GPS辅助空中三角测量
- 格式:ppt
- 大小:6.16 MB
- 文档页数:42
GPS辅助空中三角测量在低空航测大比例尺地形测图中的应用本文基于无人机航拍摄影技术,对GPS辅助空中三角测量技术进行了详细地探讨,着重介绍了无人机航拍技术的特点、应用范围以及GPS辅助空中三角测量技术的工作原理、应用优势与其未来的发展,标签:GPS辅助空中三角测量;精度;低空航测;地形测图一、无人机航拍的概述随着我国经济建设的迅猛发展,各个地区自身的地貌均发生了相应的变化,传统航空遥感技术手段已经不能满足当前经济发展的需求,需要一种新型的遥感技术来为我国未来的文化事业与经济建设服务,其中无人驾驶飞机的发展正好为空中遥感技术的发展提供了一个平台,随之发展成为了无人机航拍,在一定程度上能够满足我国当前对航空遥感事业的需求,能够及时对一些陈旧的地理资料实施更新。
(一)无人机航拍的简介随着我国信息化建设的快速发展,数字城市、数字环保、数字公安、数字国土、数字能源以及数字林业等一系列数字化的建设进程也逐渐加快,取得了一定的成绩。
所谓无人机航空摄影就是利用无人驾驶飞机作为其空中平台,通过机载遥感设备来获取相关的信息,接着利用计算机来处理图像,且根据相应的精度要求来将其制作成图像。
(二)无人机航拍摄影的特点无人机航拍摄影具有高清晰、高现势性、大比例尺和小面积等,尤其适合带状地区航拍影像的获取。
同时无人驾驶飞机便于航拍的摄影,利于转场的遥感平台,在起飞或者降落的时候,受场地的影响和限制比较小,在公路、操作或者其他一些较为开阔的地方都可以起降,其安全性与稳定性较好,便于转场。
要想获取遥感信息,其中最重要的一个手段就是多功能和多用途的影像系统,遥感航拍所采用的摄像器材与摄影器材为经过改装后的照相机,能够拍摄黑白或或者彩色的负片以及反转片。
此外,还可利用小型的摄像机或者视频无线传输的技术来实行彩色摄制。
总而言之,无人机航最为突出的特点就是小型轻便、轻型化、低噪节能、小型化、高效机动、智能化、影像清晰等。
(三)无人机航拍的应用范围无人机航拍应用范围,随着社会经济的快速发展,无人机航空拍摄技术已经被广泛地应用于土地利用调查、城市规划与市政管理、国家生态环境保护、农作物长势监测与估产、数字地球、农业作业、森林病虫害防护与监测、海洋环境监测、矿产资源勘探、自然灾害监测与评估、国防事业、公共安全、水资源开发、以及广告摄影等各个领域,其應用市场需求非常的光广阔。
无人机测量空中三角测量技术应用摘要:随着时代的进步和科学的发展,无人机技术发展迅速,测量摄影的相机和无人机相互结合进行空中测量更是取得了重大突破。
又因为无人机具有很多的优势,例如无人机测量可以摆脱自然环境和突发灾害的阻碍,并且能够同步传输数据,达到低成本、高效率的测量效果。
空中三角测量结合了无人机和高新计算机技术,测量准确度与日俱增。
本文通过对空中三角测量方法进行阐述,对无人机测量空中三角测量技术应用进行分析。
关键字:无人机;空中三角测量技术;技术应用引言无人机,顾名思义就是指无人驾驶的航空飞行器。
我国的无人机发展时间相对较短,部分技术还不够成熟,需要广大技术人员进行深入探索与研究。
无人机飞行器上往往安装着定位系统、飞行驱动系统、导航系统等等,体积较小,便于携带也易于操作,应用较为便利。
无人机测量能够携带不同型号、不同像素的相机,以满足各种摄像需求。
由于无人机技术优点显著,不仅应用到各项应用中去,在一些基本数据的收集和测量领域的应用也越来越广泛。
一、空中三角测量空中三角测量是为野外没有控制点的地区测量绘图提供主要的控制点。
根据这些控制点进行高度和平面位置的测量。
