为第四象限.故选:D.2.【解答】解:将量词与结论同时否定,可得命题“∀x∈R,x2﹣2x+3≤0”的否定是“∃x∈R,x2﹣2x+3>0”故选:B.3.【解答】解:x|x|<2,当x≤0时,化为﹣x2<2,恒成立;当x>0时,化为x2<2,解得0<x<,综上可得:x|x|<2的解集为:{x|x<}.∴“x<1”是“x|x|<2”的充分不必要条件.故选:A.4.【解答】解:若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,但不表示在100个吸烟的人中必有99人患有肺病,故A不正确.也不表示某人吸烟,那么他有99%的可能患有肺病,故B不正确.若从统计量中求出有95%的是吸烟与患肺病的比例,表示有5%的可能性使得推断出现错误,故C正确.故选:C.5.【解答】解:由题得:x2=4y,所以:2p=4,即p=2所:,=1故准线方程为:y=﹣1.故选:D.6.【解答】解:对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,而大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,∴大前提错误,故选:A.7.【解答】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231>100,停止循环则最后输出的结果是231,故选:D.8.【解答】解:由样本数据得到的回归方程=x+必过样本中心(,),正确;残差平方和越小的模型,拟合的效果越好,正确用相关指数R2来刻画回归效果,R2越大,说明模型的拟合效果越好,不正确,线性相关系数|r|越大,两个变量的线性相关性越强,故正确.故选:C.9.【解答】解:抠点法:在长方体ABCD﹣A1B1C1D1中抠点,1)由正视图可知:C1D1上没有点;2)由侧视图可知:B1C1上没有点;3)由俯视图可知:CC1上没有点;4)由正(俯)视图可知:D,E处有点,由虚线可知B,F处有点,A点排除.由上述可还原出四棱锥A1﹣BEDF,如右图所示,S四边形BEDF=1×1=1,.故选:D.10.【解答】解:∵定义在R上的函数f(x﹣1)的图象关于x=1对称,∴函数f(x)的图象关于y轴对称,∴函数f(x)为偶函数,∵log0.53=﹣log23,∴f(log0.53)=f(log23),∵1<log23<2,0.5﹣1.3=21.3>2,0<0.76<1,又当x>0时,f(x)单调递减,∴b<a<c,故选:A.11.【解答】解:若函数f(x)=x2﹣ax(≤x≤e,e为自然对数的底数)与g(x)=e x的图象上存在关于直线y=x对称的点,则函数f(x)=x2﹣ax(≤x≤e,e为自然对数的底数)与函数h(x)=lnx的图象有交点,即x2﹣ax=lnx,(≤x≤e)有解,即a=x﹣,(≤x≤e)有解,令y=x﹣,(≤x≤e),则y′=,当≤x<1时,y′<0,函数为减函数,当1<x≤e时,y′>0,函数为增函数,故x=1时,函数取最小值1,当x=时,函数取最大值e+,故实数a取值范围是[1,e+],故选:A.12.【解答】解:由线段PF1的垂直平分线恰好过点F2,可得|PF2|=|F1F2|=2c,由直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,可得|OA|=a,设PF1的中点为M,由中位线定理可得|MF2|=2a,在直角三角形PMF2中,可得|PM|==2b,即有|PF1|=4b,由双曲线的定义可得|PF1|﹣|PF2|=2a,即4b﹣2c=2a,即2b=a+c,即有4b2=(a+c)2,即4(c2﹣a2)=(a+c)2,可得a=c,所以e==.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:圆(x﹣2)2+y2=1有公共点,可知圆心(2,0),半径r=1,直线y=kx+1,可知直线恒过点(0,1),∵圆心到直线y=kx﹣1的距离d小于等于1,∴d=≤1,可得:.故答案为:[,0]14.【解答】解:假设做好事的是甲,则甲说的是假设,乙和丙说的都是真话,不合题意;假设做好事的是乙,则甲和丙说的是真话,乙说的是假话,不合题意;假设做好事的是丙,则甲和丙说的是假话,乙说的是真话,符合题意.综上,做好事的是丙.故答案为:丙.15.【解答】解:由(x﹣a)(x﹣a﹣1)≤0得a≤x≤a+1,若¬p是¬q的必要不充分条件,则q是p的必要不充分条件,即,即0≤a≤,则实数a的取值范围是:故答案为:[0,].16.【解答】解:正实数a,b满足a>b,且ab=,可得a2>,解得a>,则2a﹣b=2a﹣>0,由===(2a﹣b)+≥2=2,当且仅当2a﹣b=时,取得等号,则的最小值为2,故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)因为函数的定义域是R,所以.对∀x∈R恒成立.所以,解得:1≤m≤3,即p是真命题时,实数m的取值范围是[1,3].故实数m的取值范围是[1,3].(2)因为方程表示焦点在x轴上的双曲线,所以,解得到:﹣2<m<3,因为“(¬p)∧q”是真命题,则命题p为假,命题q为真,综合(1)得:即,解得﹣2<m<1.故(¬p)∧q是真命题时,实数m的取值范围是(﹣2,1).故实数m的取值范围是(﹣2,1).18.【解答】解:(Ⅰ)根据题意,,,则,==,=8.3﹣1.571×6=﹣1.126,那么回归方程为:.(Ⅱ)将x=8.0代入方程得,即小明家的“超级大棚”当年的利润大约为11.442万元.(Ⅲ)近5年来,无丝豆亩平均利润的平均数为,方差+(2.1﹣2)2+(2.2﹣2)2+(2.5﹣2)2]=0.128.彩椒亩平均利润的平均数为,方差为+(1.9﹣2)2+(2.2﹣2)2+(2.2﹣2)2]=0.028.因为m=n,,∴种植彩椒比较好.19.【解答】(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1,因为A1O⊥平面ABC,所以A1O⊥BC,因为AB=AC,OB=OC,得AO⊥BC,所以BC⊥平面AA1O,所以BC⊥OE,所以OE⊥平面BB1C1C,又,得…(5分)(2)解:由(1)连接BE,EC,OE⊥平面BB1C1C,可得AA1⊥平面EBC,∴EB===,三棱柱ABC﹣A1B1C的侧面积:2××+4×=…(12分)20.【解答】解:(1)椭圆的离心率,且经过点.可得,,a2=b2+c2,解得a=,b=1,椭圆方程:.(2)PM的斜率不存在时,MN的垂直平分线与x轴重合,没有截距,故PM的斜率存在.设PM的方程为y=kx+2,代入椭圆方程得:(1+2k2)x2+8kx+6=0∵PM与椭圆有两个不同的交点∴△=(8k)2﹣4(1+2k2)×6>0,即,即或.设M(x1,y1),N(x2,y2),MN的中点Q(x0,y0)则,∴MN的垂直平分线l的方程为∴l在x轴上的截距为∴MN的垂直平分线在x轴上的截距的范围是.21.【解答】解:(1)函数f(x)的定义域是(0,+∞),f′(x)=﹣=,当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)递增,若0<x<a时,则f′(x)<0,函数f(x)在(0,a)递减;(2)由(1)知,当a>0时,f(x)min=f(a)=lna+1,要证f(x)≥,只需证明lna+1≥,即只需证明lna+﹣1≥0,构造函数g(a)=lna+﹣1,则g′(a)=﹣=,故g(a)在(0,1)递减,在(1,+∞)递增,故g(a)min=g(1)=0,故lna+﹣1≥0恒成立,故f(x)≥.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.【解答】解:(1)圆C的极坐标方程为ρ=﹣4cosθ,即ρ2=﹣4ρcosθ,由极坐标与直角坐标互化公式得圆的直角坐标方程式为(x+2)2+y2=4.(2)直线l的普通方程为y=x+3,点M在直线l上,过点M的直线l的参数方程为,代入圆方程得:.设A、B对应的参数方程分别为t 1、t2,则,于是|MA|•|MB|=|t1|•|t2|=|t1t2|=3.[选修4-5:不等式选讲]23.【解答】解:(1)当a=5时,函数f(x)=log2(|x﹣1|+|x﹣5|﹣5),求函数f(x)的定义域,即解|x﹣1|+|x﹣5|﹣5>0不等式;…(2分)所以|x﹣1|+|x﹣5|>5,x>5时,不等式化为(x﹣1)+(x﹣5)>5,解得x>;5≥x≥1时,不等式化为(x﹣1)﹣(x﹣5)>5,不等式无解;x<1时,不等式化为﹣(x﹣1)﹣(x﹣5)>5,解得x<;所以不等式的解集为{x|x<或x>},即函数f(x)的定义域为{x|x<或x>};…(5分)(2)设函数f(x)的定义域为A,因为函数f(x)的值域为R,所以(0,+∞)⊆A;…(7分)由绝对值三角不等式|x﹣1|+|x﹣5|﹣a≥|x﹣1﹣x+5|﹣a=4﹣a,…(9分)所以4﹣a≤0,解得a≥4;∴a的取值范围是a≥4.…10分。
河南省周口市2016-2017学年高二下学期期末考试语文试题第I卷阅读题(70分)一、现代文阅读(35分)(一)论述类文本阅读(9分)阅读下面的文宇,完成1-3题。
两千余年来,“学而优则仕"作为以学致仕的信条被读本人举行不渝。
尤其是隋唐科举制度形成以后,“学而优则仕”的信条与科举制度融为一体,互为里表,成了士子生活的金科玉律。
“学而优则仕”传统在历史演化中对中国社会产生过积极影响。
它确立了学H作为政府取吏的标准。
以学取士将大部分饱读儒家经典的读书人吸引到官员队伍中,保证了政府运作始终处于接受过儒家道德教训的文吏手中。
历代草莽英雄出身的开国皇命不得不接受叔孙通的名言“儒者难与进取,可与守成”,并视之为治国要诀,对半生保有相当的尊重《文吏统治造就了“士”作为无冕之王的优越地位,也促成了“士为四民之首”的观念。
《三国演义》塑造了名士祢衡裸体痛骂曹操而为曹操所宽宥的形象,近代文化名人章太炎以大勋章作扇坠在袁世凯的总统府门前大诟袁氏包藏祸心,而被袁氏所容忍,个中原因固不止一端,但有一点可以肯定,士子对世道民心的巨大影响,无论是治世英雄,还是乱世奸雄,都不能不有所忌惮。
另一方面,读书人坚守位卑不忘忧国的信条,以天下为己任,希望将平生所学贡献于国家民族,都与学优而仕传统有关。
中国历史上,所谓“贵族”在很大程度上是一个文化概念,并不是全由血统决定。
对社会各等级的人而言,通过以科举制度为体现的“学优而仕”途径跻身于士大夫阶级之后,.可以加入孟子所说的“劳心者”之列,由“治于人”而变为“治人”,从而由“贱”入“贵”,成为“贵族”。
