2012-2016高考数学文科历年题型分析与试卷分析
- 格式:pdf
- 大小:164.05 KB
- 文档页数:8
2012年普通高等学校招生全国统一考试(大纲卷)数学(文科)一.选择题:每小题5分,共60分.在每小题给出的四个答案中,只有一项是符合题目要求的. 1.已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆ 答案B【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用。
【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,可知集合C 是最小的,集合A 是最大的,故选答案B 。
2.函数1)y x =≥-的反函数为A .21(0)y x x =-≥ B .21(1)y x x =-≥ C .21(0)y x x =+≥ D .21(1)y x x =+≥ 答案A【命题意图】本试题主要考查了反函数的求解,利用原函数反解x ,再互换,x y 得到结论,同时也考查了函数值域的求法。
【解析】由2211y x y x y =⇒+=⇒=-,而1x ≥-,故0y ≥互换,x y 得到21(0)y x x =-≥,故选答案A 3.若函数[]()sin(0,2)3x f x ϕϕπ+=∈是偶函数,则ϕ= A .2πB .23πC .32πD .53π答案C【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,。
【解析】由[]()sin (0,2)3x f x ϕϕπ+=∈为偶函数可知,y 轴是函数()f x 图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故3(0)sin13()3322f k k k Z ϕϕπππϕπ==±⇒=+⇒=+∈,而[]0,2ϕπ∈,故0k =时,32πϕ=,故选答案C 。
4.已知α为第二象限角,3sin 5α=,则sin 2α= A .2425- B .1225- C .1225 D .2425答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用。
2012年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,,A B C {}2320A x x x =-+=,{}05,B x x x =<<∈N ,则满足条件A B C ⊆⊆的集合C 的个数为 ( )A .1B .2C .3D .4 【测量目标】集合的基本运算.【考查方式】子集的应用.【参考答案】D【试题解析】求{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.2.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为 ( )A .0.35B .0.45C .0.55D .0.65 【测量目标】频数分布表的应用,频率的计算,对于頻数、频率等统计问题【考查方式】通过弄清楚样本总数与各区间上样本的个数,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.【参考答案】B【试题解析】由频数分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B. 3.函数()cos 2f x x x =在区间上[]0,2π的零点的个数为 ( )A .2B .3C .4 D.5 【测量目标】函数零点求解与判断.【考查方式】通过函数的零点,要求学会分类讨论的数学思想.【参考答案】D【试题解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos20=x ,得()π22x k k π=+∈Z ,故()ππ24k x k =+∈Z .又因为[]0,2πx ∈,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D. 4.命题“存在一个无理数,它的平方是有理数”的否定是 ( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数【测量目标】命题的否定.【考查方式】求解特称命题或全称命题的否定,千万别忽视了改变量词;【参考答案】B【试题解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.5.过点(1,1)P 的直线,将圆形区域分为两部分,使22{(,)4)}x y x y +得这两部分的面积之差最大,则该直线的方程为 ( )A .0x y += B. 10y -= C. 0x y -= D.340x y +-=【测量目标】考查直线、线性规划与圆的综合运,并学会用数形结合思想.【考查方式】通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.【参考答案】A【试题解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为1-.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.6.已知定义在区间(0,2)上的21π-函数的图象()y f x =如图所示,则(2)y f x =--的图象为 ( )【测量目标】函数的图象的识别.【考查方式】利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解【参考答案】B【试题解析】排除法:当1x =时,()()()21211y f x f f =--=--=-=-,故可排除A,C 项;当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;所以由排除法知选B.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则{()}n f a 称为“保等比数列函数”. 现有定义在上的如下(,0)(0,)-∞+∞函数: ( )①2()f x x =; ②()2x f x =;③()f x =; ④()ln f x x =. 则其中是“保等比数列函数”的的()f x 序号为A .① ②B .③ ④C .① ③D .② ④ 【测量目标】等比数列的新应用,函数的概念.【考查方式】读懂题意,然后再去利用定义求解,注意数列的通项.【参考答案】C【试题解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C8.设ABC △的内,,A B C 所对的边分别为,,a b c . 若三边的长为连续的三个正整数,且A B C >> ,320cos b a A =,则sin :sin :sin A B C 为 ( )A.4:3:2B.5:6:7 C .5:4:3 D.6:5:4【测量目标】正、余弦定理以及三角形中大角对大边的应用.【考查方式】本题需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长,注意正余弦定理与和差角公式的结合应用.【参考答案】D【试题解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20b A a=②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc+-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.9.设,,R a b c ∈,“1abc =”是“a b c a b c ++++ ”的 ( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 【测量目标】充要条件的判断,不等式的证明.【考查方式】首先需判断条件能否推得结论,然后需判断结论能否推得条件.【参考答案】A【试题解析】1abc =时,abc abc abc ab bc ca a b c a b c++=++=++, 而()()()()2222a b c a b b c c a ab bc ca ++=+++++++(当且仅当a b c ==,且1abc =,即a b c==时等号成立),故ab bc ca a b c a b c++=++++;但当取2a b c ===,显然有a b c a b c ++++,但1abc ≠,即由a b c a b c ++++不可以推得1abc =;综上,1abc =是a b c a b c ++++的充分不必要条件,应选A.10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 ( )A .112π- B .1π C . 21π- D . 2π【测量目标】古典概型的应用以及观察推理的能力.【考查方式】求解阴影部分的面积,将不规则图形的面积化为规则图形的面积来求解.【参考答案】C【试题解析】如下图所示,设OA 的中点为1O ,OB 的中点为2O ,半圆1O 与半圆2O 的交点分别为,O F ,则四边形12OO FO 是正方形.不妨设扇形的半径为2,记两块白色区域的面积分别为12,S S ,两块阴影部分的面积分别为34,S S .则212341π2π4OAB S S S S S +++==⨯=扇形, ①而22132311111π,π1π2222S S S S π+=⨯=+=⨯=,即1232πS S S ++=, ② 由①-②,得34S S =.又由图象观察可知,12214OO FO OAB O FB O AF S S S S S =---正方形扇形扇形扇形 2222221111π1π1π11π11π14422=⨯-⨯-⨯-=⨯-=-. 故由几何概型概率公式可得,此点取自阴影部分的概率:3442π221ππOAB OAB S S S P S S +-====-扇形扇形.故选C.二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人. 现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人.【测量目标】分层抽样的应用.【考查方式】分层抽样在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比.【参考答案】6【试题解析】 设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人.12.若21k b -3i i 1ib a b +=+-(a ,b 为实数,i 为虚数单位),则a b += . 【测量目标】复数代数形式的四则运算.【考察方式】通过考查复数相等来判断学生对复数的掌握.【参考答案】3【试题解析】因为3i i 1ib a b +=+-,所以()()()3i i 1i i b a b a b b a +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,a b b a b +=⎧⎨-=⎩解得0,3a b =⎧⎨=⎩所以3a b +=. 13已知向量(1,0)=a ,(1,1)=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ;(Ⅱ)向量与3-b a 向量a 夹角的余弦值为 .【测量目标】单位向量的概念,平面向量的坐标运算,向量的数量积运算等.【考查方式】给出两个向量,利用向量的坐标和向量的数量积来运算求值.【参考答案】(Ⅰ)1010⎛ ⎝⎭;(Ⅱ)5- 【试题解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得310,1010.x y ⎧=⎪⎪⎨⎪=⎪⎩故31010,⎛⎫ ⎪ ⎪⎝⎭c =.即与2+a b 同向的单位向量的坐标为31010,1010⎛⎫ ⎪ ⎪⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,025cos 3551θ--===--⨯b a a b a a .14.