第八章 第三节 圆的方程(优秀经典课时作业练习及答案详解)
- 格式:doc
- 大小:71.00 KB
- 文档页数:6
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上, 又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a . 由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2, ∴()22|31|21k k k -+=+-,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。
课时作业 A 组 基础对点练1.圆M :x 2+y 2+2x +23y -5=0的圆心坐标为( ) A .(1,3) B.()1,-3 C.()-1,3D .(-1,-3)解析:x 2+y 2+2x +23y -5=0配方得(x +1)2+(y +3)2=9,故圆心坐标为(-1,-3),选D.答案:D2.(2017·广州测试)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( ) A .(x -2)2+(y -1)2=1 B .(x +1)2+(y -2)2=1 C .(x +2)2+(y -1)2=1 D .(x -1)2+(y +2)2=1解析:∵圆心(1,2)关于直线y =x 对称的点为(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1.答案:A3.(2017·吉林质检)过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为( )A.()-∞,-3∪(1,+∞)B.⎝⎛⎭⎫-∞,32 C .(-3,1)∪⎝⎛⎭⎫32,+∞ D .(-∞,-3)∪(1,32)答案:D4.(2017·南昌检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析:根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0,故选B.答案:B5.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .6-2 2B .52-4 C.17-1D.17解析:圆C 1关于x 轴对称的圆C 1′的圆心为C 1′(2,-3),半径不变,圆C 2的圆心为(3,4),半径r =3,|PM |+|PN |的最小值为圆C 1′和圆C 2的圆心距减去两圆的半径,所以|PM |+|PN |的最小值为(3-2)2+(4+3)2-1-3=52-4.故选B.答案:B6.(2016·高考浙江卷)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是 ________.解析:由题可得a 2=a +2,解得a =-1或a =2.当a =-1时,方程为x 2+y 2+4x +8y -5=0,表示圆,故圆心为(-2,-4),半径为5.当a =2时,方程不表示圆.答案:(-2,-4) 57.(2016·高考天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.解析:设圆心为(a,0)(a >0),则圆心到直线2x -y =0的距离d =|2a -0|4+1=455,得a =2,半径r =(a -0)2+(0-5)2=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=98.(2017·绍兴模拟)点P (1,2)和圆C :x 2+y 2+2kx +2y +k 2=0上的点的距离的最小值是________.解析:圆的方程化为标准式为(x +k )2+(y +1)2=1. ∴圆心C (-k ,-1),半径r =1. 易知点P (1,2)在圆外. ∴点P 到圆心C 的距离为: |PC |=(k +1)2+32=(k +1)2+9≥3. ∴|PC |min =3.∴点P 和圆C 上点的最小距离d min =|PC |min -r =3-1=2. 答案:29.(2017·佛山一中检测)已知圆C 经过点(0,1),且圆心为C (1,2). (1)写出圆C 的标准方程;(2)过点P (2,-1)作圆C 的切线,求该切线的方程及切线长. 解析:(1)由题意知,圆C 的半径r =(1-0)2+(2-1)2=2, 所以圆C 的标准方程为(x -1)2+(y -2)2=2.(2)由题意知切线斜率存在,故设过点P (2,-1)的切线方程为y +1=k (x -2),即kx -y-2k -1=0,则|-k -3|1+k 2=2,所以k 2-6k -7=0,解得k =7或k =-1, 故所求切线的方程为7x -y -15=0或x +y -1=0.由圆的性质易得所求切线长为PC 2-r 2=(2-1)2+(-1-2)2-2=2 2.10.在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C .(1)求圆C 的方程;(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程.解析:(1)设圆的方程为x 2+y 2+Dx +Ey +F =0,函数f (x )=x 2-x -6的图象与两坐标轴交点为(0,-6),(-2,0),(3,0),由⎩⎪⎨⎪⎧36-6E +F =04-2D +F =09+3D +F =0,解得⎩⎪⎨⎪⎧D =-1E =5F =-6,所以圆的方程为x 2+y 2-x +5y -6=0.