正是由于学优而仕传统为读书人提供了改定自己命运的出路,整个中国社会各等级之间的划分才不像印度种姓制度那般僵死。
中国教千年的传统文化并没有创造初多少“平等”观念,西方基督教世界的信众以信教而为自己争得了平等地成为上帝仆人的权利,而中国的士子们则由学优而仕获得了参与政治的乎等权。
“学而优则仕,,传统对中国社会的负面影响,从根本上是源于以“仕”为"学”之鹄的这个既定前提。
一、选择题1.(0分)[ID :13882]在四边形ABCD 中,AB DC =,且AC ·BD =0,则四边形ABCD 是( )A .菱形B .矩形C .直角梯形D .等腰梯形 2.(0分)[ID :13860](1+tan 17°)(1+tan 28°)的值是( )A .-1B .0C .1D .23.(0分)[ID :13889]将函数sin y x =图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图象上所有的点向左平移π4个单位长度,则所得图象对应的函数解析式为( ) A .sin(2)4y x π=+ B .sin()24x y π=+ C .cos 2x y =D .cos 2y x =4.(0分)[ID :13888]平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若3,44ππα⎛⎫∈ ⎪⎝⎭,且3sin 45πα⎛⎫+= ⎪⎝⎭,则0x 的值为( )A .10B .10C .10-D .10-5.(0分)[ID :13885]O 为平面上的定点,A ,B ,C 是平面上不共线的三点,若()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆是( )A .以AB 为底面的等腰三角形 B .以BC 为底面的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形6.(0分)[ID :13870]在锐角ABC 中,4sin 3cos 5,4cos 3sin A B A B +=+=则角C 等于( )A .150B .120C .60D .307.(0分)[ID :13868]已知2sin2α=1+cos2α,则tan2α=( ) A .43-B .43C .43-或0 D .43或0 8.(0分)[ID :13862]函数()sin()A f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则()f π=( )A .4B .23C .2D .39.(0分)[ID :13846]设奇函数()()()()sin 3cos 0f x x x ωφωφω=+-+>在[]1,1x ∈-内有9个零点,则ω的取值范围为( ) A .[)4,5ππB .[]4,5ππC .11,54ππ⎡⎤⎢⎥⎣⎦D .11,54ππ⎛⎤ ⎥⎝⎦10.(0分)[ID :13843]已知2tan θ= ,则222sin sin cos cos θθθθ+- 等于( ) A .-43B .-65C .45D .9511.(0分)[ID :13839]设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,a ⊥c ,|a |=|c |,则|b ⋅c |的值一定等于 ( ) A .以a ,b 为邻边的平行四边形的面积 B .以b ,c 为两边的三角形面积 C .a ,b 为两边的三角形面积 D .以b ,c 为邻边的平行四边形的面积12.(0分)[ID :13910]在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .AB B .CDC .EFD .GH13.(0分)[ID :13908]已知4sin 5α,并且α是第二象限的角,那么tan()απ+的值等于A .43-B .34-C .34D .4314.(0分)[ID :13898]已知tan 24πα⎛⎫+=- ⎪⎝⎭,则sin 2α=( )A .310B .35C .65-D .125-15.(0分)[ID :13832]如图,在ABC ∆中,BE 是边AC 的中线,O 是BE 边的中点,若,AB a AC b ==,则AO =( )A .1122a b + B .1124a b + C .1142a b + D .1144a b + 二、填空题16.(0分)[ID :14026]若34παβ+=,则()()1tan 1tan αβ--=_____________. 17.(0分)[ID :14000]求()22sin cos 2,,63f x x x x ππ⎡⎤=-+∈-⎢⎥⎣⎦的值域____. 18.(0分)[ID :13998]把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 19.(0分)[ID :13976]将函数()2sin(2)6f x x π=-的图象向左平移(0)φφ>个单位,若所得到图象关于原点对称,则φ的最小值为__________. 20.(0分)[ID :13991]在△ABC 中,120A ∠=︒,2133AM AB AC =+,12AB AC ⋅=-,则线段AM 长的最小值为____________.21.(0分)[ID :13985]已知向量a ,b 满足1a =,且()2a a b b -==,则向量a 与b 的夹角是__________.22.(0分)[ID :13984]若动直线x a =与函数()sin f x x =和()cos g x x =的图象分别交于M ,N 两点,则||MN 的最大值为__________.23.(0分)[ID :13955]已知(,)P x y 是椭圆22143x y +=上的一个动点,则x y +的最大值是__________.24.(0分)[ID :13944]若()1sin 3πα-=,且2παπ≤≤,则cos α的值为__________. 25.(0分)[ID :13930]在三角形ABC 所在平面内有一点H 满足222222HA BC HB CA HC AB +=+=+,则H 点是三角形ABC 的___________.三、解答题26.(0分)[ID :14126]已知向量a 、b 的夹角为2,||1,||23a b π==.(1)求a ·b 的值(2)若2a b -和ta b +垂直,求实数t 的值.27.(0分)[ID :14110]已知函数π()sin()(0,0,)2f x A x B A ωϕωϕ=++>><的部分图象如图所示:(I )求()f x 的解析式及对称中心坐标; (Ⅱ)将()f x 的图象向右平移6π个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数()g x 的图象,求函数()y g x =在7π0,6x ⎡⎤∈⎢⎥⎣⎦上的单调区间及最值.28.(0分)[ID :14099]已知23cos()(,)41024x x πππ-=∈. (1)求sin x 的值; (2)求sin(2)3x π+的值.29.(0分)[ID :14091]已知函数()2sin 22cos 6f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数()f x 的单调增区间; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.30.(0分)[ID :14039]已知函数()2f x x =.(Ⅰ)若α为锐角,且cos 3α=,求()f α的值; (Ⅱ)若函数22()()cos sin g x f x x x =+-,当[0,]x π∈时,求()g x 的单调递减区间.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.D 3.D 4.C 5.B 6.D 7.D 8.A 9.A 10.D 11.A 12.C 13.A 14.B 15.B二、填空题16.2【解析】试题分析:即所以答案应填:考点:和差角公式17.【解析】【分析】由条件利用同角三角函数的基本关系化简函数解析式再利用正弦函数的定义域和值域二次函数的性质求得函数在上的值域【详解】设故在上值域等价于在上的值域即的值域为【点睛】本题考查同角三角函数的18.【解析】【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面19.【解析】分析:先根据图像平移得解析式再根据图像性质求关系式解得最小值详解:因为函数的图象向左平移个单位得所以因为所以点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟20.【解析】【分析】由可以求出由即可求出答案【详解】由题意知可得则(当且仅当即2时取=)故即线段长的最小值为【点睛】本题考查向量的数量积向量的模向量在几何中的应用及基本不等式求最值属于中档题21.【解析】【分析】先根据条件得再根据向量夹角公式求结果【详解】因为且所以因此【点睛】求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法从图形判断角的大小22.【解析】所以的最大值为方法点睛:本题考查数形结合思想的应用根据两点间距离公式再根据辅助角公式转化为当时取得最大值23.【解析】是椭圆=1上的一个动点设∴最大值为24.【解析】由题意得25.垂心【解析】【分析】根据向量运算用表示出向量可得从而可得【详解】因为所以整理得即;同理可得所以可知为垂心【点睛】本题主要考查平面向量的运算三角形垂心的向量表示考查转化化归思想三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】由AB DC=可得四边形为平行四边形,由AC·BD=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵AB DC=,∴AB与DC平行且相等,∴四边形ABCD为平行四边形.又0⋅=,AC BD⊥,∴AC BD即平行四边形ABCD的对角线互相垂直,∴平行四边形ABCD为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.2.D解析:D【解析】()()00++1tan171tan280000000000 =+++=++-+1tan17tan28tan17tan281tan(1728)(1tan17tan28)tan17tan28000001tan 45(1tan17tan 28)tan17tan 282=+-+=,选D.