若变量,x y 满足约束条件1133x y x y x y --⎧⎪+⎨⎪-⎩,则目标函数23z x y =+的最小值是 .【测量目标】二元线性规划求目标函数最小值. 【考查方式】给出约束条件,判断可行域,利用可行域求解.【参考答案】2【试题解析】作出不等式组1133x y x y x y --⎧⎪+⎨⎪-⎩所表示的可行域(如下图的ABM △及其内部),目标函数23z x y =+在ABM △的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.15.已知某几何体的三视图如图所示,则该几何体的体积为 .【测量目标】考查圆柱的三视图的识别,圆柱的体积.【考查方式】在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法.【参考答案】12π【试题解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是22π212π1412πV =⨯⨯⨯+⨯⨯=.16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .【测量目标】顺序结构框图和判断结构框图的执行求解.【考查方式】对于循环结构的输出问题,一步一步按规律写程序结果.【参考答案】9【试题解析】由程序框图可知:第一次:1,0,1,1,23a s n s s a a a ====+==+=,满足判断条件3?n <;第二次2,4,5n a a ===,满足判断条件3?n <第三次:3,9,7n s a ===,此时不满足判断条件3?n <,故终止运行,输出s 的值. 综上,输出的s 值为9.17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b . 可以推测:(Ⅰ)2012b 是数列{}n a 中的第________项;(Ⅱ)21k b -________.(用k 表示)【测量目标】数学归纳法.【考查方式】本题考查归纳推理,猜想的能力.【参考答案】(Ⅰ)5030;(Ⅱ)()5512k k - 【试题解析】易知(1)2n n n a +=,写出数列{}n a 的若干项依次为:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,…,发现其中能被5整除的为10,15,45,55,105,120,190,210,故142510,15b a b a ====.同理,39410514615719820,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:()255512k k k k b a +==,()()()21515151155122k k k k k k b a ----+-===(k 为正整数).故201221006510065030b b a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)第17题10 6 3 1 ···设函数22()sin cos cos ()f x x x x x x ωωωλ=+-+∈R ,的图象关于直线πx =对称,其中,πω为常数,且1(,1)2ω∈(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 的值域. 【测量目标】三角函数的图象的周期性,值域,诱导公式的应用. 【考查方式】给出函数,利用三角函数的性质求最小值和周期.【试题解析】解:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-++π=2sin(2)+6x ωλ-.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2)16x ω-=±, 所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-()f x的值域为[22-.19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -11B D ⊥,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.2222ABCD A B C D -AB CDCB AD(Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理. 已知10AB =,2220,A B =230AA =,113AA =(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?【测量目标】线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.【考查方式】通过线线垂直证明面面垂直,并用公式求体积【试题解析】解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为AB AD A =,所以2AA 平面ABCD .连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥.因为底面ABCD 是正方形,所以AC BD ⊥ 根据棱台的定义可知,BD 与B 1 D 1共面.又已知平面ABCD ∥平面1111A B C D ,且平面11BB D D平面ABCD BD =,平面11BB D D平面111111A B C D B D =,所以B 1 D 1∥BD . 于是由2AA BD ⊥,AC BD ⊥,B 1 D 1∥BD ,可得211AA B D ⊥,.11AC B D ⊥ 又因为2AA AC A =,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面.又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()221204(101120(cm )2=+⨯+.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=,故所需加工处理费为0.20.22420484S =⨯=(元).20.(本小题满分13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8. (Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{}n a 的前n 项和. 【测量目标】本题考查等差数列的通项,求和等.【考查方式】考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.【试题解析】解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩ 解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-.(Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件.故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时, 234||||||n n S S a a a =++++5(337)(347)(37)n =+⨯-+⨯-++-2(2)[2(37)]311510222n n n n -+-=+=-+. 当2n =时,满足此式.综上,24,1,31110, 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩.21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (M>0,M 1)=≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的,K>0都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【测量目标】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系.【考查方式】考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论.【试题解析】解:(Ⅰ)如图1,设(,)M x y ,00(,)A x y ,则由DM m DA (m>0,1)=≠且m ,可得0x x =,0y m y =,所以0x x =,. 01y y m=① 因为A 点在单位圆上运动,所以2221(0,1)y x m m m +=>≠且 ②将①式代入②式即得所求曲线C 的方程为.2221(0,1)y x m m m+=>≠且因为(0,1)(1,)m ∈+∞,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(0),0); 当1m >时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,,(0,.(Ⅱ)1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠. 于是由③式可得212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得m =故存在m 2212y x +=上,对任意的0k >,都有PQ PH ⊥.22.(本小题满分14分)设函数()(1)nf x ax x b =-+,1+1()ex y f x n =<,,n 为正整数,a ,b 为常数. 曲线()y f x =在(1,(1))f 处的切线方程为.+1x y = (Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <. 【测量目标】函数导数的几何意义以及单调性的应用,还考查不等式的证明.【考查方式】通过转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等.【试题解析】解:(Ⅰ)因为(1)f b =,由点(1,)b 在=1x y +上,可得11b +=,即0b =.因为1'()(1)n n f x anxa n x -=-+,所以'(1)f a =-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =.(Ⅱ)由(Ⅰ)知,1()(1)nnn f x x x x x+=-=-,1()(1)()1n nf x n xx n -'=+-+. 令()0f x '=,解得1n x n =+,即'()f x 在(0,)+1n n +(0,)+∞上有唯一零点. 在(0,)+1nn +上,()0f x '>,故()f x 单调递增; 而在(+)+1n n ∞,上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()1(1)nn n n f n n +=++. (Ⅲ)令1()ln 1(0)t t t t ϕ'=-+>,则22111()(0)t t t t t tϕ-'=-=>. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=. 所以()0(1)t t ϕ>>,即1ln 1(1)t t t>->.令11+t n =,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()1n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,1nx n =+,故所证不等式成立.。
全国课标卷 (文科)高考数学学科分析新课标数学试卷的知识分布与覆盖上保持相对稳定,选择填空题都比较平和,属于中低档题目,解答题数列和立体几何不难,统计数据题运算量稍大,多数学生会耗点时间,导数和圆锥曲线后两问有难度。
总体看今年高考数学试题从试题的结构与难度与整体变化不大,但总体难易有一定的区分度,学生考及格容易得高分难。
试卷有非常明显的特点:重基础、图创新;讲传承、保稳定;顾全面,求综合;重思维、考能力。