空中三角测量主要包括解析空中三角测量和模拟空中三角测量两种。
无人机遥感的测量方法主要是利用了相片中的几何特性,对于控制点建立起与之相对应的航线相关模型或者是与环境相对应的网络模型,再根据这些模型获取控制点的地理位置坐标和高度,进一步得出相对应的地形图。
二、空中三角测量方法空中三角的测量方法可以概括性的总结为三个发展阶段,第一阶段是模拟空中三角测试,第二阶段是解析空中三角测量,最后阶段是数字空中三角测量。
模拟空中三角测试大多数情况是使用模拟器进行光学操作,这种测量的方式存在一定的弊端,局限性大,效率相对较低,所测量的结果准确度和精确度不够高。
解析空中三角测量方法相对于模拟空中三角测量方法在精度和效率上有所提高,但是转化过程中会消耗大量的人工,浪费时间成本,人为的操作也会降低一些精确度。
空中三角测量方法与技巧在地理测量领域中,空中三角测量是一种非常常见和有效的测量方法。
它通过计算角度、距离和高度的关系来确定地球上不同点之间的位置关系。
空中三角测量方法和技巧的运用,对于地理测绘、城市规划以及导航系统的建立等方面都具有重要意义。
本文将介绍空中三角测量的基本原理、常用仪器和技巧,以期给读者一个系统全面的了解。
1. 基本原理空中三角测量的基本原理是利用三角形的性质来计算位置。
首先,我们需要选择一个适当的控制点,作为测量的基准点。
然后,通过测量每个目标点与基准点之间的角度和距离,以及目标点的高度,我们可以根据三角形的关系计算出目标点的准确位置。
这种测量方法的优点在于可以在较大的范围内进行,而不受地形和障碍物的限制。
2. 常用仪器在空中三角测量中,我们常用的仪器包括全站仪、经纬仪、测距仪和全球定位系统(GPS)等。
全站仪是一种多功能测量仪器,可以同时测量目标点的水平角、垂直角和斜距,它的使用可以大大提高测量的精度和效率。
经纬仪主要用于测量目标点的水平角和垂直角,在一些较小范围的测量中依然具有一定的优势。
测距仪是测量目标点与仪器之间距离的工具,其原理可以分为直接测距和间接测距两种方法,根据具体的测量需求选择适合的方式。
GPS是一种全球卫星定位系统,通过接收卫星信号来测量目标点的位置,它可以在空中三角测量中提供高精度的位置信息。
3. 测量技巧在进行空中三角测量时,有一些技巧是需要注意的。
首先,我们要选取一个合适的控制点作为基准点,该点应当具有较好的稳定性和可靠性,同时应当离目标点较近,以便提高测量精度。
其次,我们应当在测量过程中注意排除误差的影响,例如,在测量角度时要保持仪器的稳定性,避免震动和摇晃。
另外,在测量角度和距离时,要尽量选择正面视距较大的目标点,这样可以减小测量误差。
此外,还需要合理设置观测顺序,以便提高测量效率。
4. 应用领域空中三角测量方法和技巧在许多领域都有广泛应用。
首先,在地理测绘领域,空中三角测量是制作地图和测量地形的重要手段之一。
空中三角测量技术的原理与实施步骤空中三角测量技术是一种基于三角测量原理的测量方法,通过利用空中摄影测量的原理和实施步骤来实现对地面目标的测量和定位。
在现代遥感和地理信息系统中得到广泛应用,为我们提供了大范围的地理信息数据,支持地图制作、城市规划、环境监测等多个领域。
一、原理空中三角测量技术的原理基于三角形的几何关系。
在地面目标测量中,通过测量摄影机成像的影像上目标的像点坐标,并结合航空摄影测量仪的内外方位元素,与摄影测量仪的基线向量,可以构建一个空间三角形。
根据三角形的几何关系,通过对角三角形的边长、角度等参数的测量,可以计算出地面目标的坐标。
在实际应用中,航空摄影仪通过拍摄目标图像,产生像点坐标,然后根据摄影测量仪的内外方位元素,将像点坐标转化为地面坐标。