(2)由(1)知圆心坐标为⎝⎛⎭⎫12,-52,若直线经过原点,则直线l 的方程为5x +y =0;若直线不过原点,设直线l 的方程为x +y =a ,则a =12-52=-2,即直线l 的方程为x +y +2=0.综上可得,直线l 的方程为5x +y =0或x +y +2=0.B 组 能力提速练1.(2017·唐山一中调研)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.答案:A2.(2017·株州模拟)圆心在直线2x -y -7=0上的圆C 与y 轴交于A (0,-4),B (0,-2)两点,则圆C 的标准方程为( )A .(x +2)2+(y +3)2=5B .(x -2)2+(y -3)2=5C .(x +2)2+(y -3)2=5D .(x -2)2+(y +3)2=5解析:法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,故⎩⎪⎨⎪⎧2a -b -7=0a 2+(4+b )2=r2a 2+(2+b )2=r 2,解得⎩⎪⎨⎪⎧a =2b =-3,半径r =22+12=5,故圆C 的标准方程为(x -2)2+(y +3)2=5.选D. 法二:利用圆心在直线2x -y -7=0上来检验,只有D 符合,即(x -2)2+(y +3)2=5的圆心为(2,-3),2×2+3-7=0,其他三个圆心(-2,-3),(2,3),(-2,3)均不符合题意,故选D.答案:D3.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .[4,6)D .(4,6]解析:易求圆心(3,-5)到直线4x -3y =2的距离为5.令r =4,可知圆上只有一点到已知直线的距离为1;令r =6,可知圆上有三点到已知直线的距离为1,所以半径r 取值范围在(4,6)之间符合题意.答案:A4.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,求半径最大的圆的标准方程.解析:因为直线mx -y -2m -1=0恒过定点(2,-1),所以圆心(1,0)到直线mx -y -2m -1=0的最大距离为d =(2-1)2+(-1-0)2=2,所以半径最大时的半径r =2,所以半径最大的圆的标准方程为(x -1)2+y 2=2.5.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,求过点M 的最短弦所在直线的方程.解析:过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM=1-02-1=1,∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.。
圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点在圆上运动时,连接它与定点,线段的中点的轨迹方程是()A.B.C.D.3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆的半径是()A.B.2C.D.45.已知圆与圆相交于A、B两点,则线段AB的垂直平分线的方程为A.B.C.D.6.若点为圆上的一个动点,点,为两个定点,则的最大值为()A.B.C.D.7.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2B.C.6D.8.若直线l:ax+by+1=0经过圆M:的圆心则的最小值为A.B.5C.D.109.若均为任意实数,且,则的最小值为()A.B.C.D.二、填空题10.如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.11.已知x,y满足-4-4+=0, 则的最大值为____12.若直线l:与x轴相交于点A,与y轴相交于B,被圆截得的弦长为4,则为坐标原点的最小值为______.13.设直线与圆相交于两点,若,则圆的面积为________.14.已知圆的圆心在曲线上,且与直线相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy中,已知过点的圆和直线相切,且圆心在直线上,则圆C的标准方程为______.16.已知圆的圆心在直线上,且经过,两点,则圆的标准方程是__________.17.在平面直角坐标系中,三点,,,则三角形的外接圆方程是__________.18.如图,O是坐标原点,圆O的半径为1,点A(-1,0),B(1,0),点P,Q分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,的最大值是_______.三、解答题 19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程. 20.已知圆内一点,直线过点且与圆交于,两点.(1)求圆的圆心坐标和面积; (2)若直线的斜率为,求弦的长;(3)若圆上恰有三点到直线的距离等于,求直线的方程.21.已知点在圆上运动,且存在一定点,点为线段的中点.(1)求点的轨迹的方程; (2)过且斜率为的直线与点的轨迹交于不同的两点,是否存在实数使得,并说明理由.22.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。