一考查目的形式整体保持稳定试题在题型、题量、分值、难度、知识分布与覆盖上保持相对稳定,避免了大起大落,试卷重点考查高中主干模块知识,并加以交汇。
试题以考查高中基础知识为主线,在基础中考查能力。
重视对教材的理解和挖掘,很多试题和教材中的例题习题有相似之处,又不尽相同。
二突出基础知识,注重数学思想方法的考查数学作为基础学科在每年考试中约40%的题目以考查学生的基础知识,基本方法和基本技能的熟练程度为主,通过对试题解答的速度和正确率来区分不同考生,如试题中圆锥曲线的题目不论小题还是解答题运算量都比较小,这有利于考生有一个良好的心态去解决后面的解答题,并充分发挥自己的真实水平。
仍然保持“多考一点想,少考一点算”的特点。
三坚持能力立意,突出能力考查重点以能力立意培养数学的应用意识也是非常重要的,如何将已有的数学知识应用到我们面临的实际问题中,如何利用我们已掌握的数学知识,处理我们面对的实际问题,这都是很重要的,另外,几种重要的数学思想在试卷中都有考查,例如数形结合的思想,函数与方程的思想,分类讨论的思想,转化与化归的思想。
四追求创新仍是改革的热点创新是高考改革的一个永恒的主题,命题以创新型试题为载体,强调了高考对考生的学习方式和学习潜能的关注,力图使得试卷的选拔功能得以全面体现。
总体来看:重基础、图创新;凸应用、先价值,顾全面、求综合;重思维、考能力。
新课标高考数学文科试题对我们今后数学教学和复习的启示为:注重回归课本、扎实基础,降低难度,注重交叉,综合,注重数学背景,注重数学应用,努力提高学生的思维能力。
2012年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1. 已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1}则 ( ) A. A ⊂≠B B. B ⊂≠A C..A =B D. A ∩B =∅ 【测量目标】不等式的运算和集合的包含关系.【考查方式】通过解不等式判断集合的包含关系. 【参考答案】B【试题解析】:由题意得,2={|20}{|12}A x x x x x --<=-<<,则B 是A 的真子集.2. 复数z =-3+i2+i 的共轭复数是 ( )A. 2+iB. 2-iC. -1+iD. -1-i 【测量目标】复数的四则运算及共轭复数的概念. 【考查方式】通过运算直接考查共轭复数. 【参考答案】D【试题解析】由题意得,()()3i 2i 3i 1i 2i 5z -+--+===-++,则1i z =--,故选D 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( ) A. -1 B . 0 C . 2 D. 1【测量目标】线性回归方程与样本系数的的关系式. 【考查方式】通过给出方程求样本系数. 【参考答案】D【试题解析】:由题意得,根据线性相关性的检验可知,此时数据密切相关,此时数据的样本相关系数为1,故选D.4.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30的等腰三角形,则E 的离心率为 ( )A. 12B. 23C. 34 D .45【测量目标】:椭圆的简单几何性质.【考查方式】将椭圆与三角函数知识结合起来考查. 【参考答案】C【试题解析】:由题意得,如图所示12212060F F P MF P ∠=⇒∠=,在直角2MF P △中,2sin60PM PF == , 又232F M a c =-,且2tan 603322PM F M a c a c==⇒=--所以34c e a ==,故选C . 5. 已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 ( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3) 【测量目标】二元线性规划的最优解.【考查方式】利用线性约束条件通过直线平移求最值. 【参考答案】A【试题解析】由题意得,正三角形ABC 的边长为2,所以顶点C的坐标为()12C , 当取点三角形ABC 的顶点()1,3B 时目标函数取得最大值,最大值为max 2z =,当取点()12C +时,目标函数有最小值,此时最小值为min 1z =所以目标函数的取值范围为()12,故选A.6.如果执行下边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则 ( ) A.A+B 为a 1,a 2,…,a N 的和 B.2A B+为a 1,a 2,…,a N 的算术平均数 C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【测量目标】程序框图的算法流程. 【考查方式】直接考查程序框图的算法. 【参考答案】C【试题解析】:由题意得,根据给定的程序框图可知,此程序框图是计算123,,,,N a a a a 的最大值与最小值的算法框图,A 表示计算123,,,,N a a a a 最大值,B 表示计算123,,,,N a a a a 的最小值,故选C.7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( ) A.6 B.9 C.12 D.18【测量目标】利用三视图求体积.【考查方式】通过观察三视图判断图形. 【参考答案】B【试题解析】由题意得,根据三视图的规则,原几何体表示底面为直角边长为直角三角形,高为3的三棱锥,所以几何体的体积为11139332V Sh ==⨯⨯=,故选B.8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为 ( ) A.6π B.43π C.46π D.63π【测量目标】球体体积的计算方法.【考查方式】通过平面截球求出球的半径和体积. 【参考答案】B【试题解析】:由题意得,连接球心与截面小圆的圆心1OO ,则1OO α⊥平面,则1OO = 根据球的性质得,球的半径R == 所以球的体积为3344ππ33V R ===,故B .9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx+φ)图像的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4【测量目标】三角函数的周期和图像.【考查方式】通过相邻对称轴的距离求出ω和ϕ. 【参考答案】A【试题解析】由题意得,直线π4x =和5π4x =是函数()f x 图象的两条相邻的对称轴, 则函数周期满足π2π12TT ω=⇒=⇒=,即函数()sin()f x x ϕ=+, 又ππππ()sin()1π,4442f k k ϕϕ=+=±⇒+=+∈Z ,即ππ,4k k ϕ=+∈Z ,当0k =时,π4ϕ=,故选A.10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为 ( ) A. 2 B.2 2 C.4 D.8 【测量目标】等轴双曲线的概念和抛物线的相关概念. 【考查方式】等轴双曲线与抛物线结合考查. 【参考答案】C【试题解析】:由题意得,设等轴双曲线的方程为22221x y a a-=抛物线216y x =的准线方程为4x =-,代入双曲线的方程得,所以=2a =4,所以选C 11.当0<x ≤12时,4x <log a x ,则a 的取值范围是 ( )A.(0,22) B.(22,1) C.(1,2) D.(2,2) 【测量目标】对数函数与指数函数的图像与性质.【考查方式】通过不等式比较大小求出范围. 【参考答案】B【试题解析】:由题意得,当01a <<时,要使得14log ,(0)2xa x x <<…,即当102x <…时,函数4xy =在函数log a y x =图象的下方,又当12x =时,1242=,即函数4xy =过点1(,2)2,把点1(,2)2代入函数log a y x =得2a =,即12a <<,当1a >时,不符合题意,舍去,所以实数a 的取值范围是12a <<,故选B. 12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 ( ) A.3690 B.3660 C.1845 D.1830 【测量目标】数列的通项公式和求和公式. 【考查方式】给出数列的递推关系求和. 【参考答案】D【试题解析】:由题意得,由1(1)21n n n a a n ++-=-得21(1)21n n n a a n ++=-++=1(1)[(1)21]21n n n a n n ---+-++(1)(21)21n n a n n =-+--++即2(1)(21)21n n n a a n n ++=--++ 也有31(1)(21)23n n n a a n n +++=--+++两式相加得1232(1)44n n n n n a a a a n ++++++=--++设k 为整数,则41414243442(1)4(41)41610k k k k k a a a a k k ++++++++=--+++=+ 于是141460414243440()(1610)1830k k k k k k S aa a a k ++++===+++=+=∑∑第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. 【测量目标】导数的几何意义.【考查方式】通过点在曲线上求出斜率和直线. 【参考答案】43y x =-【试题解析】:由题意得,(3ln 1)3ln 3ln 4y x x x x x y x '=+=+⇒=+,所以1|4x y ='=, 由点斜式方程得14(1)y x -=-,整理得43y x =-.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______. 【测量目标】等比数列求和公式的简单运用. 【考查方式】通过等式直接考查. 【参考答案】-2【试题解析】:设等比数列的首项为1a ,公比为q ,由题意得,3230S S +=,则221(44)0440a q q q q ++=⇒++=,解得2q =-.15.已知向量a,b 夹角为45,且|a |=1,|2a -b |=10,则|b |= . 【测量目标】平面向量的数量积与向量的模. 【考查方式】通过给出向量的模和角度直接考查.【参考答案】:【试题解析】:由题意得,222224444cos 45-=-+=-+ a b a b b a b b ,则244cos 4510-+=⇒=a b b b16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m=____.【测量目标】函数奇偶性的判断和性质. 【考查方式】利用奇偶性求函数最值. 【参考答案】2【试题解析】:由题意得,函数()22222(1)sin 21sin 2sin 1111x x x x x x xf x x x x ++++++===++++,设()22sin 1x x g x x +=+,则()()222()sin()2sin ()11x x x xg x g x x x -+-+-==-=--++, 所以函数()g x 为奇函数,(步骤1)设当x a =时,()g x 有最大值()g a ,则当x a =-时,()g x 有最小值()g a -, 又()()1f x g x =+,则当x a =时,()f x 有最大值()1g a +,则当x a =-时,()f x 有最小值()1g a -+, 即()1,()1M g a m g a =+=-+,所以2M m +=(步骤2)三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知,,a b c 分别为ABC △个内角三,,A B C 所对的边,sin cos c C c A =-. (1)求A ;(2)若2a =,ABC △b ,c .【测量目标】正弦定理的运用.【考查方式】通过给出三角函数关系式直接考查.【试题解析】(1)∵sin cos c C c A -,∴sin sin sin cos C A C C A =-,(步骤1) ∵0πC <<,∴sin 0C ≠,cos 1A A -=,∴1cos )12A A -=, ∴π1sin()62A -=,(步骤2)∵0πA <<,∴π3A =.