参数检验与非参数检验的区别及优缺点.ppt
- 格式:ppt
- 大小:911.00 KB
- 文档页数:44
参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。
本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。
一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。
它通常要求总体分布服从特定的概率分布,如正态分布。
参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。
2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。
3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。
4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。
参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。
但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。
二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。
非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。
2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。
3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。
非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。
它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。
三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。
2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。
一.单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。
在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。
二.T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
它与Z检验、卡方检验并列。
t检验t检验分为单总体检验和双总体检验。
单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。
当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
单总体t检验统计量为:双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
双总体t 检验又分为两种情况,一是独立样本t检验,一是配对样本t检验。
独立样本t检验统计量为:S1 和S2 为两样本方差;n1 和n2 为两样本容量。
(上面的公式是1/n1 + 1/n2 不是减!)配对样本t检验统计量为:t检验的适用条件(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。
t检验步骤以单总体t检验为例说明:问题:难产儿出生体重n=35,X拔=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0 (无效假设,null hypothesis)H1:μ≠μ0(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。
参数法和非参数法的比较
要比较参数法和非参数法,先要了解这两个术语的定义。
参数法是根据其中一种假设来分析数据的统计方法,通常假设数据是服从其中一种具体的分布。
参数法的结果根据数据的分布来决定,可以利用参数法的信息来得出准确的结果。
非参数法是没有假设的统计方法,通常是从总体中抽取一些数据来得出结果。
非参数法的结果与数据的分布无关,根据抽样的结果来判断。
既然参数法和非参数法都是用来分析数据的统计方法,那么它们之间有着什么样的区别呢?
首先参数法和非参数法在数据分析的原则上有着显著不同,参数法是根据其中一种假设来分析数据,而非参数法则是没有假设的统计方法;其次,参数法的结果依赖数据的分布,而非参数法只考虑抽样的结果。
另外,参数法用来分析的样本量要比非参数法要多,通常是在一定的样本量之上,以便能够得出满足假设的结果,而非参数法则没有要求样本量,只要样本量足够大,就能够得到准确的结果。
此外,参数法和非参数法的数据分析方式也有着很大的不同,参数法基于假设或理论的情况下,通常是运用极大似然法,最小二乘法等经典的参数估计方法。