新课标高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . 上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
2021年高考数学一轮复习 8.3 圆的方程课时作业 理(含解析)新人教A版一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2=2 C .x 2+y 2=1D .x 2+y 2=4解析:AB 的中点坐标为:(0,0), |AB |= [1--1]2+-1-12=22,∴圆的方程为:x 2+y 2=2. 答案:A2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1 解析:设圆心坐标为(0,b ),则由题意知0-12+b -22=1,解得b =2,故圆的方程为x 2+(y -2)2=1.答案:A3.若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)解析:曲线C 的方程可以化为(x +a )2+(y -2a )2=4,则该方程表示圆心为(-a,2a ),半径等于2的圆.因为圆上的点均在第二象限,所以a >2.答案:D4.动点A 在圆x 2+y 2=1上移动时,它与定点B (3,0)连线的中点的轨迹方程是( ) A .(x +3)2+y 2=4 B .(x -3)2+y 2=1C .(2x -3)2+4y 2=1D.⎝ ⎛⎭⎪⎫x +322+y 2=12解析:设中点M (x ,y ),则动点A (2x -3,2y ), ∵A 在圆x 2+y 2=1上,∴(2x -3)2+(2y )2=1,即(2x -3)2+4y 2=1,故选C. 答案:C5.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 答案:C6.已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点M (3,5)的最长弦、最短弦分别为AC 、BD ,则以点A 、B 、C 、D 为顶点的四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6解析:将圆的方程化成标准形式得(x -3)2+(y -4)2=25,所以圆心为P (3,4),半径r =5.而|MP |=3-32+4-52=1<5,所以点M (3,5)在圆内,故当过点M 的弦经过圆心时最长,此时|AC |=2r =10,当弦BD 与MP 垂直时,弦BD 的长度最小,此时|BD |=2r 2-|MP |2=252-12=4 6.又因为AC ⊥BD ,所以四边形ABCD 的面积为S =12|AC |×|BD |=12×10×46=20 6. 答案:B 二、填空题7.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________________.解析:设圆心为(a,0)(a <0),则|a |2=2,解得a =-2,故圆O 的方程为(x +2)2+y 2=2.答案:(x +2)2+y 2=28.直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是________________.解析:直线过点A (b ,a ),∴ab =12,圆面积S =πr 2=π(a 2+b 2)≥2πab =π.答案:π9.(xx·杭州模拟)已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是______.解析:圆的方程变为(x +1)2+(y -2)2=5-a , ∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称, ∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1) 三、解答题10.根据下列条件求圆的方程:(1)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (3)过三点A (1,12),B (7,10),C (-9,2). 解:(1)设圆的标准方程为(x -a )2+(y -b )2=r 2, 由题意列出方程组⎩⎪⎨⎪⎧a 2+b 2=r 2a -12+b -12=r 2,2a +3b +1=0解之得⎩⎪⎨⎪⎧a =4b =-3r 2=25∴圆的标准方程是(x -4)2+(y +3)2=25.(2)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a3-a 2+-2-b 2=r 2,|a +b -1|2=r解得a =1,b =-4,r =2 2. ∴圆的方程为(x -1)2+(y +4)2=8.法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).∴半径r =1-32+-4+22=22,∴所求圆的方程为(x -1)2+(y +4)2=8. (3)法一:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0. 法二:由A (1,12),B (7,10),得A 、B 的中点坐标为(4,11),k AB =-13,则AB 的中垂线方程为3x -y -1=0. 同理得AC 的中垂线方程为x +y -3=0.联立⎩⎪⎨⎪⎧3x -y -1=0x +y -3=0,得⎩⎪⎨⎪⎧x =1y =2,即圆心坐标为(1,2),半径r =1-12+2-122=10.