(步骤3)(2)∵1sin 2S bc A ==4bc =.①(步骤4)∵222cos a b c bc A =+-,∴228b c +=,②由①②解得2b c ==.(步骤5)18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【测量目标】独立事件的概率分布列和期望.【考查方式】通过对实际问题的考查去求概率相关知识.【试题解析】(1)当日需求量17n …时,利润85y =;(步骤1) 当日需求量17n <时,利润1085y n =-,(步骤2)∴y 关于n 的解析式为1085,17,()85,17,y n n n y n =-<⎧∈⎨= ⎩N ….(步骤3)(2)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元, ∴这100天的平均利润为1(5510652075168554)76.4100⨯+⨯+⨯+⨯=.(步骤4)(ii)利润不低于75元,当且仅当日需求不少于16枝, 故当天的利润不少于75元的概率为0.160.160.150.130.10.7P =++++=.(步骤5) 19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=,112AC BC AA ==,D 是棱1AA 的中点.(1)证明:平面1BDC ⊥平面BDC ;(2)平面1BDC 分此棱柱为两部分,求这两部分体积的比.【测量目标】空间几何体内面面垂直的判定及体积公式.【考查方式】由线面垂直得到面面垂直,根据棱柱体积公式计算. . 【试题解析】(1)由题设知1BC CC ⊥,BC AC ⊥,1CC AC C = ,∴BC ⊥平面11ACC A , (步骤1) 又∵1DC ⊂平面11ACC A ,∴1DC BC ⊥,由题设知1145A DC ADC ∠=∠=,∴190CDC ∠= ,即1DC DC ⊥,(步骤2) 又∵BC DC C ⊥=, ∴1DC ⊥平面BDC , ∵1DC ⊂平面1BDC ,∴平面1BDC ⊥平面BDC .(步骤3) (2)设棱锥1B DACC -的体积为1V ,1AC =, 由题意得,1112111322V +=⨯⨯⨯=,(步骤4) 由三棱柱111ABC A B C -的体积1V =, ∴11():1:1V V V -=,∴平面1BDC 分此棱柱为两部分体积之比为1:1.(步骤5) 20.(本小题满分12分)设抛物物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(1)若90BFD ∠=,ABD △的面积为p 的值及圆F 的方程;(2)若,,A B F 三点在同一条直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【测量目标】抛物线与圆的标准方程及简单几何性质. 【考查方式】考查分类讨论的思想.【试题解析】设准线l 于y 轴的焦点为E ,圆F 的半径为r , 则FE p =,FA FB FD r ===,E 是BD 的中点, (1)∵90BFD ∠=,∴FA FB FD ===,2BD p =,(步骤1)点A 到直线l的距离d FA ==,∵ABD △的面积为∴11222ABD S BD d p ==⨯= △2) 解得2p =,∴(0,1)F , FA =,∴圆F 的方程为:22(1)8x y +-=.(步骤3) (2)∵,,A B F 三点在同一条直线m 上, ∴AB 是圆F 的直径,90ADB ∠=,由抛物线定义知12AD FA AB ==, ∴30ABD ∠=,∴m 的斜率为3或3-∴直线m 的方程为:2py x =+,(步骤4)∴原点到直线m 的距离14d p =,设直线n 的方程为:3y x b =±+,由22y x b x py⎧=+⎪⎨⎪=⎩,得220x px pb ±-=,(步骤5) ∵n 与C 只有一个公共点,∴24803p pb ∆=+=,∴6p b =-,∴直线n 的方程为:6py x =-,(步骤6) ∴原点到直线n 的距离2d p =,∴坐标原点到m ,n 距离的比值为3.(步骤7)21.(本小题满分12分)设函数()e 2xf x ax =--. (1)求()f x 的单调区间;(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值 【测量目标】利用导数求函数的单调区间及最值.【考查方式】直接考查单调区间及考查构造函数的思想.【试题解析】(1)()f x 的定义域为(,)-∞+∞,()e x f x a '=-,(步骤1) 若0a …时,则()0f x '>,∴()f x 在(,)-∞+∞上单调递增.(步骤2) 若0a >时,令()0f x '=,解得ln x a =,当(,ln )x a ∈-∞时,()0f x '<,当(ln ,)x a ∈+∞时,()0f x '>,∴()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.(步骤3) (2)若1a =,()()1()(e 1)1x x k f x x x k x '-++=--++∴当0x >时,()()10x k f x x '-++>等价于1(0)e 1xx k x x +<+>-.① 令1()(0)e 1x x g x x x +=+>-,22(e 1)(1)e e (e 2)()1(e 1)(e 1)xx x x x x x x g x --+--'=+=--, 由(1)知,()e 2x h x x =--在(0,)+∞上单调递增.(步骤4) ∵(1)0,(2)0h h <>,∴()h x 在(0,)+∞上存在唯一零点. ∴()g x '在(0,)+∞上存在唯一零点.(步骤5) 设其零点为a ,则(1,2)a ∈.当(0,)x a ∈时,()0g x '<,当(,)x a ∈+∞时,()0g x '>, ∴()g x 在(0,)+∞上的最小值为()g a ,(步骤6) ∵()0g a '=,∴e 2aa =+,∴()1(2,3)g a a =+∈. 由于①等价于()k g a <,∴整数k 的最大值为2.(步骤7)请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明:(Ⅰ)CD=BC ;(Ⅱ)△BCD ∽△GBD【测量目标】圆和相似三角形的概念和性质.【考查方式】通过性质和判定定理去求相关问题.【试题解析】(I )因为D,E 分别为AB,AC 的中点,所以DE //BC.又已知CF AB ,故四边形BCFD 是平行四边形,所以CF=BD=AD .而CF AD ,连接AF ,所以ADCF 是平行四边形,故CD=AF .(步骤1)因为CF AB ,所以BC=AF ,故CD=BC (步骤2)(II)因为FG BC ,故GB =CF .由(I )可知BD=CF ,所以GB=BD .而∠DGB=∠EFG=∠DBC,故△BCD ∽△GBD.23.(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C 1的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩ (φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3) (Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围.【测量目标】曲线参数方程与极坐标方程互化.【考查方式】通过给出方程进行互化.【试题解析】(I )由已知可得A (2cosπ3,2sin π3),B (2cos(ππ+32),2sin(ππ+32)), C (2cos(π+π3),2sin(π+π3)),D (2cos(π3π+32),2sin(π3π+32)), 即A (1B(C (1-,,D1-)(II)设P (2cos ϕ,3sin ϕ),令S =2222||||||||PA PB PC PD +++,则S =1622cos 36sin ϕϕ++16=32+202sin ϕ因为0…2sin ϕ…1,所以S 的取值范围是[32,52]24.(本小题满分10分)选修4—5:不等式选讲已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.【测量目标】含有绝对值的不等式的解集.【考查方式】给出等式进行化简变换.【试题解析】(I)当a =3-时,25,2()1,2325,3x x f x x x x -+⎧⎪=<⎨⎪-⎩……<当2x …时,由()3f x …得253x -+…,解得1x …;(步骤1) 当23x <<时,()3f x …无解;(步骤2)当3x …时,由()3f x …得25x -3…;解得4x …;所以()3f x …的解集为{|1}{|4}x x x x 剠(步骤3)(II)()|4|f x x -…|4|x ⇔-|2|x --||x a +…当[1,2]x ∈时,|4|x -|2|x --||x a +…⇔4(2)x x ---||x a +…⇔2a x --…2a -…(步骤4) 由条件得21a --…且22a -…,即30a -剟故满足条件的a 的取值范围为[3,0]-.(步骤5)。
2011年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中.只有一项是符合题目要求的.(1)已知集合A={x },B={x }},则A B=(A){x }} (B){x } (C){x }} (D){x }}【答案】D【考点】本题考查集合在数轴上的表示方法,以及集合的基本运算。
【解析】在数轴上画出两个集合所代表的部分,通过图形可知A B={x }}(2)i为虚数单位,(A)0 (B)2i (C)-2i (D)4i【答案】A【考点】本题考查复数的相关概念和复数的基本运算。
【解析】分别计算出各式的值,然后相加,可得结果为0(3)已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k(A)-12 (B)-6 (C)6 (D)12【答案】D【考点】本题考查平面向量的数量积运算和坐标运算,重点是对数量积运算的理解,数量积和向量夹角的关系。
【解析】利用向量数量积的坐标公式可列方程,解得k=12(4)已知命题P:n∈N,2n>1000,则p为(A)n∈N,2n≤1000(B)n∈N,2n>1000(C)n∈N,2n≤1000(D)n∈N,2n<1000【答案】A【考点】本题考查基本逻辑连接词的概念,和两种量词:全称量词和存在量词的使用。
【解析】根据存在量词的否定为全称量词可知,A正确(5)若等比数列{an}满足anan+1=16n,则公比为(A)2 (B)4 (C)8 (D)16【答案】B【考点】本题考查等比数列的基本概念,等比数列的通项公式以及两项之间的关系。
【解析】根据条件可知,可得公比是4(6)若函数f(x)= 为奇函数,则a=(A)(B)(C)(D)1【答案】A【考点】本题考查函数的基本性质中的奇偶性。
重点考查奇偶性的基本概念,以及具有奇偶性应该满足的条件。
【解析】因为分子是奇函数,所以分母必须是偶函数,可知分母的一次项系数必须为0,所以(7)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为(A)(B)1 (C)(D)【答案】C【考点】本题考查圆锥曲线的基本定义,以及运用圆锥曲线的定义实现距离转化的能力。
2012年高考文科数学试题解析(全国课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
合题目要求的。