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.3.D解析:D 【解析】 【分析】由正弦函数的周期变换以及平移变换即可得出正确答案. 【详解】函数sin y x =图象上所有点的横坐标缩短到原来的12倍(纵坐标不变)得到sin 2y x =,再将所得图象上所有的点向左平移π4个单位长度,得到sin 2sin 2cos 242y x x x ππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭故选:D 【点睛】本题主要考查了正弦函数的周期变换以及平移变换,属于中档题.4.C解析:C 【解析】 【分析】利用两角和差的余弦公式以及三角函数的定义进行求解即可. 【详解】3,44ππα⎛⎫∈⎪⎝⎭, ,42ππαπ⎛⎫∴+∈ ⎪⎝⎭, 3sin 45πα⎛⎫+= ⎪⎝⎭,4cos 45πα⎛⎫∴+=- ⎪⎝⎭,则0cos cos cos cos sin sin 444444x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦42322525210=-⨯+⨯=-, 故选C . 【点睛】本题主要考查两角和差的三角公式的应用,结合三角函数的定义是解决本题的关键.5.B解析:B 【解析】试题分析:根据题意,涉及了向量的加减法运算,以及数量积运算. 因此可知2()()OB OC OA OB OA OC OA AB AC +-=-+-=+OB OC CB -=,所以(2)OB OC OA +-⋅()0OB OC -=可知为故有||AB AC =,因此可知b=c ,说明了是一个以BC 为底边的等腰三角形,故选B. 考点:本试题主要考查了向量的数量积的运用.点评:解决该试题的关键是利用向量的加减法灵活的变形,得到长度b=c ,然后分析得到形状,注意多个变量,向一组基向量的变形技巧,属于中档题.6.D解析:D 【解析】 【分析】由题:()()224sin 3cos 25,4cos 3sin 12A B A B +=+=,两式相加即可求出sin()A B +,进而求出A B +,角C 得解.【详解】由题:()()224sin 3cos 25,4cos 3sin 12A B A B +=+=,2216sin 24sin cos 9cos 25A A B B ++=,2216cos 24cos sin 9sin 12A A B B ++=,两式相加得:()1624sin cos cos sin 937A B A B +++=,1sin()2A B +=,所以1sin sin(())2C A B π=-+=,且C 为锐角, 所以30C =. 故选:D 【点睛】此题考查同角三角函数基本关系与三角恒等变换综合应用,考查对基本公式的掌握和常见问题的处理方法.7.D解析:D 【解析】 【分析】 【详解】试题分析:把2sin 21cos2αα=+的两边平方得224sin 2(1cos 2)αα=+,整理可得2244cos 412cos 2cos 2ααα-=++,即25cos 22cos 230αα+-=,所以(5cos 23)(cos 21)0αα-+=,解得3cos 25α=或cos21α=-,当2312sin 5α-=时,1cos 244sin 2,tan 2253ααα+===;当cos21α=-时,1cos 2sin 20,tan 202ααα+===,所以4tan 23α=或0,故选D. 考点:三角函数的基本关系式及三角函数的化简求值. 8.A解析:A 【解析】试题分析:根据题意,由于函数()sin()A f x x ωϕ=+(0,)2πωϕ><,那么根据图像可知周期为2π,w=4,然后当x=6π,y=2,代入解析式中得到22sin(4)6πϕ=⨯+,6πϕ=-,则可知()f π=4,故答案为A.考点:三角函数图像点评:主要是考查了根据图像求解析式,然后得到函数值的求解,属于基础题.9.A解析:A 【解析】f (x )=sin (ωx+φ(ωx+φ)=2[12sin (ωx+φ(ωx+φ)] =2[cos3πsin (ωx+φ)﹣sin 3πcos (ωx+φ)]=2sin (ωx+φ﹣3π) ∵函数f (x )为奇函数,∴f (0)=2sin (φ﹣3π)=0,∴φ=3π+kπ,k ∈Z ∴f (x )=2sin (ωx+kπ),f (x )=0即sin (ωx+kπ)=0,ωx+kπ=mπ,m ∈Z ,解得,x=()m k πω-,设n=m ﹣k ,则n ∈Z ,∵A ∈[﹣1,1],∴﹣1≤x≤1,[]1,1n πω∈-,∴n ωωππ-≤≤,∵A ∈[﹣1,1]中有9个元素,4545.ωπωππ∴≤<⇒≤< 故答案为A.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e 为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.10.D解析:D 【解析】 ∵tanθ=2,∴原式=22222sin sin cos cos sin cos θθθθθθ+-+=22211tan tan tan θθθ+-+=82141+-+=95. 本题选择D 选项.点睛:关于sin α,cos α的齐次式,往往化为关于tan α的式子.11.A解析:A 【解析】 【分析】 【详解】记OA =a ,OB =b ,OC =c ,记a 与b ,b 于c 夹角分别为,αθ,因为这三向量的起点相同,且满足a 与b 不共线,a ⊥c ,|a |=|c |,则cos sin θα=,利用向量的内积定义,所以|b c ⋅|=||b |•|c |cos <b ,c >|=||OB ||OC |cosθ|==||OB ||OA |sin α |,又由于12BOA S ∆=|OB ||OA |sin α,所以||OB ||OA |sin α |等于以a ,b 为邻边的平行四边形的面积,故选A 12.C 解析:C 【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论. 详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时,cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时,cos ,sin x y αα==,tan y x α=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时,cos ,sin x y αα==,tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限,tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较.13.A解析:A 【解析】 【分析】由诱导公式可得()tan tan παα+=,由角的正弦值和角所在的象限,求出角的余弦值,然后,正弦值除以余弦值得正切值.即可得到答案 【详解】 ∵4sin 5α=,并且α是第二象限的角,,35cos α∴-= , ∴tanα=43-,则么()4tan tan 3παα+==-. 故选A . 【点睛】本题考查给值求值问题.掌握同角三角函数的基本关系式和诱导公式,并会运用它们进行简单的三角函数式的化简、求值及恒等式证明.14.B【解析】 【分析】 根据tan 24πα⎛⎫+=- ⎪⎝⎭求得tan 3α=,2222sin cos 2tan sin 2sin cos tan 1ααααααα==++即可求解. 【详解】 由题:tan 24πα⎛⎫+=- ⎪⎝⎭, tan 121tan αα+=--,解得tan 3α=,2222sin cos 2tan 63sin 2sin cos tan 1105ααααααα====++.故选:B 【点睛】此题考查三角恒等变换,涉及二倍角公式与同角三角函数的关系,合理构造齐次式可以降低解题难度.15.B解析:B 【解析】 【分析】 【详解】分析:利用向量的共线定理、平行四边形法则即可得出. 详解:∵在ABC ∆中,BE 是AC 边上的中线 ∴12AE AC =∵O 是BE 边的中点 ∴1()2AO AB AE =+ ∴1124AO AB AC =+ ∵,AB a AC b == ∴1124AO a b =+ 故选B.点睛:本题考查了平面向量的基本定理的应用.在解答此类问题时,熟练掌握向量的共线定理、平行四边形法则是解题的关键.二、填空题16.2【解析】试题分析:即所以答案应填:考点:和差角公式【解析】试题分析:34παβ+=,tan()1αβ∴+=-,tan tan 11tan tan αβαβ+∴=--,即tan tan (1tan tan )αβαβ+=--,()()1tan 1tan 1(tan tan )tan tan αβαβαβ∴--=-++1(1tan tan )tan tan 2αβαβ=+-+=.所以答案应填:2.考点:和差角公式.17.【解析】【分析】由条件利用同角三角函数的基本关系化简函数解析式再利用正弦函数的定义域和值域二次函数的性质求得函数在上的值域【详解】设故在上值域等价于在上的值域即的值域为【点睛】本题考查同角三角函数的解析:3,34⎡⎤⎢⎥⎣⎦【解析】 【分析】由条件利用同角三角函数的基本关系化简函数解析式,再利用正弦函数的定义域和值域、二次函数的性质,求得函数()f x 在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域。