∴所求圆的方程为(x -1)2+(y -2)2=100.11.(xx·重庆九校联考)已知⊙C 与两平行直线x -y =0及x -y -4=0都相切,且圆心C 在直线x +y =0上.(1)求⊙C 的方程;(2)斜率为2的直线l 与⊙C 相交于A ,B 两点,O 为坐标原点且满足OA →⊥OB →,求直线l 的方程.解:(1)由题意知⊙C 的直径为两平行线x -y =0及x -y -4=0之间的距离 ∴d =2R =|0--4|2=22,解得R =2,设圆心C (a ,-a ),由圆心C 到x -y =0的距离|2a |2=R =2得a =±1,检验得a =1.∴⊙C 的方程为(x -1)2+(y +1)2=2.(2)由(1)知⊙C 过原点,若OA →⊥OB →,则l 经过圆心, 易得l 的方程:2x -y -3=0.12.如右图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2|=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 为切点),使得|PM |=2|PN |.试建立平面直角坐标系,并求动点P的轨迹方程.解:以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立如图所示的平面直角坐标系,则O 1(-2,0),O 2(2,0).由已知|PM |=2|PN |, 得|PM |2=2|PN |2.因为两圆的半径长均为1,所以|PO 1|2-1=2(|PO 2|2-1). 设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1],化简,得(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33. [热点预测]13.(1)(xx·安徽亳州摸底联考)已知圆C 的圆心是抛物线y =116x 2的焦点.直线4x -3y -3=0与圆C 相交于A ,B 两点,且|AB |=8,则圆C 的方程为________.(2)(xx·吉林长春三校调研)设圆C :(x -3)2+(y -5)2=5,过圆心C 作直线l 交圆于A 、B 两点,交y 轴于点P ,若A 恰好为线段BP 的中点,则直线l 的方程为________.解析:(1)y =116x 2的焦点为(0,4),∴设圆的方程为x 2+(y -4)2=r 2(r >0) 所以弦长为|AB |=2r 2-d 2= 2r 2-⎝ ⎛⎭⎪⎫|4×0-3×4-3|32+422=2 r 2-⎝⎛⎭⎪⎫|15|52=8.所以r 2=25,所以圆的方程为x 2+(y -4)2=25.(2)如图,A为PB的中点,而C为AB的中点,因此,C为PB的四等分点.而C(3,5),P点的横坐标为0,因此,A、B的横坐标分别为2、4,将A的横坐标代入圆的方程中,可得A(2,3)或A(2,7),根据直线的两点式得到直线l的方程为2x-y-1=0或2x+y-11=0.答案:(1)x2+(y-4)2=25(2)2x-y-1=0或2x+y-11=09 34222 85AE 薮4q39496 9A48 驈25292 62CC 拌28418 6F02 漂35646 8B3E 謾@|26101 65F5 旵39942 9C06 鰆29311 727F 牿X。
第 8 章直线和圆的方程练习 8.1两点间的距离与线段中点的坐标1.根据下列条件,求线段P P 的长度:1 2( 2) P ( -3, 1)、 P ( 2, 4)(1) P ( 0, -2)、P ( 3,0)121 2 (3) P ( 4, -2)、P ( 1,2)( 4) P ( 5, -2)、 P ( -1, 6)1 2122.已知 A(2,3) 、 B ( x , 1),且 |AB |= 13 ,求 x 的值。
3.根据下列条件,求线段 P 1P 2 中点的坐标:(1) P 1( 2, -1)、P 2( 3,4) ( 2) P 1( 0, -3)、P 2( 5,0) ( 3) P 1( 3, 2.5)、 P 2(4, 1.5)( 4) P 1( 6, 1)、P 2(3, 3)4.根据下列条件,求线段P 1P 2 中点的坐标:(1) P ( 3, -1)、P ( 3,5)( 2) P ( -3, 0)、 P ( 5,0)1 21 2(3) P 1( 3, 3.5)、 P 2(4, 2.5) ( 4) P 1( 5, 1)、 P 2(5, 3)参考答案:1.(1) 13 ;(2) 34 ;(3)5; (4)102.-1 或 53.(1) ( 5 , 3) ;(2) ( 5 ,3) ;(3) (7, 2) ; (4) (9, 2)222 222 4. (1)(3, 2) ;(2) (1,0) ;(3) (3.5,3) ; (4)(5, 2)练习 8.2.1 直线的倾斜角与斜率1.选择题(1)没有斜率的直线一定是()A. 过原点的直线B.垂直于 y 轴的直线C.垂直于 x 轴的直线D. 垂直于坐标轴的直线(2) 若直线 l的斜率为 -1,则直线 l 的倾斜角为( )A.90 B.0 C. 45D. 1352 已知直线的倾斜角,写出直线的斜率:(1) 30 , k ____ ( 2) (3)120 ,k____( 4)参考答案:1. ( 1) C( 2) D45 , k____150 , k____2. ( 1)3 3;(2) 1 ;(3) 3 ; (4)33练习 8.2.2 直线的点斜式方程与斜截式方程写出下列直线的点斜式方程(1)经过点 A (2,5),斜率是 4;(2)经过点 B ( 2,3),倾斜角为45;(3)经过点 C( -1,1),与 x 轴平行;(4)经过点 D (1,1),与 x 轴垂直。