其中,内方位元素包括摄影机的焦距、主点位置以及透镜畸变参数,外方位元素包括飞机的坐标、姿态和轨迹等。
二、实施步骤空中三角测量技术的实施步骤主要包括航空摄影、相片测量、成图等环节。
航空摄影是整个空中三角测量的第一步。
一架配备了摄影测量仪的航空相机安装在航空器上,通过飞行航线规划进行航空摄影。
相机按照一定的拍摄模式,连续拍摄地面目标的影像。
同时,在摄影飞机上还需设置全球定位系统(GPS)和惯性测量设备(IMU)等用来获取飞机的位置姿态信息。
相片测量是对航拍的影像进行测量与解算,得到影像上目标的像点坐标,并且计算其地面坐标。
首先需要对影像进行控制点标注,即在影像上选择具有已知地面坐标的点,作为基准点用于定位和校正。
然后对影像进行内外方位的解算,获得摄影测量仪的内、外方位元素。
最后,根据像点坐标和内外方位元素,通过空中三角测量原理计算出地面目标的坐标。
成图是将测量得到的地面目标坐标进行绘图和制图的过程。
通过将地面目标的坐标点进行数字化处理,可以生成数字地图或者相应的空间模型。
三、应用与前景空中三角测量技术在地理信息领域的应用非常广泛。
首先,在地图制作方面,空中三角测量是绘制地图的重要工具之一。
空中三角测量的使用方法和技巧引言:空中三角测量是一种利用三角形的特性和测量原理来确定物体间距离和方位的方法。
它广泛应用于地理勘测、航空导航、遥感测绘等领域。
本文将介绍空中三角测量的基本原理、使用方法和一些实用技巧,以帮助读者更好地理解和应用这一测量方法。
一、基本原理空中三角测量基于三角形的相似性原理。
当我们观测到一个物体,且知道该物体相对于两个观测点的方向角(或称为方位角)时,我们可以在这两个观测点处建立一个观测基线,然后绘制一条从该基线上的某一点到该物体的测量线。
通过测量这两条线的长度和角度,我们可以利用三角计算方法来确定两个观测点与该物体之间的距离和方位。
二、使用方法空中三角测量的使用方法主要包括观测数据的收集、计算结果的推导和实际应用。
1. 观测数据的收集在进行空中三角测量之前,我们需要选择观测点和目标物体,并进行观测数据的收集。
观测点的选择需要考虑到观测点之间的基线长度和目标物体的可见性。
通常选择两个观测点,可以通过使用测量仪器(如全站仪或GPS)来测量观测点的坐标。
同时,我们还需要观测目标物体相对于观测点的方向角,可以使用指南针或导航设备进行测量。
2. 计算结果的推导收集完观测数据后,我们需要进行计算来确定目标物体与观测点之间的距离和方位。
首先,我们可以根据观测点的坐标和方向角计算出目标物体的空间坐标。
然后,利用三角计算方法可以推导出目标物体与观测点之间的距离和方位。
在实际计算中,我们可以使用计算机软件来辅助进行这些计算,以提高计算的准确性和效率。
3. 实际应用计算得到目标物体与观测点之间的距离和方位后,我们可以将这些结果应用于地理勘测、航空导航等领域。
在地理勘测中,空中三角测量可以用于确定地物的位置和形状,以制作精确的地图和地形模型。
在航空导航中,可以利用空中三角测量来确定飞机的位置和航向,以提供准确的导航信息。
三、实用技巧在进行空中三角测量时,有一些实用的技巧可以帮助我们提高测量的准确性和效率。
空中三角测量技术的使用方法空中三角测量技术是一种常见的测绘技术,它利用光学原理和数字图像处理技术,通过对空中影像进行分析和处理,来获取地面上各种地物的位置、形状和尺寸等信息。
本文将介绍空中三角测量技术的使用方法,包括数据获取、图像处理和测量精度等方面。
一、数据获取空中三角测量技术所需的数据主要来源于航空摄影。
航空摄影是通过航空器携带相机进行的摄影活动,它可以快速获取大范围的地理信息。