(1)已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则,则(A )A ̹B (B )B ̹A (C )A=B (D )A ∩B=Æ【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题. 【解析】A=(-1,2),故B ̹A ,故选B. (2)复数z =32ii-++的共轭复数是的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题. 【解析】∵z =32ii-++=1i -+,∴z 的共轭复数为1i --,故选D. (3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+y =12x +1上,则这组样本数据的样本相关系数为数据的样本相关系数为(A )-1 (B )0 (C )12(D )1 【命题意图】本题主要考查样本的相关系数,是简单题. 【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选D. (4)设1F ,2F 是椭圆E :2222x y ab +=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为A .12B .23C .34D .45【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题. 【解析】∵△21F PF 是底角为030的等腰三角形,的等腰三角形,∴0260PF A Ð=,212||||2PF F F c ==,∴2||AF =c ,∴322c a =,∴e =34,故选C. (5)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) 【命题意图】本题主要考查简单线性规划解法,是简单题. 【解析】有题设知C(1+3,2),作出直线0l :0x y -+=,平移直线0l ,有图像知,直线:l z x y =-+过B 点时,m a x z =2,过C 时,m i n z =13-,∴z x y =-+取值范围为(1-3,2),故选A. (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B,则A .A +B 为1a ,2a ,…,N a 的和的和B2A B+为1a ,2a ,…,N a 的算术平均数的算术平均数C .A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数中的最大数和最小数D .A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数中的最小数和最大数【命题意图】本题主要考查框图表示算法的意义,是简单题. 【解析】由框图知其表示的算法是找N 个数中的最大值和最小值,A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数,故选C. (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为体积为A .6 B .9 C .12 D .18 【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题. 【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为1163332´´´´=9,故选B. (8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π 【命题意图】【命题意图】 【解析】【解析】 (9)已知w >0,0j p <<,直线x =4p 和x =54p 是函数()sin()f x x w j =+图像的两条相邻的对称轴,则j = (A )π4 (B )π3 (C )π2 (D )3π4【命题意图】本题主要考查三角函数的图像与性质,是中档题. 【解析】由题设知,p w =544p p -,∴w =1,∴4pj +=2k pp +(k Z Î), ∴j =4k pp +(k Z Î),∵0j p <<,∴j =4p,故选A. (10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为A .2B .22C .4 D .8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解得y =216a ±-,∵||AB =43,∴2216a -=43,解得a =2, ∴C 的实轴长为4,故选C. (11)当0<x ≤12时,4log xa x <,则a 的取值范围是的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想,是中档题. 25+,则公比=0得,=01110|= . 1022322(+1)+sinx2的最大值为三、解答题:解答应写出文字说明,证明过程或演算步骤。
2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本卷和答题卡一并交回。
第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3、第Ⅰ卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
一、选择题(1)已知集合{|}{|}{|}{|}A x x B x x C x x D x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D ⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。
在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。
(2)函数1)y x =-≥的反函数为( ). 2()1(0)A y x x =-≥ 2()1(1)B y x x =-≥2()1(0)C y x x =+≥ 2()1(1)D y x x =+≥【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。
在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。
(3)若函数()sin[0,2]3x f x ϕϕ+=∈(π)是偶函数,则ϕ=( ). ()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。
近5年高考数学全国卷2、3试卷分析.3试卷分析年高考全国卷2、2013----2017数 2012年云南进入新课标高考至今,已有六年时间,从可以说是我省考生最为害怕的加上难度变幻不定,学因为容易拉分,第一天下午开考的数学考得如何直接决定着考生第二天的一个学科,年全国卷数学试题从试卷的结构和试卷的难度上逐渐5考试情绪。
近趋于平稳,稳中有新,难度都属于较为稳定的状态。
选择、填空题会填空题在前选择题在前六题的位置,以基础题呈现,属于中等难度。
解答题属于中等难度,且基本定位在前三题和最后一题;二题的位置的位置。
一、近五年高考数学考点分布统计表20132014201520162017集集集集集合(交集((选择集集集集1等式等式等式元个复数复数复数、复数、选择题(性运算共轭复数、复数质及2 模运算)回归选择题向量三角向量、折线图数量方程(数恒等3变换乘、积坐标公模)式识等二框余展定选择数列式性4三概分向双函数函选择(线弦角5互三三三幂三函图图较函数选择周图6平性称性选择题框图排列圆、弦框图框图7 组合长线性导数、框图三角球、体选择题积形8 切线规划等差三视选择题表三视球、线性数列图9 面积规划图抛物抛物函数、球、体椭圆、线图像选择题线积圆、直线、10离心函立双椭圆函选择离几线命零11心定函导数立几(圆选择(取数12积值范围不二向量线线填空规展式性规13解等三双线三角填空题线函数、规划函数、数列平移最值通项14公式概率函数、二项导数、分段填空题统计单调式定奇偶函数15不等切性、求理、性(正.态分参线方式程布)数列、三角直线圆与函解答线项圆16等数解解数数数角形通项通角通解答公公余17定理项面求统线概线回概率的解答平行字体期18面线线面线面垂直解答题回归平行、角垂直、二面19线面角角椭圆、椭圆、直线抛物解答题抛物与椭线直线、圆的20线、圆圆离心半径、.圆的率方程导数函数导数函数单解解答导性式21数调选考22坐坐坐直系系坐系坐与化化化系选考度点坐度23化间值程化不等不等绝对绝对值不值不式证绝对式证选考题等式、明、基等式、值不明参数本不恒成24等式、有解范围等式分立、段函数从近五年数学试题知识点分布及分值分布统计表不难看出,试题坚持对基础知识、数学思想方法进行考查,重点考查了高中数学的主体内容,兼顾考查新课标的新增内容,在此基础上,突出了对考生数学思维能力和数学应用意识的考查,体现了新课程改革的理念。
2012年北京高考数学(文)逐题详解2012年的北京数学高考是高中新课改后的第三次高考,试卷延续了近几年高考数学命题的风格,题干大气,内容丰富,难度客观讲适中,和以往一样,其中8,14,20三个题技巧性较高,侧重考查学生的数学思维和探索精神。
一、试题体现数学的人文教育功能拿到试卷的第一感觉是亲切,大部分试题均注重考查基础知识、基本技能和基本方法,考查数学传统的主干知识,较好把握了传统知识的继承点和新增知识的起步点,但是有几个试题还是非常具有心意,难度不小,重点考察能力,给笔者留下了较深的印象:例如选择第3题,在不等式背景下考查了一个概率问题,还是非常具有综合性的。
选择第7题,常见的三视图问题,但是计算几何体的表面积,对空间想象力要求还是很高的。
填空题第13小题,难度虽然不大,但是综合性以及对于函数思想的要求都很高。
第16题,立体几何考查了一个折纸的问题,难度虽然不大,但是形式还是比较有亮点的,第三问又设计为探索型问题,体现了能力立意的考试要求,要求学生有较好的空间想象力和逻辑推理能力才能顺利解答. 再比如17题以生活背景为模型考查了一个概率统计的知识,题目难度仍然不大,但是第三问非常有创新思维的让学生大胆猜想方差最大的情况,还是非常考查能力的,另外,从生活的角度命题,让学生体验数学的建模思想和应用价值,激发学生学习数学的兴趣,拓展视野,开展研究性学习,实现数学的人文教育功能。
二、试题解析(一)、选择题:【解析】第(1)题和往年一样,依然是集合(交集)运算,本次考察的是一次和二次不等式的解法。
因为,利用二次不等式的解法可得,画出数轴图易得:,答案:D【解析】第(2)题考查的是复数除法的化简运算以及复平面,实部虚部的概念。
,实部为1,虚部为3,对应复平面上的点为,答案:A【解析】第(3)题是一道微综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式,概率。
题目中表示的区域如右图正方形所示,而动点D可以存在的位置为正方型面积减去四分之一圆的面积部分,因此,答案:D【解析】第(4)题考查程序框图,涉及到判断循环结束的时刻,以及简单整数指数幂的计算。
2016高考文科数学试题分析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B考点:集合运算,交集、并集、补集是历年考试的热点,属于容易题。
(2) 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a= (A )−3(B )−2(C )2(D )3试题分析i a a i a i )21(2))(21(++-=++,由已知,得a a 212+=-,解得3-=a ,选A. 考点:复数的概念。
复数的概念及复数的化简是这几年必考考点,属容易题。
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56【答案】C考点:古典概型。
古典概型及几何概型都是命题热点,此题属容易题。
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b= (A(B(C )2(D )3【答案】D试题分析:由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),选D.考点:余弦定理,正弦定理有关解三角形问题是命题热点,此题属容易题。