2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。
第三节 圆的方程授课提示:对应学生用书第357页〖A 组 基础保分练〗1.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3〖解 析〗方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,所以仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆.〖答 案〗B 2.(2021·河北省九校第二次联考)圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( ) A .x 2+y 2-2x -3=0 B .x 2+y 2+4x =0 C .x 2+y 2-4x =0 D .x 2+y 2+2x -3=0 〖解析〗由题意设所求圆的方程为(x -m )2+y 2=4(m >0),则|3m +4|32+42=2,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.〖答 案〗C 3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( ) A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1 〖解 析〗圆C 1的圆心坐标为(-1,1),半径为1,设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1. 〖答 案〗B 4.(2020·高考全国卷Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55B .255C .355D .455〖解 析〗由题意可知圆心在第一象限,设为(a ,b ). ∵圆与两坐标轴均相切,∴a =b ,且半径r =a , ∴圆的标准方程为(x -a )2+(y -a )2=a 2. ∵点(2,1)在圆上,∴(2-a )2+(1-a )2=a 2, ∴a 2-6a +5=0,解得a =1或a =5.当a =1时,圆心坐标为(1,1),此时圆心到直线2x -y -3=0的距离d =|2×1-1-3|22+(-1)2=255;当a =5时,圆心坐标为(5,5),此时圆心到直线2x -y -3=0的距离d =|2×5-5-3|22+(-1)2=255.综上,圆心到直线2x -y -3=0的距离为255.〖答 案〗B5.已知圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 对称,则a -b 的取值范围是( ) A .(-∞,0) B .(-∞,4) C .(-4,+∞) D .(4,+∞) 〖解 析〗根据圆的一般方程中D 2+E 2-4F >0得(-2)2+62-4×5a >0,解得a <2,由圆关于直线y =x +2b 对称可知圆心(1,-3)在直线y =x +2b 上,所以-3=1+2b ,得b =-2,故a -b <4. 〖答 案〗B 6.(2021·河北五个一名校联盟一诊)已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|P A →+PB →|的最大值为( ) A .26+2 B .26+4 C .226+4 D .226+2〖解 析〗取AB 的中点D (2,-3),则P A →+PB →=2PD →,|P A →+PB →|=|2PD →|,|PD →|的最大值为圆心C (1,2)与D (2,-3)的距离d 再加半径r ,又d =1+25=26,所以d +r =26+2.所以|P A →+PB →|的最大值为226+4. 〖答 案〗C7.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为_________.〖解 析〗圆心是AB 的垂直平分线和2x -y -7=0的交点,则圆心为E (2,-3),r =|EA |=4+1=5,则圆的方程为(x -2)2+(y +3)2=r 2=5. 〖答 案〗(x -2)2+(y +3)2=5 8.(2021·银川模拟)已知圆x 2+y 2=4,B (1,1)为圆内一点,P ,Q 为圆上动点,若∠PBQ =90°,则线段PQ 中点的轨迹方程为_________. 〖解 析〗设PQ 的中点为N (x ′,y ′).在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON (图略),则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x ′2+y ′2+(x ′-1)2+(y ′-1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 〖答 案〗x 2+y 2-x -y -1=0 9.一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.〖解 析〗设所求圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 令y =0,得x 2+Dx +F =0,所以x 1+x 2=-D . 令x =0,得y 2+Ey +F =0,所以y 1+y 2=-E . 由题意知-D -E =2,即D +E +2=0.