在进行航空摄影时,通常使用无人机或者航空器携带的相机进行高空拍摄。
拍摄过程中,相机会连续拍摄一系列略有重叠的照片,以确保后续的图像处理过程的准确性。
通过航空摄影,可以获得高分辨率的空中影像,为后续的测量和分析提供依据。
二、图像处理空中三角测量技术的核心在于对航空摄影获取的影像进行处理。
首先需要将连续拍摄的照片进行拼接,生成一幅完整的影像。
这一步骤通常使用图像配准和镜像拼接的方法实现。
图像配准是指将不同照片之间的重叠区域进行匹配,以最小化拼接误差。
镜像拼接则是将合适的照片进行水平或垂直镜像,使其能够拼接成连续的影像。
拼接完成后,需要对影像进行校正。
校正的目的是消除影像中的畸变,以保证后续的测量精度。
常见的校正方法有镜头畸变校正和地形校正。
镜头畸变校正是指将相机镜头引起的畸变进行校正,通过数学模型和参考点的配准,可以将影像中的畸变进行修正。
地形校正是指将地面上的高程信息应用于影像中,以实现横断面和剖面信息的真实反映,从而提高影像的几何精度。
三、测量精度空中三角测量技术的测量精度主要受到航空摄影和图像处理的影响。
在航空摄影中,摄影机的稳定性、高度和角度的准确性等因素都会对测量精度产生影响。
因此,在进行航空摄影时,需要确保摄影机的稳定性,减小影响因素的误差,并使用精密的GPS定位技术来获取摄影机的位置和姿态信息。
这样可以提高图像的几何精度,从而提高测量精度。
在图像处理过程中,拼接误差和校正误差是影响测量精度的主要因素。
为了减小拼接误差,可以选择合适的图像配准和拼接算法,并确保参考点的准确性和分布均匀性。
解析空中三角测量方法1、概念解析空中三角测量是指航空摄影测量中利用像片内在的几何特性,在室内加密控制点的方法。
即利用连续摄取的具有一定重叠的航摄像片,依据少量野外控制点,以摄影测量方法建立同实地相应的航线模型或区域网模型(光学的或数字的),从而获取加密点的平面坐标和高程,主要用于测地形图。
2、介绍解析空中三角测量是指用计算的方法,根据像片上量测的像点坐标和少量地面控制点,采用较严密的数学公式,按最小二乘法原理,用电子计算机解算待定点的平面坐标和高程。
也称电算加密。
20世纪40年代,随着电子计算机的发明和应用,解析空中三角测量首先在英国的军事测量局投入应用。
20世纪60年代以来,由于电子计算机技术和计算数学的发展,解析空中三角测量取得了长足的进步,形成了一套比较完善的测算方法。
由于精度高,效果好,解析空中三角测量被认为是测地定位的一种精密方法。
解析空中三角测量目前常用的方法是区域网平差。
区域网平差是指在由多条航线连接成的区域内进行控制点加密,并对加密点的平面坐标和高程进行的整体平差。
3、优点(1)不触及被量测目标即可测定其位置和几何形状;(2)可快速地在大范围内同时进行点位测定,以节省野外测量工作量;(3)不受通视条件限制;(4)区域内部精度均匀,且不受区域大小限制。
4、分类按平差模型:航带法、独立模型法、光束法。
按加密区域:单航带法、区域网法。
区域网法:航带法区域网平差、独立模型法区域网平差、光束法区域网平差。
5、新技术(1)GPS辅助空中三角测量GPS辅助空中三角测量是利用安装于飞机上与航摄仪相连接的和设在地面一个或多个基准站上的至少两台GPS信号接收机同步而连续地观测GPS卫星信号、同时获取航空摄影瞬间航摄仪快门开启脉冲,经过GPS载波相位测量差分定位技术的离线数据后处理获取航摄仪曝光时刻摄站的三维坐标,然后将其视为附加观测值引入摄影测量区域网平差中,以取代地面控制,经采用统一的数学模型和算法来整体确定目标点位和像片方位元素,并对其质量进行评定的理论、技术和方法。