3、航带模型的非线性改正
多项式逼近:取一个多项式曲面Z=f(x,y)表示复杂的变形 曲面,并使该曲面通过航带网中的控制点,利用控制点 的已知值与加密点的不符值,通过最小二乘拟合,使所求 得的坐标变形值与实际变形值相等或其差的平方和最小。
X X tp X Y Ytp Y Z Ztp Z
X ,Y , Z —模型点绝对定向后的重心化坐标 Xtp ,Ytp , Ztp—重心化后的控制点的地面摄测坐标
• 不受通视条件限制 • 区域内部精度均匀,且不受区域大小限制
二、解析空中三角测量的分类
按平差模型 按加密区域
航带法 独立模型法 光束法
单航带法 区域网法
航带法区域网平差
独立模型法区域网 平差
光束法区域网平差
三、解析空中三角测量的应用
• 为测绘地形图、制作正射影像图提供定向控 制点和像片内、外方位元素
1)基本公式
X tp Ytp
Hale Waihona Puke URVX0 Y0
Ztp
W Z0
利用地面控制点解算七个绝对定向参数。
2)主要流程 将控制点的地面坐标转化为地面摄影测量
坐标; 计算重心坐标和重心化坐标 按公式建立绝对定向的误差方程式 解算绝对定向元素 计算待定点的概略地面摄影测量坐标
bwa
N1w1 a bwa N1w1 b
1 k 3 (k1 k3 k5 )
a3
4
1
2
5
6
3
4
b
1
2
5
6
w v
s2
s1
W2a W1b
s3
u
求出模型比例尺归化系数后,将后一模型每个点的空 间辅助坐标系以及基线分量均乘以归化系数,就可以 获得与前一模型比例尺一致的坐标。