①又因为圆过点A ,B ,所以16+4+4D +2E +F =0.② 1+9-D +3E +F =0.③解①②③组成的方程组得D =-2,E =0,F =-12.故所求圆的方程为x 2+y 2-2x -12=0.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410. (1)求直线CD 的方程; (2)求圆P 的方程.〖解 析〗(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2), 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径|CD |=410, 所以|P A |=210,所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.〖B 组 能力提升练〗 1.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4B .(x -1)2+(y -3)2=4C .x 2+(y -2)2=4D .(x -2)2+(y -2)2=4〖解 析〗设圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为A (a ,b ),则⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,∴a =1,b =3,∴A (1,3),从而所求圆的方程为(x -1)2+(y -3)2=4.〖答 案〗B2.若直线2ax -by +2=0(a ,b ∈R )始终平分圆x 2+y 2+2x -4y +1=0的周长,则ab 的取值范围是( )A .⎝⎛⎦⎤-∞,12B .⎝⎛⎭⎫-∞,12C .⎝⎛⎭⎫-∞,14D .⎝⎛⎦⎤-∞,14 〖解 析〗∵直线2ax -by +2=0(a ,b ∈R )始终平分圆x 2+y 2+2x -4y +1=0的周长,∴圆心(-1,2)在直线2ax -by +2=0上,可得-2a -2b +2=0,解得b =1-a ,∴ab =a (1-a )=-⎝⎛⎭⎫a -122+14≤14,当且仅当a =12时等号成立,因此ab 的取值范围为⎝⎛⎦⎤-∞,14. 〖答 案〗D 3.已知圆C :(x -1)2+(y -2)2=2与y 轴在第二象限所围区域的面积为S ,直线y =2x +b 将圆C 分为两部分,其中一部分的面积也为S ,则b =( ) A .- 6 B .±6 C .- 5 D .±5〖解 析〗结合图形(图略)及题意知,圆心C (1,2)到y 轴的距离与到直线y =2x +b 的距离相等,易知C (1,2)到y 轴的距离为1,则|2×1-2+b |22+(-1)2=1,解得b =±5.〖答 案〗D4.已知圆M :x 2+y 2-2x +a =0,若AB 为圆M 的任意一条直径,且OA →·OB →=-6(其中O 为坐标原点),则圆M 的半径为( ) A . 5 B . 6 C .7 D .2 2 〖解 析〗圆M 的标准方程为(x -1)2+y 2=1-a ,圆心M (1,0),则|OM |=1,圆的半径r=1-a (a <1).因为AB 为圆M 的任意一条直径,所以MA →=-MB →,且|MA →|=|MB →|=r ,则OA →·OB →=(OM →+MA →)·(OM →+MB →)=(OM →-MB →)·(OM →+MB →)=OM →2-MB →2=1-r 2=-6,所以r 2=7,得r =7,所以圆的半径为7. 〖答 案〗C 5.(2021·临沂模拟)已知圆心在直线x -3y =0上的圆C 与y 轴的正半轴相切,且截x 轴所得的弦长为42,则圆C 的标准方程为_________.〖解 析〗设圆C 的标准方程为(x -a )2+(y -b )2=r 2(a >0,b >0),由题意可得⎩⎪⎨⎪⎧a -3b =0,a =r ,b 2+8=r 2,解得⎩⎪⎨⎪⎧a =3,b =1,r =3,所以圆C 的标准方程为(x -3)2+(y -1)2=9.〖答 案〗(x -3)2+(y -1)2=96.(2021·福建厦门模拟)在△ABC 中,AB =4,AC =2,A =π3,动点P 在以点A 为圆心,半径为1的圆上,则PB →·PC →的最小值为_________. 〖解 析〗如图,以点A 为原点,AB 边所在直线为x 轴建立平面直角坐标系.则A (0,0),B (4,0),C (1,3),设P (x ,y ),则PB →=(4-x ,-y ),PC →=(1-x ,3-y ),所以PB →·PC →=(4-x )(1-x )-y (3-y )=x 2-5x +y 2-3y +4=⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -322-3,其中⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -322表示圆A 上的点P 与点M ⎝⎛⎭⎫52,32之间距离|PM |的平方,由几何图形可得|PM |min =|AM |-1=⎝⎛⎭⎫522+⎝⎛⎭⎫322-1=7-1,所以(PB →·PC →)min =(7-1)2-3=5-27. 〖答 案〗5-277.设m ∈R ,已知直线x +my =0过定点A ,直线mx -y -2m +4=0过定点B ,直线x +my =0和直线mx -y -2m +4=0交于点P . (1)求动点P 的轨迹方程; (2)求|P A |·|PB |的最大值. 