(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34 【答案】B 【解析】试题分析:如图,在椭圆中,11OF c,OB b,OD 2b b 42===⨯=,在Rt OFB ∆中,|OF ||OB||BF ||OD |⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆的离心率为:1e 2=,故选B.考点:椭圆的几何性质,圆锥曲线有关性质每年必考,一般属于难度系数较大,但今年此题难度中档偏下。
2012年全国高考新课标卷数学试题分析2012年高考已经结束,今年是河北省自2009年进入高中新课改以来的第一年高考,所以试题一直备受一线教师及考生的关注和期待。
一.总体分析2012年全国卷数学高考试题总体难度高于去年全国课标卷,学生需要更多的思考时间与更大的思考空间。
与去年全国课标卷数学试题结构相同,分值相同,依然遵循着“稳定、变化、改革、创新”的出题方针。
今年数学试卷命题按照考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平。
试题主要内容分布在函数(含导数)、不等式、数列、立体几何、解析几何、概率统计、三角等主干知识上,不刻意追求知识的覆盖面,如新增内容中函数的零点、二分法、幂函数、茎叶图、条件概率、全称命题与特称命题、合情推理与演绎推理、独立性检验等今年就没有涉及到。
而对支撑学科知识体系的重点知识,考查时保持了较高的比例,构成了数学试卷的主体。
如理科试卷中函数与导数知识约22分(文科27分),立体几何约17分(文科17分),圆锥曲线约22分(文科22分)三角知识约17分(文科17分),概率统计约17分(文科17分)不等式及其应用约15分(文科15分,含三选一),其余小的知识点,在理科试卷中:集合、排列组合、复数、算法、平面向量、推理与证明、等比数列各5分;文科试卷中类似,新增内容在全卷中所占比例较小(本次只考查了三视图、程序框图、相关关系(文科)),同时无创新题,这也体现了保稳定,做好新课标过渡的出题宗旨。
虽然今年考题总体来说难度高于去年课标卷难度,但相对还是比较平稳的,具有很高的可信度,出题遵循了考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”这一原则。
很多题目似曾相识,但又不完全相同,适度创新,更加体现了对考生思维能力和灵活应用知识的考查。
(9套)【高考真题】2012-2016年高考数学(文科)课标卷(Word精校版,含答案解析)目录2012年普通高等学校招生全国统一考试(课标全国卷) 【高考真题】2013年高考数学(文科)课标卷(二)Ⅱ【高考真题】2014年高考数学(文科)课标卷(一)Ⅰ【高考真题】2014年高考数学(文科)课标卷(二)Ⅱ【高考真题】2015年高考数学(文科)课标卷(一)Ⅰ2015年普通高等学校招生全国统一考试文科、全国卷二2016年普通高等学校招生全国统一考试文科、全国卷一2016年普通高等学校招生全国统一考试文科、全国卷二2016年普通高等学校招生全国统一考试文科、全国卷三2012年普通高等学校招生全国统一考试(课标全国卷)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.D.14.设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A. B. C. D.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )A.πB.4πC.4πD.6π9.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )A. B. C. D.10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.811.当0<x≤时,4x<log a x,则a的取值范围是( )A. B. C.(1,) D.(,2)12.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( )A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为.14.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|= .16.设函数f(x)=的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asin C-ccos A.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点. (Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.2012年普通高等学校招生全国统一考试(课标全国卷)一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.评析本题考查了集合的关系以及二次不等式的解法.2.D z====-1+i,=-1-i,故选D.评析本题考查了复数的运算,易忽略共轭复数而错选.3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C.4.C 设直线x=a与x轴交于点Q,由题意得∠PF2Q=60°,|F2P|=|F1F2|=2c,|F2Q|=a-c,∴a-c=³2c,e==,故选C.评析本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要.5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+,2)时,z min=1-;当过点B(1,3)时,z max=2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a1<a2<a3,则有k=1,A=a1,B=a1;x=a2,A=a2;x=a3,A=a3,故输出A=a3,B=a1,选C. 评析本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=³³6³3³3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O所得圆的圆心为O1,则|OO1|=,|O1A|=1,∴球的半径R=|OA|==.∴球的体积V=πR3=4π.故选B.评析本题考查了球的基础知识,利用勾股定理求球的半径是关键.9.A 由题意得=2,∴ω=1,∴f(x)=sin(x+φ),则+φ=kπ+(k∈Z),φ=kπ+(k∈Z),又0<φ<π,∴φ=,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2).∵点A在双曲线x2-y2=a2上,∴16-12=a2,a=2,∴双曲线的实轴长2a=4.故选C.评析本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x的大致图象如图,则只需满足log a>2,解得a>,故选B.评析本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2³60-1)==30³61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x²=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-22=0,解得q=-2.解析由S评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3解析把|2a-b|=两边平方得4|a|2-4|a|²|b|²cos 45°+|b|2=10.∵|a|=1,∴|b|2-2|b|-6=0.∴|b|=3或|b|=-(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)==1+,令g(x)=,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=asin C-c²cos A及正弦定理得²sin A²sin C-cos A²sinC-sin C=0.由于sin C≠0,所以sin=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥17时,利润y=85.当日需求量n<17时,利润y=10n-85.所以y关于n的函数解析式为y=(n∈N).(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55³10+65³20+75³16+85³54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力.19.解析(Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=³³1³1=.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.评析本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析(Ⅰ)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4,所以|BD|²d=4,即²2p²p=4,解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(Ⅱ)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m的截距b1=,=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.评析本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<+x(x>0).①令g(x)=+x,则g'(x)=+1=.由(Ⅰ)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.评析本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明(Ⅰ)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析(Ⅰ)由已知可得A,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].评析本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析(Ⅰ)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].评析本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}2.=( )A.2B.2C.D.13.设x,y满足约束条件则z=2x-3y的最小值是( )A.-7B.-6C.-5D.-34.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为( )A.2+2B.+1C.2-2D.-15.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为( )A. B. C. D.6.已知sin 2α=,则cos2=( )A. B. C. D.7.执行右面的程序框图,如果输入的N=4,那么输出的S=( )A.1+++B.1+++C.1++++D.1++++8.设a=log32,b=log52,c=log23,则( )A.a>c>bB.b>c>aC.c>b>aD.c>a>b9.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( )10.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为( )A.y=x-1或y=-x+1B.y=(x-1)或y=-(x-1)C.y=(x-1)或y=-(x-1)D.y=(x-1)或y=-(x-1)11.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A.