2015-2016学年河南省周口市高二(下)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.如果复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,那么实数a的值为()A.﹣2 B.1 C.2 D.1或﹣22.给出如下四个命题:①若“p∨q”为真命题,则p、q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0≤1”;④“x>0”是“x+≥2”的充要条件.其中不正确的命题是()A.①②B.②③C.①③D.③④3.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系4.下面几种推理中是演绎推理的是()A.由金、银、铜、铁可导电,猜想:金属都可以导电B.猜想数列5,7,9,11,…的通项公式为a n=2n+3C.由正三角形的性质得出正四面体的性质D.半径为r的圆的面积S=π•r2,则单位圆的面积S=π5.因为a,b∈R+,a+b≥2,…大前提x+≥2,…小前提所以x+≥2,…结论以上推理过程中的错误为()A.小前提B.大前提C.结论 D.无错误6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.设S n是等差数列{a n}的前n项和,S5=3(a2+a8),则的值为()A.B.C.D.8.在△ABC中,B=,c=150,b=50,则△ABC为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形9.阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前5项的和C.计算数列{2n﹣1}前6项的和D.计算数列{2n﹣1}前6项的和10.函数f(x)=sinx+2x,若对于区间[﹣π,π]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是()A.4πB.2πC.πD.011.已知两点F1(﹣1,0),F(1,0),且|F1F2|是|PF1|与|PF2|的等差数列中项,则动点P所形成的轨迹的离心率是()A.B.2 C.D.12.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.曲线y=在点(0,0)处的切线方程为______.14.以模型y=ce kx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=______.15.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体P﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,四面体P﹣ABC的体积为V,则r=______.16.若函数f(x)=e x(mx3﹣x﹣2)在区间(2,3)上不是单调函数,则实数m的取值范围是______.三、解答题(共5小题,满分60分)17.设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70若广告费支出x与销售额y回归直线方程为y=6.5x+a(a∈R).(I)试预测当广告费支出为12万元时,销售额是多少?(Ⅱ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.19.某工厂于去年下半年对生产工艺进行了改造(每半年为一个生产周期),从去年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示,如图所示.已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润10元,生产一件合格品可获利润5元,生产一件次品要亏损5元(Ⅰ)试完成这个样本的50件产品的利润的频率分布表:利润(元)频数频率10 ______ ______5 ______ ______﹣5 ______ ______(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828K2=.20.已知点F1,F2分别为椭圆C:的左右焦点,P是椭圆C上的一点,且的面积为(Ⅰ)求椭圆C的方程;(Ⅱ)点M的坐标为,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的是否为定值?若是求出这个定值;若不是说明理由.21.已知函数f(x)=e x+ax﹣1(e为自然对数的底数).(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求实数a的取值范围.22.如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.(1)求证:△EFG为等腰三角形;(2)求线段MG的长.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().2015-2016学年河南省周口市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.如果复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,那么实数a的值为()A.﹣2 B.1 C.2 D.1或﹣2【考点】复数的基本概念.【分析】纯虚数的表现形式是a+bi中a=0且b≠0,根据这个条件,列出关于a的方程组,解出结果,做完以后一定要把结果代入原复数检验是否正确.【解答】解:∵复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,∴a2+a﹣2=0且a2﹣3a+2≠0,∴a=﹣2,故选A2.给出如下四个命题:①若“p∨q”为真命题,则p、q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0≤1”;④“x>0”是“x+≥2”的充要条件.其中不正确的命题是()A.①②B.②③C.①③D.③④【考点】命题的真假判断与应用.【分析】①“p∨q”为真命题,p、q二者中只要有一真即可;②写出一个命题的否命题的关键是正确找出原命题的条件和结论;③直接写出全称命题的否定判断;④利用基本不等式,可得结论.【解答】解:①“p∨q”为真命题,p、q二者中只要有一真即可,故不正确;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”,正确;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0<1”,故不正确;④“x>0”时,“x+≥2”,若“x+≥2”,则“x>0”,∴“x>0”是“x+≥2”的充要条件,故正确.故选:C.3.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系【考点】两个变量的线性相关.【分析】线性回归方程一定过样本中心点,在一组模型中残差平方和越小,拟合效果越好,相关指数表示拟合效果的好坏,指数越小,相关性越强.【解答】解:样本中心点在直线上,故A正确,残差平方和越小的模型,拟合效果越好,故B正确,R2越大拟合效果越好,故C不正确,当r的值大于0.75时,表示两个变量具有线性相关关系,故选C4.下面几种推理中是演绎推理的是()A.由金、银、铜、铁可导电,猜想:金属都可以导电B.猜想数列5,7,9,11,…的通项公式为a n=2n+3C.由正三角形的性质得出正四面体的性质D.半径为r的圆的面积S=π•r2,则单位圆的面积S=π【考点】演绎推理的意义.【分析】本题考查的是演绎推理的定义,判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,能否从推理过程中找出“三段论”的三个组成部分.【解答】解:选项A是由特殊到一般的推理过程,为归纳推理,选项B,是由特殊到一般的推理过程,为归纳推理,选项C:是由特殊到与它类似的另一个特殊的推理过程,是类比推理,选项D半径为r圆的面积S=πr2,因为单位圆的半径为1,则单位圆的面积S=π中,半径为r圆的面积S=πr2,是大前提单位圆的半径为1,是小前提单位圆的面积S=π为结论.故选:D.5.因为a,b∈R+,a+b≥2,…大前提x+≥2,…小前提所以x+≥2,…结论以上推理过程中的错误为()A.小前提B.大前提C.结论 D.无错误【考点】进行简单的演绎推理.【分析】演绎推理是由一般到特殊的推理,是一种必然性的推理,演绎推理得到的结论不一定是正确的,这要取决与前提是否真实和推理的形式是否正确,演绎推理一般模式是“三段论”形式,即大前提小前提和结论.【解答】解:∵,这是基本不等式的形式,注意到基本不等式的使用条件,a,b都是正数,是小前提,没有写出x的取值范围,∴本题中的小前提有错误,故选A.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.【考点】简单线性规划.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.设S n是等差数列{a n}的前n项和,S5=3(a2+a8),则的值为()A.B.C.D.【考点】等差数列的前n项和.【分析】利用等差数列的性质与通项公式即可得出.【解答】解:设等差数列{a n}的公差为d.由等差数列{a n}的性质可得:a2+a8=2a5,∴S5=3(a2+a8)=6a5,∴5a1+=6(a1+4d),化为a1=﹣14d.则===.故选:D.8.在△ABC中,B=,c=150,b=50,则△ABC为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形【考点】正弦定理.【分析】由已知及正弦定理可求得sinC==,利用大边对大角可得<C<π,可解得:C,A的值,从而得解.【解答】解:由已知及正弦定理可得:sinC===.∵c=150>b=50,∴<C<π,可解得:C=或.∴解得:A=或.故选:B.9.阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前5项的和C.计算数列{2n﹣1}前6项的和D.计算数列{2n﹣1}前6项的和【考点】程序框图.【分析】根据算法流程,依次计算运行结果,由等比数列的前n项和公式,判断程序的功能.【解答】解:由算法的流程知,第一次运行,A=2×0+1=1,i=1+1=2;第二次运行,A=2×1+1=3,i=2+1=3;第三次运行,A=2×3+1=7,i=3+1=4;第四次运行,A=2×7+1=15,i=5;第五次运行,A=2×15+1=31,i=6;第六次运行,A=2×31+1=63,i=7;满足条件i>6,终止运行,输出A=63,∴A=1+2+22+…+25==26﹣1=64﹣1=63.故选:C.10.函数f(x)=sinx+2x,若对于区间[﹣π,π]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是()A.4πB.2πC.πD.0【考点】利用导数研究函数的单调性.