〖解 析〗(1)由已知可知,直线x +my =0和直线mx -y -2m +4=0分别过定点A (0,0),B (2,4),又m ×1+m ×(-1)=0,所以两直线垂直,故两直线的交点P (x ,y )的轨迹为以AB 为直径的圆,圆心为AB 的中点(1,2),半径r =|AB |2=5,故动点P 的轨迹方程为(x -1)2+(y -2)2=5.(2)由(1)可知定点A (0,0),B (2,4),且两直线垂直,P 为圆(x -1)2+(y -2)2=5上的点,则P A ⊥PB ,|P A |2+|PB |2=|AB |2=22+42=20,则|P A |·|PB |≤|P A |2+|PB |22=10,当且仅当|P A |=|PB |时等号成立,所以|P A |·|PB |的最大值为10.〖C 组 创新应用练〗1.(2021·海口模拟)已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( ) A .(-23,4) B .〖-23,4〗 C .〖-4,4〗 D .〖-4,23〗 〖解 析〗x 2+y 2=4(y ≥0)表示圆x 2+y 2=4的上半部分,如图所示,直线3x +y -m =0的斜率为-3,在y 轴上的截距为m .当直线3x +y -m =0过点(-2,0)时,m =-23.设圆心(0,0)到直线3x +y -m =0的距离为d ,则⎩⎪⎨⎪⎧m ≥-23,d ≤2,即⎩⎨⎧m ≥-23,|-m |2≤2.解得m ∈〖-23,4〗.〖答 案〗B2.设命题p :⎩⎪⎨⎪⎧4x +3y -12≥0,k -x ≥0,x +3y ≤12(x ,y ,k ∈R 且k >0);命题q :(x -3)2+y 2≤25(x ,y ∈R ).若p 是q 的充分不必要条件,则k 的取值范围是_________. 〖解 析〗如图所示:命题p 表示的范围是图中△ABC 的内部(含边界),命题q 表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p 是q 的充分不必要条件.实际上只需A ,B ,C 三点都在圆内(或圆上)即可. 由题知B ⎝⎛⎭⎫k ,4-43k , 则⎩⎪⎨⎪⎧k >0,(k -3)2+169(3-k )2≤25,解得0<k ≤6. 〖答 案〗(0,6〗3.如果直线2ax -by +14=0(a >0,b >0)和函数f (x )=m x +1+1(m >0,m ≠1)的图像恒过同一个定点,且该定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,那么ba的取值范围为_________. 〖解 析〗易知函数f (x )=m x +1+1(m >0,m ≠1)的图像过定点(-1,2),∴直线2ax -by +14=0(a >0,b >0)过定点(-1,2),∴a +b =7 ①,又定点(-1,2)在圆(x -a +1)2+(y +b -2)2=25的内部或圆上, ∴a 2+b 2≤25 ②,由①②解得3≤a ≤4, ∴14≤1a ≤13,∴b a =7-a a =7a-1∈⎣⎡⎦⎤34,43. 〖答 案〗⎣⎡⎦⎤34,43。
[课时作业·巩固练习]实战演练夯基提能[A组基础保分练]1.(2020·南昌检测)圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程为() A.x2+y2+10y=0B.x2+y2-10y=0C.x2+y2+10x=0 D.x2+y2-10x=0解析:根据题意,设圆心坐标为(0,r),半径为r,则32+(r-1)2=r2,解得r=5,可得圆的方程为x2+y2-10y=0.答案:B2.(2020·银川模拟)方程|y|-1=1-(x-1)2表示的曲线是()A.一个椭圆B.一个圆C.两个圆D.两个半圆解析:由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直径y=-1下方的半圆.所以方程|y|-1=1-(x-1)2表示的曲线是两个半圆,选D.答案:D3.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x-1)2+(y+1)2=2解析:由题意知x-y=0和x-y-4=0平行,且它们之间的距离为|4|2=22,所以r= 2.又因为x+y=0与x-y=0,x-y-4=0均垂直,所以由x+y=0和x-y=0联立得交点坐标为(0,0),由x+y=0和x-y-4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C的标准方程为(x-1)2+(y+1)2=2.答案:D4.(2020·东莞调研)已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为()A .8B .-4C .6D .无法确定解析:圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝⎛⎭⎫-m2,0,即-m2+3=0,∴m =6. 答案:C5.(2020·承德模拟)曲线x 2+(y -1)2=1(x ≤0)上的点到直线x -y -1=0的距离的最大值为a ,最小值为b ,则a -b 的值是( )A. 2 B .2 C.22+1 D.2-1解析:因为圆心(0,1)到直线x -y -1=0的距离为22=2>1,所以半圆x 2+(y -1)2=1(x ≤0)到直线x -y -1=0的距离的最大值为2+1,最小值为点(0,0)到直线x -y -1=0的距离,为12,所以a -b =2+1-12=22+1,故选C. 