∃x0∈R, f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f '(x0)=012.若存在正数x使2x(x-a)<1成立,则a的取值范围是( )A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.14.已知正方形ABCD的边长为2,E为CD的中点,则²= .15.已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.16.函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移个单位后,与函数y=sin的图象重合,则φ= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.18.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C-A1DE的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.21.(本小题满分12分)已知函数f(x)=x2e-x.(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.请从下面所给的22、23、24三题中选定一题作答,多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC²AE=DC²AF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程;(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(Ⅰ)ab+bc+ca≤;(Ⅱ)++≥1.2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.C 由题意得M∩N={-2,-1,0}.选C.2.C ==|1-i|=.选C.3.B 由约束条件得可行域(如图),当直线2x-3y-z=0过点A(3,4)时,z min=2³3-3³4=-6.故选B.4.B 由正弦定理=及已知条件得c=2.又sin A=sin(B+C)=³+³=,从而S△ABC=bcsin A=³2³2³=+1.故选B.5.D 在Rt△PF2F1中,令|PF2|=1,因为∠PF1F2=30°,所以|PF1|=2,|F1F2|=.所以e===.故选D.6.A cos2===.选A.评析本题考查了三角函数的化简求值,考查了降幂公式、诱导公式的应用.7.B 由框图知循环情况为:T=1,S=1,k=2;T=,S=1+,k=3;T=,S=1++,k=4;T=,S=1+++,k=5>4,故输出S.选B.8.D∵<2<3,1<2<,3>2,∴log3<log32<log33,log51<log52<log5,log23>log22,∴<a<1,0 <b<,c>1,∴c>a>b.故选D.9.A 在空间直角坐标系中,易知O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1)恰为单位正方体的四个顶点.因此该几何体以zOx平面为投影面所得的正视图为A.评析本题考查了三视图和直观图,考查了空间想象能力.把几何体补成正方体是求解的关键.10.C 设直线AB与抛物线的准线x=-1交于点C.分别过A,B作AA1垂直准线于A1,BB1垂直准线于B1.由抛物线的定义可设|BF|=|BB1|=t,|AF|=|AA1|=3t.由三角形的相似得==,∴|BC|=2t,∴∠B1CB=,∴直线的倾斜角α=或π.又F(1,0),∴直线AB的方程为y=(x-1)或y=-(x-1).故选C.11.C 由三次函数的值域为R知, f(x)=0必有解,A项正确;因为f(x)=x3+ax2+bx+c的图象可由曲线y=x3平移得到,所以y=f(x)的图象是中心对称图形,B项正确;若y=f(x)有极值点,则其导数y=f '(x)必有2个零点,设为x1,x2(x1<x2),则有f '(x)=3x2+2ax+b=3(x-x1)(x-x2),所以f(x)在(-∞,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,则x2为极小值点,所以C项错误,D项正确.选C.评析本题考查了三次函数的图象和性质,考查了利用导数研究函数的单调性和极值.掌握基本初等函数的图象和性质是解题关键.12.D 由2x(x-a)<1得a>x-,令f(x)=x-,即a>f(x)有解,则a>f(x)min,又y=f(x)在(0,+∞)上递增,所以f(x)>f(0)=-1,所以a>-1,选D.评析本题考查了函数的值域与最值的求法,考查了分离参变量的方法,熟悉基本初等函数的单调性是解题关键.二、填空题13.答案0.2解析任取两个不同的数的情况有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,其中和为5的有2种,所以所求概率为=0.2.14.答案 2解析解法一:²=²(-)=-+0=22-³22=2.解法二:以A为原点建立平面直角坐标系(如图).则A(0,0),B(2,0),C(2,2),D(0,2),E(1,2).∴=(1,2),=(-2,2).从而²=(1,2)²(-2,2)=1³(-2)+2³2=2.评析本题考查了向量的基本运算.向量的运算可以利用运算法则也可以利用坐标运算.15.答案24π解析设底面中心为E,则|AE|=|AC|=,∵体积V=³|AB|2³|OE|=|OE|=,∴|OA|2=|AE|2+|OE|2=6.从而以|OA|为半径的球的表面积S=4π²|OA|2=24π.评析本题考查了正四棱锥和球,考查了表面积和体积,考查了空间想象能力和运算求解能力.计算错误是失分的主要原因.16.答案π解析令y=f(x)=cos(2x+φ),将其图象向右平移个单位后得f=cos=cos(2x+φ-π)=sin=sin的图象,因为其与y=sin的图象重合,所以φ-=+2kπ(k∈Z),所以φ=2kπ+π(k∈Z),又-π≤φ<π,所以φ=π.三、解答题17.解析(Ⅰ)设{a n}的公差为d.由题意得,=a1a13,即(a1+10d)2=a1(a1+12d).于是d(2a1+25d)=0.又a1=25,所以d=0(舍去)或d=-2.故a n=-2n+27.(Ⅱ)令S n=a1+a4+a7+…+a3n-2.由(Ⅰ)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而S n=(a1+a3n-2)=(-6n+56)=-3n2+28n.18.解析(Ⅰ)证明:连结AC 1交A1C于点F,则F为AC1中点.又D是AB中点,连结DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.由于AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.由AA1=AC=CB=2,AB=2得∠ACB=90°,CD=,A1D=,DE=,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D.所以=³³³³=1.评析本题考查了三棱柱的性质,考查了直线与平面平行的判定和体积的计算,考查了空间想象能力和运算求解能力.正确地选择方法和规范化解题至关重要.19.解析(Ⅰ)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000.当X∈[130,150]时,T=500³130=65 000.所以T=(Ⅱ)由(Ⅰ)知利润T不少于57 000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.20.解析(Ⅰ)设P(x,y),圆P的半径为r.由题设得y2+2=r2,x2+3=r2.从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.(Ⅱ)设P(x0,y0),由已知得=.又P在双曲线y2-x2=1上,从而得由得此时,圆P的半径r=.由得此时,圆P的半径r=.故圆P的方程为x2+(y-1)2=3或x2+(y+1)2=3.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞),f '(x)=-e-x x(x-2).①当x∈(-∞,0)或x∈(2,+∞)时, f '(x)<0;当x∈(0,2)时, f '(x)>0.所以f(x)在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x=0时, f(x)取得极小值,极小值为f(0)=0;当x=2时, f(x)取得极大值,极大值为f(2)=4e-2.(Ⅱ)设切点为(t, f(t)),则l的方程为y=f '(t)(x-t)+f(t).所以l在x轴上的截距为m(t)=t-=t+=t-2++3.由已知和①得t∈(-∞,0)∪(2,+∞).令h(x)=x+(x≠0),则当x∈(0,+∞)时,h(x)的取值范围为[2,+∞);当x∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[2+3,+∞).综上,l在x轴上的截距的取值范围是(-∞,0)∪[2+3,+∞).评析本题考查了导数的应用,均值定理求最值,考查了综合解题的能力,正确地求导是解题的关键.22.解析(Ⅰ)证明:因为CD为△ABC外接圆的切线,所以∠DCB=∠A,由题设知=,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圆的直径.(Ⅱ)连结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2=DB²BA=2DB2,所以CA2=4DB2+BC2=6DB2.而DC2=D B²DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为.23.解析(Ⅰ)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cosα+cos 2α,sin α+sin 2α).M的轨迹的参数方程为(α为参数,0<α<2π).(Ⅱ)M点到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.24.证明(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.2014年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)2.若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>03.设z=+i,则|z|=( )A. B. C. D.24.已知双曲线-=1(a>0)的离心率为2,则a=( )A.2B.C.D.15.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A. B. C. D.7.在函数①y=cos|2x|,②y=|cos x|,③y=cos,④y=tan中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B. C. D.10.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.811.设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.-5B.3C.-5或3D.5或-312.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.15.设函数f(x)=则使得f(x)≤2成立的x的取值范围是.16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN= m.