【分析】问题等价于对于区间[﹣π,π]上,f(x)max﹣f(x)min≤t,求出f(x)的导数,分别求出函数的最大值和最小值,从而求出t的范围即可.【解答】解:对于区间[﹣π,π]上的任意x1,x2,都有|f(x1}﹣f(x2)|≤t,等价于对于区间[﹣π,π]上,f(x)max﹣f(x)min≤t,∵f(x)=sinx+2x,∴f′(x)=cosx+2≥0,∴函数在[﹣π,π]上单调递增,∴f(x)max=f(π)=2π,f(x)min=f(﹣π)=﹣2π,∴f(x)max﹣f(x)min=4π,∴t≥4π,∴实数t的最小值是4π,故选:A.11.已知两点F1(﹣1,0),F(1,0),且|F1F2|是|PF1|与|PF2|的等差数列中项,则动点P所形成的轨迹的离心率是()A.B.2 C.D.【考点】椭圆的简单性质.【分析】根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,即可求出动点P 所形成的轨迹的离心率.【解答】解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,∴a=2∵c=1∴e==.故选:C.12.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.【考点】导数在最大值、最小值问题中的应用.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D二、填空题(共4小题,每小题5分,满分20分)13.曲线y=在点(0,0)处的切线方程为x﹣y=0.【考点】利用导数研究曲线上某点切线方程.【分析】求出曲线解析式的导函数,进而确定出点(0,0)处的切线斜率,确定出切线方程即可.【解答】解:求导得:y′=,把x=0代入得:k=1,则线y=在点(0,0)处的切线方程为y=x,即x﹣y=0,故答案为:x﹣y=014.以模型y=ce kx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=e4.【考点】线性回归方程.【分析】我们根据对数的运算性质:log a(MN)=log a M+log a N,log a N n=nlog a N,即可得出结论.【解答】解:∵y=ce kx,∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,令z=lny,可得z=lnc+kx,∵z=0.3x+4,∴lnc=4,∴c=e4.故答案为:e4.15.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体P﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,四面体P﹣ABC的体积为V,则r=.【考点】类比推理.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为(S1+S2+S3+S4)r∴r=.故答案为:.16.若函数f(x)=e x(mx3﹣x﹣2)在区间(2,3)上不是单调函数,则实数m的取值范围是(,).【考点】利用导数研究函数的单调性.【分析】对函数进行求导,令导函数f′(x)=0在区间(2,3)上有解,然后建立关系式,进行求解即可.【解答】解:函数的导数f′(x)=e x(mx3﹣x﹣2)+e x(3mx2﹣1)=e x(mx3+3mx2﹣x﹣3)=e x•(mx2﹣1)(x+3),若f(x)在区间(2,3)上不是单调函数,则f′(x)=0在区间(2,3)上有解,由f′(x)=e x•(mx2﹣1)(x+3)=0得mx2﹣1=0,即mx2=1,即x2=,则m>0,此时x=±,若f′(x)=0在区间(2,3)上有解,则2<<3,平方得4<<9,即<m<,故实数m的取值范围是(,),故答案为:(,).三、解答题(共5小题,满分60分)17.设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】等差数列的通项公式;等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.18.某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70若广告费支出x与销售额y回归直线方程为y=6.5x+a(a∈R).(I)试预测当广告费支出为12万元时,销售额是多少?(Ⅱ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.【考点】古典概型及其概率计算公式.【分析】(I)根据所给的数据先做出数据的平均数,即样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程.把所给的广告费支出为12万元时,代入线性回归方程,可得对应的销售额.(II)分别求出在已有的五组数据中任意抽取两组的情况总数,及至少有一组数据其预测值与实际值之差的绝对值不超过5的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)∵,,点(5,50)在回归直线上,代入回归直线方程求得a=17.5,所求回归直线方程为:…当广告支出为12时,销售额约为万元.…(Ⅱ)实际值和预测值对应表为:x 2 4 5 6 8y 30 40 60 50 7030.5 43.5 50 56.5 69.5在已有的五组数据中任意抽取两组的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个,…两组数据其预测值与实际值之差的绝对值都超过5的有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为.…19.某工厂于去年下半年对生产工艺进行了改造(每半年为一个生产周期),从去年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示,如图所示.已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润10元,生产一件合格品可获利润5元,生产一件次品要亏损5元(Ⅰ)试完成这个样本的50件产品的利润的频率分布表:利润(元)频数频率10 150.35 210.42﹣5 140.28(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828K2=.【考点】独立性检验的应用.【分析】(Ⅰ)确定上、下半年的数据,可得“中位数”,优质品,合格品,次品的个数,可得频率分布表;(Ⅱ)求出K2,与临界值比较,即可得出是否有95%的把握认为“优质品与生产工艺改造有关”.【解答】解:(Ⅰ)上半年的数据为:43,44,48,51,52,56,57,59,61,64,65,65,65,68,72,73,75,76,76,83,84,87,88,91,93其“中位数”为65,优质品有6个,合格品有10个,次品有9个.下半年的数据为:43,49,50,54,54,58,59,60,61,62,63,63,65,66,67,70,71,72,72,73,77,79,81,88,92其“中位数”为65,优质品有9个,合格品有11个,次品有5个.则这个样本的50件产品的利润的频率分布表为:利润频数频率10 15 0.35 21 0.42﹣5 14 0.28…(Ⅱ)由题意得:上半年下半年优质品 6 9 15非优质品19 16 3525 25 50由于0.857<3.841所以没有95%的把握认为“优质品与生产工艺改造有关”.…20.已知点F1,F2分别为椭圆C:的左右焦点,P是椭圆C上的一点,且的面积为(Ⅰ)求椭圆C的方程;(Ⅱ)点M的坐标为,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的是否为定值?若是求出这个定值;若不是说明理由.【考点】椭圆的简单性质;直线与圆锥曲线的综合问题.【分析】(Ⅰ)设|PF1|=m,|PF2|=n,在△PF1F2中,由余弦定理以及三角形的面积,结合椭圆定义,求出a,c,b可得椭圆的方程.(Ⅱ)利用直线与椭圆方程,通过韦达定理,结合向量的数量积化简得到定值即可.【解答】解:(Ⅰ)设|PF1|=m,|PF2|=n,在三角形PF1F2中,由余弦定理得4=m2+n2﹣2mncos,由三角形的面积为所以,所以mn=,所以m+n=2,所以a=;又c=1,所以b=1,椭圆C的方程为;(Ⅱ)由F2(1,0),直线l的方程为y=k(x﹣1).由消去y,(2k2+1)x2﹣4k2x+2(k2﹣1)=0设A(x1,y1),B(x2,y2)则x1+x2=,x1x2=∴=(x1﹣,y1)(x2﹣,y2)=(x1﹣)(x2﹣)+y1y2=(x1﹣)(x2﹣)+k2(x1﹣1)(x2﹣1)=(k2+1)﹣++k2==由此可知=﹣为定值.21.已知函数f(x)=e x+ax﹣1(e为自然对数的底数).(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程;函数恒成立问题.【分析】(I)当a=1时,f(x)=e x+x﹣1,根据导数的几何意义可求得在点(1,f(1))处的切线的斜率,再由点斜式即可得切线方程,分别求出切线与x轴、y轴的交点A、B,利用直角三角形的面积公式即可求得;(II)将f(x)≥x2在(0,1 )上恒成立利用参变量分离法转化为在(0,1 )上恒成立,再利用导数研究不等式右边的函数的单调性,从而求出函数的最大值,即可求出a的取值范围.【解答】解:(I)当a=1时,f(x)=e x+x﹣1,f(1)=e,f'(x)=e x+1,f'(1)=e+1,函数f(x)在点(1,f(1))处的切线方程为y﹣e=(e+1)(x﹣1),即y=(e+1)x﹣1,设切线与x轴、y轴的交点分别为A、B,∴A,B(0,﹣1),∴,∴过点(1,f(1))处的切线与坐标轴围成的三角形的面积为.(II)由f(x)≥x2得,令h(x)=,,令k(x)=x+1﹣e x…k'(x)=1﹣e x,∵x∈(0,1),∴k'(x)<0,∴k(x)在(0,1)上是减函数,∴k(x)<k(0)=0.因为x﹣1<0,x2>0,所以,∴h(x)在(0,1)上是增函数.所以h(x)<h(1)=2﹣e,所以a≥2﹣e…22.如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.(1)求证:△EFG为等腰三角形;(2)求线段MG的长.