答案:C6.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( ) A .2 6 B .8 C .4 6D .10解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,将点A ,B ,C 代入, 得⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0,解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.则圆的方程为x 2+y 2-2x +4y -20=0.令x =0,得y 2+4y -20=0,设M (0,y 1),N (0,y 2), 则y 1,y 2是方程y 2+4y -20=0的两根,由根与系数的关系,得y 1+y 2=-4,y 1y 2=-20, 故|MN |=|y 1-y 2|=(y 1+y 2)2-4y 1y 2=16+80=4 6.答案:C7.(2020·淮北模拟)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.(1)圆C 的标准方程为________________;(2)圆C 在点B 处的切线在x 轴上的截距为________.解析:(1)记AB 的中点为D ,在Rt △BDC 中,易得圆C 的半径r =BC = 2.因此圆心C 的坐标为(1,2),所以圆C 的标准方程为(x -1)2+(y -2)2=2.(2)因为点B 的坐标为(0,2+1),C 的坐标为(1,2),所以直线BC 的斜率为-1,所以所求切线的斜率为1.由点斜式得切线方程为y =x +2+1,故切线在x 轴上的截距为-2-1.答案:(1)(x -1)2+(y -2)2=2 (2)-2-1[B 组 能力提升练]1.(2020·四川成都名校联考)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且|AB |=3,则OA →·OB →的值是( )A .-12B .12C .-43D .0解析:在△OAB 中,|OA |=|OB |=1,|AB |=3,可得∠AOB =120°,所以OA →·OB →=1×1×cos 120°=-12.答案:A2.(2020·北京海淀期末测试)已知直线x -y +m =0与圆O :x 2+y 2=1相交于A ,B 两点,且△OAB 为正三角形,则实数m 的值为( )A.32B .62C.32或-32D.62或-62解析:由题意得圆O :x 2+y 2=1的圆心坐标为(0,0),半径r =1.因为△OAB 为正三角形,则圆心O 到直线x -y +m =0的距离为32r =32,即d =|m |2=32,解得m =62或m =-62,故选D.答案:D3.(2020·四川成都七中质检)若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0解析:x 2+y 2-6x =0化为标准方程为(x -3)2+y 2=9,∵P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,又圆心与点P 确定的直线的斜率为1-01-3=-12,∴弦MN 所在直线的斜率为2,∴弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0,故选D.答案:D4.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是________. 解析:圆与圆关于直线对称,则圆的半径相同,只需圆心关于直线对称即可.设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎪⎨⎪⎧a =1,b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4. 答案:(x -1)2+(y -3)2=45.已知圆C 和直线x -6y -10=0相切于点(4,-1),且经过点(9,6),则圆C 的方程为________________.解析:因为圆C 和直线x -6y -10=0相切于点(4,-1), 所以过点(4,-1)的直径所在直线的斜率为-6, 其方程为y +1=-6(x -4), 即y =-6x +23.又因为圆心在以(4,-1),(9,6)两点为端点的线段的中垂线y -52=-57⎝⎛⎭⎫x -132上,即5x +7y -50=0上,由⎩⎪⎨⎪⎧y =-6x +23,5x +7y -50=0解得圆心坐标为(3,5),所以半径为(9-3)2+(6-5)2=37,故所求圆的方程为(x -3)2+(y -5)2=37. 答案:(x -3)2+(y -5)2=376.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解析:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又∵直径|CD |=410, ∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.7.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解析:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.(2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.。