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列的前n项和.18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(Ⅰ)作出这些数据的频率分布直方图;(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C. (Ⅰ)证明:B1C⊥AB;(Ⅱ)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.20.(本小题满分12分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(Ⅰ)求M的轨迹方程;(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.21.(本小题满分12分)设函数f(x)=aln x+x2-bx(a≠1),曲线y=f(x)在点(1, f(1))处的切线斜率为0. (Ⅰ)求b;(Ⅱ)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生从第22、23、24题中任选一题作答;多答,按所答的首题进行评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD是☉O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE. (Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是☉O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C:+=1,直线l:(t为参数).(Ⅰ)写出曲线C的参数方程,直线l的普通方程;(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B M∩N={x|-1<x<3}∩{x|-2<x<1}={x|-1<x<1}.2.C 由tan α>0得α是第一、三象限角,若α是第三象限角,则A,B错;由sin2α=2sin αcos α知sin 2α>0,C正确;α取时,cos 2α=2cos2α-1=2³-1=-<0,D 错.故选C.评析本题考查三角函数值的符号,判定时可运用基本知识、恒等变形及特殊值等多种方法,具有一定的灵活性.3.B z=+i=+i=+i,因此|z|===,故选B.4.D 由双曲线方程知b2=3,从而c2=a2+3,又e=2,因此==4,又a>0,所以a=1,故选D.5.C 依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x),因此, f(-x)g(-x)=-f(x)g(x)=-[f(x)g(x)],f(x)g(x)是奇函数,A错;|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),|f(x)|g(x)是偶函数,B错; f(-x)|g(-x)|=-f(x)|g(x)|=-[f(x)|g(x)|], f(x)|g(x)|是奇函数,C正确;|f(-x)²g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错.故选C.6.A 设=a,=b,则=-b+a,=-a+b,从而+=+=(a+b)=,故选A.7.A ①y=cos|2x|=cos 2x,最小正周期为π;②由图象知y=|cos x|的最小正周期为π;③y=cos的最小正周期T==π;④y=tan的最小正周期T=.因此选A.评析本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图象判断其最小正周期.8.B 由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.评析本题考查几何体的三视图,记住基本几何体的三视图是解题的关键.9.D 由程序框图可知,循环结束,故输出M=,故选D.10.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.评析本题考查抛物线的定义及标准方程,将|AF|转化为点A到准线的距离是解题的关键.11.B 二元一次不等式组表示的平面区域如图所示,其中A.平移直线x+ay=0,可知在点A处,z取得最值,因此+a³=7,化简得a2+2a-15=0,解得a=3或a=-5,但a=-5时,z取得最大值,舍去,故a=3,故选B.。
2012年高考全国卷数学试卷分析(二)题型分析单选的总评和总结:本套选择题难度不大,基本都是考查知识点的定义以及基本计算,所考查的知识点也为课本重难点知识,侧重对圆锥曲线以及函数的考查。
其中还涉及到向量等内容的考查,值得注意,不过难度不高。
第4,,11,12题较难,占25%,其余题目较容易。
所考内容覆盖了高中代数与几何学习必备的基础性知识点。
填空题的总评和总结:13题是结合图形的计算题,难度不大,考查数形结合思想以及计算能力。
14题为三角函数球最值的题目,比较简单。
15题考查二项式定力中通项的运用。
16题是属于立体几何中的内容,考查异面直线所成的角的求解,首先利用线面较线线角的关系,让后建立坐标系求解坐标,最后结合向量的夹角公式求得最终结果。
整体来看填空题大部分都需要通过计算与数形结合,重在考查学生的灵活转化能力和计算能力。
解答题的总评和总结:17题从整体上保持往年的解题风格,依然是通过边角的转换,结合三角形的内角和定理的只是,以及正余弦定理,求解三角形中的角的问题。
试题整体上比较稳定,做题时容易下手。
18题从命题的角度来看,整体上题目与同学们平时练习的试题相似,底面是特殊的菱形,一个侧面垂直于底面的四棱锥问题,创新的地方时点E的位置的选择是一般的三等分点,这样的解决对于同学们来说就是比较难,因此最好使用空间直角坐标系解决该问题为好。
19题选材来源于生活,同学们比较书序的背景,同事建立在该基础上求解进行分类讨论的思想的运用,以及能结合独立事件的概率公式求解分布列的问题。
情景比较亲切,容易入手,但是在讨论情况的时候容易丢分。
20题分两问,题面比较简单,给出的函数比较新颖,因为里面还有三角函数,这一点对于同学们来说比较难,不同于平时的练习。
但是解决的关键还是要看导数的符号的实质不变,求解单调区间。
第二问中,运用构造函数的思想,证明不等式一直以来是个难点,那么这类问题的关键是找到合适的函数,来运用导数证明最值问题大于或小于零的到解决21题出题的角度不同于平常,因为涉及的两个二次曲线的焦点问题,并且要研究两曲线在供电点的切线,把解析几何和导数的工具性结合起来,是该试题的创新处。
2016年高考改卷心得体会河南漯河市数学教研室张勇刚一、新课标卷1整体评价(文科)分析整张试卷,今年高考全国卷文科数学考查的题目顺序、知识点、题型很常规,较于往年没有很大的变化,当然,总体要比往年稍难点,第19题概率统计题情境新颖,容易出错。
题目难度分布合理,从易到难,下面我们来具体分析一下整张考卷。
1、选择题部分:基础题1、2、3、4、8、9题,中等难度的题5、6、7、10、11,难题12题。
总体来讲基本沿袭了以往新课标的出题模式和难易程度,知识模块上加强了对于函数的考察,三角函数,解三角形,导数单调性等典型题型都体现在选择题部分,这些题型都是我们平时在模拟练习时重点练习的题目,所以学生相对还是比较好拿分的。
选择题在立体几何部分,对于学生的空间想象力提出后了更高的要求,第7题和第11题都是立体几何部分,需要同学准确的画出几何体识别出线面角的关系,是解题的关键,也是文科学生薄弱的部分。
需要我们在今后的教学中加强这部分的练习。
这次考试在运算的准确度对学生提出更高的要求,出题人设置了不少的陷阱等待学生去注意,也是拿到理想分数的关键。
2、填空题部分:基础题主要是13-14题,中等难度题主要是15、16。
总体来讲难度和选择题的难度基本一致,第15题考核的是必修2的直线与圆部分,通过垂径定理求解圆的面积,是本章的基本题型但是由于题干中含有参数,导致很多同学不敢下手,第16题考核是线性规划的截距类,需要认真审题,挖掘出题目的不等关系,确定目标函数。
这是我们在平时的练习中忽略的一点,也是很多同学容易错误的点。
3、解答题部分:基础题17、18题第1问,20,21题第1问,选做题23,24,中等难度的题18题第2问,19题,难题20和21题第2问。
第17题与前几年一样考察的数列基本量的运算,难度不大,只要公式记忆准确,拿满分还是没有问题的。
第18题立体几何考核的投影问题,不是我们平时模拟练习的平行垂直的证明,但是只要知道投影的本质是线面垂直,我们通过线面垂直的判断和正棱锥的定义即可得证。
2016年高考数学试卷(文、理科)分析2016年普通高等学校招生数学试卷的设计遵循《普通高中数学课程标准》和《高考说明》的要求和阐述,紧密联系高中数学教学现状,试题设计围绕高中数学的核心内容,突出考查学生的基础知识、基本技能,重视考查学生的数学素养。
试题题型、分数设置保持稳定,难度分布合理,与往年基本持平。
试卷内容覆盖知识全面,重点知识重点考查。
试题的表述形式简洁、规范,试题的图文准确并相互匹配。
联系实际类试题的背景描述清楚,易于理解和解决,体现数学的应用价值。
关注学生的理性思维和数学表达,体现数学的教育价值。
数学试卷客观地反映了考生的实际情况,是一份科学性过硬的试卷。
一、对文科试卷的评价文科数学试卷延续了近两年的特点,难度基本持平,结构保持稳定,突出利用数据、表格、图象等多种方式呈现生活中的现象,解决生活、生产中的数学问题。
在解答题的顺序和题目的设问上有所变化,强调在新情境中提取信息、选择方法、创造性的解决问题。
并在考查学生的探索精神和理性思维等方面进行了有益尝试.1. 考查全面,主干突出,注重基础今年的文科试卷保持高考试题一贯特色,选择题和填空题大多源于教材中的例题和习题。
注重基本概念理解和应用,主干知识的试题保持较高的比例。
如数列的通项与求和、三角函数的图象与性质、统计与概率的应用、空间几何中线面平行与垂直、解析几何中直线与曲线的位置关系、函数与导数等核心知识,同时也涉及了集合、不等式、简易逻辑、推理与证明、解三角形、向量、算法、复数等知识.2.突出统计思想,强化应用意识题型题号考查内容2014年2015年2016年选择题1 集合的运算集合的运算集合的运算2 同角关系与二倍角平面向量的坐标表示复数概念3 复数四则运算与模复数四则运算古典概型4 双曲线的几何性质古典概型余弦定理5 抽象函数奇偶性椭圆与抛物线的几何性质椭圆的几何性质6 向量的几何加法圆锥体积(创新题)三角函数的图像性质7 三角函数的图像性质等差数列与求和三视图及球的表面积与体积8 三视图与直观图三角函数的图像性质对数函数指数函数性质9 程序框图程序框图函数图像与算法案例10 抛物线与几何性质分段函数求值程序框图11 含参数的线性规划组合体的三视图平面的截面问题面面平行的性质定理异面直线所成的角12 导数与含参数下的的零点问题函数图像三角变换及导数的应用填空题13 排列组合与古典概型等比数列求和向量数量积及坐标运算14 推理与证明椭圆与圆的方程三角变换15 分段函数与不等式线性规划直线与圆16 立体图形中应用正弦定理双曲线的几何性质线性规划的应用解答题17 等差数列通项与错位相减法求和正弦定理与三角形面积等差数列与等比数列18 频数表`直方图与均值方差概率面面垂直与体积线面位置关系及几何体体积19 线线垂直面面距离与体积面散点图函数模拟与线性回归函数解析式概率与统计20 求轨迹方程直线与圆锥曲线中面积问题直线圆的位置关系与向量运算直线与抛物线的位置关系与交点问题21 导数的几何意义,含参数不等式存在问题导数的零点含参数不等式的恒成立问题函数的单调性,导数的应用解答题22 平面几何直线与圆平面几何直线与圆四点共圆直线与圆的位置关系及证明23 方程互化,函数(线段长)最值方程互化,函数(三角形面积)最值参数方程及坐标方程与直角坐标方程的互划及应用24 均值不等式,解不定方程解含绝对值不等式与函数(三角形面积)值域分段函数的图像,含绝对值不等式的解法保持近两年的考查方式,第1,2,3,4,6题依然考的是集合的运算,复数,概率的运算,三角函数(余弦定理)第10题是函数图像与算法案例,第13题是向量数量积及坐标运算,第16题是线性规划的应用,前16道选择填空题考查的知识点没有变化。