【考点】与圆有关的比例线段.【分析】(1)连接AF,OF,则A,F,G,M共圆,∠FGE=∠BAF,证明∠EFG=∠FGE,即可证明:△EFG为等腰三角形;(2)求出EF=EG=4,连接AD,则∠BAD=∠BFD,即可求线段MG的长.【解答】(1)证明:连接AF,OF,则A,F,G,M共圆,∴∠FGE=∠BAF∵EF⊥OF,∴∠EFG=∠BAF,∴∠EFG=∠FGE∴EF=EG,∴△EFG为等腰三角形;(2)解:由AB=10,CD=8可得OM=3,∴ED=OM=4EF2=ED•EC=48,∴EF=EG=4,连接AD,则∠BAD=∠BFD,∴MG=EM﹣EG=8﹣4.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【考点】简单曲线的极坐标方程.【分析】(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos (θ+),利用三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().【考点】绝对值不等式的解法;不等式的证明.【分析】(Ⅰ)根据f(x)+f(x+4)=|x﹣1|+|x+3|=,分类讨论求得不等式f(x)+f(x+4)≥8的解集.(Ⅱ)要证的不等式即|ab﹣1|>|a﹣b|,根据|a|<1,|b|<1,可得|ab﹣1|2﹣|a﹣b|2 >0,从而得到所证不等式成立.【解答】解:(Ⅰ)f(x)+f(x+4)=|x﹣1|+|x+3|=,当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;当﹣3≤x≤1时,f(x)≤8不成立;当x>1时,由2x+2≥8,解得x≥3.所以,不等式f(x)+f(x+4)≤4的解集为{x|x≤﹣5,或x≥3}.(Ⅱ)f(ab)>|a|f(),即|ab﹣1|>|a﹣b|.因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以|ab﹣1|>|a﹣b|,故所证不等式成立.2016年9月30日。
2016-2017学年河南省周口市高二(下)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数z=的共轭复数是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i2.(5分)设f(x)=xlnx,若f′(x0)=2,则x0等于()A.e2B.e C. D.ln23.(5分)设命题p:∀x∈R,x02>lnx,则¬p为()A.∃x0∈R,x02>lnx0B.∃x0∈R,x02≥lnx0C.∃x0∈R,x02<lnx0D.∃x0∈R,x02≤lnx04.(5分)阅读如图所示的程序框图,若输出的数据为21,则判断框中应填入的条件为()A.k≤3 B.k≤4 C.k≤5 D.k≤65.(5分)设a∈R,“1,a2,16为等比数列“是“a=±2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知点A的坐标为(5,2),F为抛物线y2=2x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,则点P的坐标是()A.(1,)B.(,2)C.(2,2) D.(4,2)7.(5分)下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;⑤类比推理是由特殊到特殊的推理.A.①④⑤B.②③④C.②③⑤D.①⑤8.(5分)已知各项都为正的等差数列{a n}中,a2+a3+a4=15,若a1+2,a3+4,a6+16成等比数列,则a11=()A.22 B.21 C.20 D.199.(5分)已知O为坐标原点,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右焦点,双曲线C上一点P满足PF1⊥PF2,且|PF1||PF2|=2a2,则双曲线C的离心率为()A.B.C.2 D.10.(5分)设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.411.(5分)已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R满足f(x)+f′(x)>0,则下列结论正确的是()A.2f(ln2)>3f(ln3)B.2f(ln2)<3f(ln3)C.2f(ln2)≥3f(ln3)D.2f(ln2)≤3f(ln3)12.(5分)如图,在△ABC中,已知点D在BC边上,且•=0,sin∠BAC=,AB=3,BD=,则cosC=()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)下表是数据x,y的记录,其中y关于x的线性回归方程是=0.6x+0.3,那么表中t的值是.14.(5分)学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D 作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是.15.(5分)不等式e x≥kx对任意实数x恒成立,则实数k的取值范围为.16.(5分)某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为2000元,设备乙每天的租赁费为3000元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为元.三、解答题(共5小题,满分60分)17.(12分)已知{a n}是等比数列,a1=3,a4=24,数列{b n}满足b1=1,b4=﹣8,且{a n+b n}是等差数列.(Ⅰ)求数列{a n}和{a n+b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.18.(12分)2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识回答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:(Ⅰ)求此活动中各公园幸运之星的人数;(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访.求这两人均来自乙公园的概率;(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.附临界值及公式:K2=,其中n=a+b+c+d.19.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.(Ⅰ)求角C的值;(Ⅱ)若a+b=2,当边c取最小值时,求△ABC的面积.20.(12分)已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G 到焦点的距离为3,且点G在圆C:x2+y2=9上.(Ⅰ)求抛物线C1的方程;(Ⅱ)已知椭圆C2:=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为.直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.21.(12分)已知函数f(x)=(x﹣2)lnx﹣ax+1.(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.四、选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(a>b >0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,)对应的参数φ=,射线θ=与曲线C2交于点D(1,).(Ⅰ)求曲线C1,C2的标准方程;(Ⅱ)若点A(ρ1,θ),B(ρ2,θ+)在曲线C1上,求+的值.五、选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.(1)解不等式f(x)≤5;(2)若不等式m2﹣m<f(x),∀x∈R都成立,求实数m的取值范围.2016-2017学年河南省周口市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•呼和浩特一模)复数z=的共轭复数是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】化简复数,即可得其共轭复数.【解答】解:化简可得复数z====﹣1+i,∴复数z的共轭复数为:﹣1﹣i故选:B【点评】本题考查复数的代数形式的乘除运算,涉及共轭复数,属基础题.2.(5分)(2017春•周口期末)设f(x)=xlnx,若f′(x0)=2,则x0等于()A.e2B.e C. D.ln2【分析】求函数的导数,解导数方程即可.【解答】解:∵f(x)=xlnx,∴f′(x)=lnx+1,由f′(x0)=2,得lnx0+1=2,即lnx0=1,则x0=e,故选:B【点评】本题主要考查导数的计算,比较基础.3.(5分)(2017春•周口期末)设命题p:∀x∈R,x02>lnx,则¬p为()A.∃x0∈R,x02>lnx0B.∃x0∈R,x02≥lnx0C.∃x0∈R,x02<lnx0D.∃x0∈R,x02≤lnx0【分析】利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题p:∀x∈R,x02>lnx,则¬p为:∃x0∈R,x02≤lnx0.故选:D.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.(5分)(2017春•周口期末)阅读如图所示的程序框图,若输出的数据为21,则判断框中应填入的条件为()A.k≤3 B.k≤4 C.k≤5 D.k≤6【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得:当S=0,k=1时,不满足输出条件,故进行循环,执行完循环体后,S=1,k=2,当S=1,k=2时,不满足输出条件,故进行循环,执行完循环体后,S=6,k=3,当S=6,k=3时,不满足输出条件,故进行循环,执行完循环体后,S=21,k=4,此时,满足输出条件,故判断框中应填入的条件为k≤3,故选:A.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.5.(5分)(2017春•周口期末)设a∈R,“1,a2,16为等比数列“是“a=±2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的定义结合充分条件和必要条件的定义进行判断即可.【解答】解:若1,a2,16为等比数列,则(a2)2=1×16,则a2=4,a=±2,即充分性成立,若a=±2,则a2=4,则1,4,16为等比数列,即必要性成立,则“1,a2,16为等比数列“是“a=±2”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据等比数列的定义是解决本题的关键.6.(5分)(2017春•周口期末)已知点A的坐标为(5,2),F为抛物线y2=2x 的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,则点P的坐标是()A.(1,)B.(,2)C.(2,2) D.(4,2)【分析】如图所示,设直线l为抛物线的准线,其方程为:x=﹣,过点P作PM ⊥l,垂足为M点,则|PM|=|PF|,当三点A,P,M共线时,当|PA|+|PF|取得最小值|AM|,进而得出.【解答】解:如图所示,设直线l为抛物线的准线,其方程为:x=﹣,过点P作PM⊥l,垂足为M点,则|PM|=|PF|,∴当三点A,P,M共线时,当|PA|+|PF|取得最小值|AM|,|AM|=5﹣=.把y=2代入抛物线方程可得:22=2x,解得x=2.∴P(2,2).故选:C.【点评】本题考查了抛物线的定义标准方程及其性质、数形结合思想方法,考查了推理能力与计算能力,属于中档题.7.(5分)(2017春•周口期末)下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;⑤类比推理是由特殊到特殊的推理.A.①④⑤B.②③④C.②③⑤D.①⑤【分析】根据题意,结合归纳推理、类比推理和演绎推理的定义,根据定义对5个命题逐一判断即可得到答案.【解答】解:根据题意,归纳推理,就是由部分到整体的推理.故①对②错;又所谓演绎推理是由一般到特殊的推理.故④对;类比推理是由特殊到特殊的推理.故⑤对③错,则正确的是①④⑤,故选:A.【点评】本题考查合情推理与演绎推理的定义,关键是掌握合情推理和演绎推理的形式.8.(5分)(2017春•周口期末)已知各项都为正的等差数列{a n}中,a2+a3+a4=15,若a1+2,a3+4,a6+16成等比数列,则a11=()A.22 B.21 C.20 D.19【分析】利用等差数列通项公式、等比数列性质列出方程组,求出首项和公差,由此能求出a11.【解答】解:各项都为正的等差数列{a n}中,∵a2+a3+a4=15,a1+2,a3+4,a6+16成等比数列,∴,由d>0,解得a1=1,d=2,∴a11=1+10×2=21.故选:B.【点评】本题考查等差数列的第11项的求法,考查等差数列、等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.9.(5分)(2017•安阳二模)已知O为坐标原点,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右焦点,双曲线C上一点P满足PF1⊥PF2,且|PF1||PF2|=2a2,则双曲线C的离心率为()A.B.C.2 D.【分析】设P为双曲线右支上一点,|PF1|=m,|PF2|=n,|F1F2|=2c,运用直角三角形的勾股定理和双曲线的定义,结合已知条件,由离心率公式即可得到所求值.【解答】解:设P为双曲线右支上一点,|PF1|=m,|PF2|=n,|F1F2|=2c,由双曲线的定义可得m﹣n=2a,点P满足PF1⊥PF2,可得m2+n2=4c2,即有(m﹣n)2+2mn=4c2,又mn=2a2,可得4a2+4a2=4c2,即有c=a,则离心率e==.故选:A.【点评】本题考查双曲线的定义,以及直角三角形的勾股定理,考查离心率的求法,以及运算能力,属于基础题.10.(5分)(2016•潮南区模拟)设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.4【分析】作出不等式对应的平面区域,利用线性规划的知识先求出a,b的关系,然后利用基本不等式求+的最小值.【解答】解:由z=ax+by(a>0,b>0)得y=,作出可行域如图:∵a>0,b>0,∴直线y=的斜率为负,且截距最大时,z也最大.平移直线y=,由图象可知当y=经过点A时,直线的截距最大,此时z也最大.由,解得,即A(4,6).此时z=4a+6b=12,即=1,则+=(+)()=1+1++≥2+2=4,当且仅当=时取=号,故选:D【点评】本题主要考查线性规划的应用以及基本不等式的应用,利用数形结合是解决线性规划题目的常用方法.11.(5分)(2017春•周口期末)已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R满足f(x)+f′(x)>0,则下列结论正确的是()A.2f(ln2)>3f(ln3)B.2f(ln2)<3f(ln3)C.2f(ln2)≥3f(ln3)D.2f(ln2)≤3f(ln3)【分析】令g(x)=e x f(x),利用导数及已知可判断该函数的单调性,由单调性可得答案.【解答】解:令g(x)=e x f(x),则g′(x)=e x(f(x)+f′(x))>0,∴g(x)递增,∴g(ln2)<g(ln3),∴2f(ln2)<3f(ln3),故选:B.【点评】该题考查利用导数研究函数的单调性,由选项恰当构造函数是解决该题的关键所在.12.(5分)(2017春•周口期末)如图,在△ABC中,已知点D在BC边上,且•=0,sin∠BAC=,AB=3,BD=,则cosC=()A.B.C.D.【分析】由∠BAC=∠BAD+∠DAC,∠DAC=90°,得到∠BAC=∠BAD+90°,代入并利用诱导公式化简sin∠BAC,能求出cos∠BAD的值,在三角形ABD中,由AB,BD及cos∠BAD的值,利用余弦定理即可求出AD的长,由正弦定理求出sinC,再由正弦定理得:,由此能求出BC.求得sinC,再由同角三角函数基本关系式即可计算得解cosC.【解答】解:∵•=0,可得:AD⊥AC,∴∠DAC=90°,∴∠BAC=∠BAD+∠DAC=∠BAD+90°,∴sin∠BAC=sin(∠BAD+90°)=cos∠BAD=,∴cos∠BAD=.在△ABD中,AB=3,BD=,根据余弦定理得:BD2=AB2+AD2﹣2AB•AD•cos∠BAD=18+AD2﹣8AD=3,解得AD=3,或AD=5,当AD=5时,AD>AB,不成立,故舍去AD=5,在△ABC中,由正弦定理得:,∴sinC===,在△ADC中,由正弦定理得:,即,解得BC=4.∴sinC==,cosC==.故选:A.【点评】本题考查角余弦值的求法,考查边长的求法,考查余弦定理、正弦定理、同角三角函数恒等式、诱导公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2017春•周口期末)下表是数据x,y的记录,其中y关于x的线性回归方程是=0.6x+0.3,那么表中t的值是1.【分析】根据已知表中数据,可计算出数据中心点(,)的坐标,根据数据中心点一定在回归直线上,将(,)的坐标代入回归直线方程=0.6x+0.3,解方程可得t的值.【解答】解:由已知中的数据可得:=(3+4+5+6)÷4=4.5,=(2.5+t+4+4.5)÷4=,∵数据中心点(,)一定在回归直线上∴=0.6×4.5+0.3,解得t=1,故答案为:1.【点评】本题考查的知识点是线性回归方程,其中数据中心点(,)一定在回归直线上是解答本题的关键.14.(5分)(2017•蚌埠三模)学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D 两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是B.【分析】根据学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,故假设A,B,C,D分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.【解答】解:若A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为:B【点评】本题考查了合情推理的问题,属于基础题.15.(5分)(2017春•周口期末)不等式e x≥kx对任意实数x恒成立,则实数k 的取值范围为[0,e] .【分析】由题意可得f(x)=e x﹣kx≥0恒成立,即有f(x)min≥0恒成立;求f(x)的导数,判断f(x)的单调性,讨论k的取值,即可求出k的取值范围.【解答】解:不等式e x≥kx对任意实数x恒成立,即为f(x)=e x﹣kx≥0恒成立,即有f(x)min≥0,由f(x)的导数为f′(x)=e x﹣k,当k<0,e x>0,可得f′(x)>0恒成立,f(x)单调递增,无最大、最小值,不满足条件;当k>0时,x>lnk时f′(x)>0,f(x)单调递增;x<lnk时f′(x)<0,f(x)单调递减;所以有x=lnk处取得最小值,且为k﹣klnk,由k﹣klnk≥0,解得k≤e,∴0<k≤e;又k=0时,e x≥0恒成立,综上,k的取值范围是[0,e].故答案为:[0,e].【点评】本题考查不等式恒成立问题的解法,注意运用构造函数求最值,也考查了转化思想,是中档题.16.(5分)(2009•山东)某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为2000元,设备乙每天的租赁费为3000元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为23000元.【分析】设需租赁甲种设备x天,乙种设备y天,可得,画出可行域,作出目标函数为z=2000x+3000y.【解答】解:设需租赁甲种设备x天,乙种设备y天,则目标函数为z=2000x+3000y.作出其可行域,易知当x=4,y=5时,z=2000x+3000y有最小值23000元.故答案为:23000.【点评】本题考查了线性规划有关知识、直线方程与不等式的应用,考查了推理能力与计算能力,属于中档题.三、解答题(共5小题,满分60分)17.(12分)(2017春•周口期末)已知{a n}是等比数列,a1=3,a4=24,数列{b n}满足b1=1,b4=﹣8,且{a n+b n}是等差数列.(Ⅰ)求数列{a n}和{a n+b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.【分析】(Ⅰ)利用等差数列、等比数列的通项公式先求得公差和公比,即可求数列的通项公式;(Ⅱ)利用分组求和的方法求解数列的和,由等差数列及等比数列的前n项和公式即可求解数列的和.【解答】解:(Ⅰ)设等比数列{a n}的公比为q,由题意得a4=a1q3,∴q3=8,解得q=2,∴a n=3×2n﹣1,设等差数列{a n+b n}的公差为d,由题意得:a4+b4=(a1+b1)+3d,∴24﹣8=(1+3)+3d,解得d=4,∴a n+b n=4+4(n﹣1)=4n,∴b n=4n﹣3×2n﹣1;(Ⅱ)数列{a n}的前n项和为=﹣3+3×2n,数列{a n+b n}的前n项和为n(4n+4)=n(2n+2)=2n2+2n,故{b n}的前n项和为2n2+2n+3﹣3×2n.【点评】本题考查了等差数列、等比数列的通项公式,考查了利用分组求和的方法求解数列的前n项和,是中档题.18.(12分)(2017春•周口期末)2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识回答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:(Ⅰ)求此活动中各公园幸运之星的人数;(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访.求这两人均来自乙公园的概率;(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.附临界值及公式:K2=,其中n=a+b+c+d.【分析】(Ⅰ)根据分层抽样原理分别计算甲、乙、丙、丁公园中幸运之星的人数;(Ⅱ)用列举法求出基本事件数,计算所求的概率值;(Ⅲ)由表中数据,计算观测值K2,对照临界值得出结论.【解答】解:(Ⅰ)甲公园中幸运之星的人数为×10=3,乙公园中幸运之星的人数为×10=4,丙公园中幸运之星的人数为×10=2,丁公园中幸运之星的人数为×10=1;(Ⅱ)设乙公园中的4人为A、B、C、D,丙公园的2人为e、f,从中任选2人,基本事件是AB、AC、AD、Ae、Af、BC、BD、Be、Bf、CD、Ce、Cf、De、Df、ef共15种;其中者两人均来自乙公园的基本事件是AB、AC、AD、BC、BD、CD共6种,故所求的概率为P==;(Ⅲ)由表中数据,计算观测值K2===7.5>6.635,据此判断,能在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.【点评】本题考查了列举法求古典概型的概率问题,也考查了独立性检验的应用问题,是综合题.19.(12分)(2017春•周口期末)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.(Ⅰ)求角C的值;(Ⅱ)若a+b=2,当边c取最小值时,求△ABC的面积.【分析】(Ⅰ)由正弦定理得:2sinCcosA+sinA=2sinB,从而sinA=2sinAcosC,进而cosC=,由此能求出C.(Ⅱ)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,由a+b=2,得=1,由此能示求出当c的最小值为1及S△ABC.【解答】解:(Ⅰ)∵在△ABC中,内角A,B,C的对边分别为a,b,c,2ccosA+a=2b.∴由正弦定理得:2sinCcosA+sinA=2sinB,∴2sinCcosA+sinA=2sin(A+C),即2sinCcosA+sinA=2sinAcosC+2cosAsinC,∴sinA=2sinAcosC,∵sinA≠0,∴cosC=.∵C是三角形的内角,∴C=.(Ⅱ)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,∵a+b=2,∴c2=a2+b2﹣ab=(a+b)2﹣3ab=4﹣3ab,∴=1(当且仅当a=b=1时,等号成立),=absinC=.∴当c的最小值为1,故S△ABC【点评】本题考查角的大小、三角形面积的求法,考查正弦定理、余弦定理、三角形面积公式、诱导公式、正弦加法定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.20.(12分)(2015•青岛二模)已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.(Ⅰ)求抛物线C1的方程;(Ⅱ)已知椭圆C2:=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为.直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.【分析】(Ⅰ)设点G的坐标为(x0,y0),列出关于x0,y0,p的方程组,即可求解抛物线方程.(Ⅱ)利用已知条件推出m、n的关系,设(x1,y1)、B(x2,y2),联立直线与椭圆方程,利用韦达定理以及判别式大于0,求出K的范围,通过原点O在以线段AB为直径的圆的外部,推出,然后求解k的范围即可.【解答】(本小题满分13分)解:(Ⅰ)设点G的坐标为(x0,y0),由题意可知…(2分)解得:,所以抛物线C1的方程为:y2=8x…(4分)(Ⅱ)由(Ⅰ)得抛物线C1的焦点F(2,0),∵椭圆C2的一个焦点与抛物线C1的焦点重合∴椭圆C2半焦距c=2,m2﹣n2=c2=4,∵椭圆C2的离心率为,∴,,∴椭圆C2的方程为:…(6分)设A(x1,y1)、B(x2,y2),由得(4k2+3)x2﹣32kx+16=0由韦达定理得:,…(8分)由△>0⇒(﹣32k)2﹣4×16(4k2+3)>0或…①…(10分)∵原点O在以线段AB为直径的圆的外部,则,∴===…②由①、②得实数k的范围是或…(13分)【点评】本题考查直线与椭圆的位置关系的综合应用,圆锥曲线的综合应用,考查分析问题解决问题的能力.21.(12分)(2017•和平区校级模拟)已知函数f(x)=(x﹣2)lnx﹣ax+1.(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.【分析】(1)求出函数的导数,问题转化为在(1,+∞)上恒成立即可,根据函数的单调性求出a的范围即可;(2)令g(x)=(x﹣2)lnx,x>0,h(x)=ax﹣1,根据函数的单调性结合函数的图象求出a的范围即可.【解答】解:(1)函数f(x)的定义域为(0,+∞),,要使f(x)在区间(1,+∞)上单调递增,只需f'(x)≥0,即在(1,+∞)上恒成立即可,易知在(1,+∞)上单调递增,所以只需a≤y min即可,易知当x=1时,y取最小值,,∴实数a的取值范围是(﹣∞,﹣1].(2)不等式f(x0)<0即(x0﹣2)lnx0<ax0﹣1,令g(x)=(x﹣2)lnx,x>0,h(x)=ax﹣1,则,g'(x)在(0,+∞)上单调递增,而g'(1)=﹣1<0,g'(2)=ln2>0,∴存在实数m∈(1,2),使得g'(m)=0,当x∈(1,m)时,g'(x)<0,g(x)在(1,m)上单调递减;当x∈(m,+∞)时,g'(x)>0,g(x)在(m,+∞)上单调递增,∴g(x)min=g(m).g(1)=g(2)=0,画出函数g(x)和h(x)的大致图象如下,h(x)的图象是过定点C(0,﹣1)的直线,由图可知若存在唯一整数x0,使得f(x0)<0成立,则需k BC<a≤min{k AC,k DC},而,∴k AC>k DC.∵,∴.于是实数a的取值范围是.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想、分类讨论思想,考查函数恒成立问题,是一道综合题.四、选修4-4:坐标系与参数方程22.(10分)(2017春•周口期末)在平面直角坐标系xOy中,曲线C1的参数方程为(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M (1,)对应的参数φ=,射线θ=与曲线C2交于点D(1,).(Ⅰ)求曲线C1,C2的标准方程;(Ⅱ)若点A(ρ1,θ),B(ρ2,θ+)在曲线C1上,求+的值.【分析】(Ⅰ)将M(1,)及对应的参数φ=代入,得a=2,b=1,由此能求出曲线C1的参数方程,进而得到曲线C1的标准方程;设圆C2的半径为R,曲题意圆C2的方程为(x﹣R)2+y2=R2,将点D(1,)代入ρ=2Rcosθ,得R=1,由此能求出曲线C2的标准方程.(Ⅱ)由点A(ρ1,θ),B()在曲线C1上,得到+,,由此能求出的值.【解答】解:(Ⅰ)将M(1,)及对应的参数φ=代入,得,解得a=2,b=1,∴曲线C1的参数方程为(φ为参数),∴曲线C1的标准方程为=1,设圆C2的半径为R,曲题意圆C2的方程为ρ=2Rcosθ,即(x﹣R)2+y2=R2,将点D(1,)代入ρ=2Rcosθ,得1=2Rcos,即R=1,∴曲线C2的标准方程为(x﹣1)2+y2=1.(Ⅱ)∵点A(ρ1,θ),B()在曲线C1上,∴+,,∴=()+()=.【点评】本题考查曲线的标准方程的求法,考查代数式求值,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.五、选修4-5:不等式选讲23.(2017•抚顺一模)已知函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.(1)解不等式f(x)≤5;(2)若不等式m2﹣m<f(x),∀x∈R都成立,求实数m的取值范围.【分析】(1)原不等式等价于①,或②,或③.分别求得①、②、③的解集,再取并集,即得所求.(2)利用绝对值三角不等式求得f(x)的最小值为2,可得m2﹣m<2,由此解得实数m的取值范围.【解答】解:(1)原不等式等价于①,或②,或③.解①求得,解②求得,解③求得,因此不等式的解集为.(2)∵f(x)=|2x﹣1|+|2x﹣3|≥|2x﹣1﹣(2x﹣3)|=2,∴m2﹣m<2,解得﹣1<m<2,即实数m的取值范围为(﹣1,2).【点评】本题主要考查绝对值三角不等式的应用,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.。