第5章-轨迹规划
- 格式:ppt
- 大小:569.50 KB
- 文档页数:44
编号:授课时间:授课班级:工业机器人应用班任课教师:项目名称第五章第二节机器人路径轨迹运行规划学时:2教学目标知识目标1.掌握机器人路径轨迹规划的方法2.掌握离线编程软件的使用方法技能目标1.能正确进行机器人五角星轨迹的规划2.能使用离线编程软件完成五角星的编程情感态度培养学生热爱学习的良好习惯,通过知识的收集和总结,提高学生理解能力,通过实际操作,提高学生的操作技能。
教学内容要让机器人绘制五角星,我们需要告知工业机器人它的作业具体内容。
本次课主要机器人路径轨迹运行规划,用离线编程软件实现五角星的绘制程序编写。
重点1.能正确进行机器人五角星轨迹的规划2.能使用离线编程软件完成五角星的编程难点能使用离线编程软件完成五角星的编程教学策略利用现有ABB工业机器人进行操作,采用现场教学的方式,按照一体化教学的步骤实施教学计划,强调学生的实际操作能力,在做中学,同时充分利用学校现有的教学资源库,最大限度的收集更多更好的网络资源,使课堂教学更生动。
教学资源准备一、明确任务,完成路径规划机器人的基本原理是示教——再现。
示教也成为导引,是由操作者直接或间接的导引机器人,一步一步按实际作业要求告知机器人应该完成的动作和作业的具体内容。
机器人在导引过程中是以程序的形式将其记录下来,并存储在机器人控制装置内。
再现是通过存储内容的回放,使机器人能在一定的精度范围内按照程序所示教的动作和赋予的作业内容。
机器人的运动轨迹是机器人为了完成某一作业任务,工具中心点(TCP)所掠过的路径,它是工业机器人示教的重点。
示教时,我们不可能将运动轨迹上的所有点都示教一遍,一是费时,二是占用大量的存储空间。
实际上,对于有规律的轨迹,原则上我们只需要示教几个程序点。
例如直线运动轨迹示教两个点,直线起始点和结束点,我们学习数学的时候学过“两点确定一条直线”。
圆弧轨迹示教3个程序点,圆弧起始点,圆弧中间点和圆弧结束点。
常见的编程方法有两种,示教编程方法和离线编程方法。
0.1 简述工业机器人的定义,说明机器人的主要特征。
答:机器人是一种用于移动各种材料、零件、工具、或专用装置,通过可编程动作来执行种种任务并具有编程能力的多功能机械手。
1.机器人的动作结构具有类似于人或其他生物体某些器官(肢体、感官等)的功能。
2.机器人具有通用性,工作种类多样,动作程序灵活易变。
3.机器人具有不同程度的智能性,如记忆、感知、推理、决策、学习等。
4.机器人具有独立性,完整的机器人系统在工作中可以不依赖于人的干预。
0.2工业机器人与数控机床有什么区别?答:1.机器人的运动为开式运动链而数控机床为闭式运动链;2.工业机器人一般具有多关节,数控机床一般无关节且均为直角坐标系统;3.工业机器人是用于工业中各种作业的自动化机器而数控机床应用于冷加工。
4.机器人灵活性好,数控机床灵活性差。
0.5简述下面几个术语的含义:自有度、重复定位精度、工作范围、工作速度、承载能力。
答:自由度是机器人所具有的独立坐标运动的数目,不包括手爪(末端执行器)的开合自由度。
重复定位精度是关于精度的统计数据,指机器人重复到达某一确定位置准确的概率,是重复同一位置的范围,可以用各次不同位置平均值的偏差来表示。
工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。
工作速度一般指最大工作速度,可以是指自由度上最大的稳定速度,也可以定义为手臂末端最大的合成速度(通常在技术参数中加以说明)。
承载能力是指机器人在工作范围内的任何位姿上所能承受的最大质量。
0.6什么叫冗余自由度机器人?答:从运动学的观点看,完成某一特定作业时具有多余自由度的机器人称为冗余自由度机器人。
0.7题0.7图所示为二自由度平面关节型机器人机械手,图中L1=2L2,关节的转角范围是0゜≤θ1≤180゜,-90゜≤θ2≤180゜,画出该机械手的工作范围(画图时可以设L2=3cm)。
1.1 点矢量v 为]00.3000.2000.10[T ,相对参考系作如下齐次坐标变换:A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--10000.9000.1000.0000.00.3000.0866.0500.00.11000.0500.0866.0 写出变换后点矢量v 的表达式,并说明是什么性质的变换,写出旋转算子Rot 及平移算子Trans 。
轨迹规划分为在任务空间和关节空间两种。
根据并联机器人完成工作任务所经过的空间轨迹,编制相应的轨迹规划软件,通过计算机来事先离线计算出各驱动关节在运动中的轨迹,亦即完成轨迹规划的任务。
Paul[16]提出一种机器人手臂沿空间直线段运动的关节轨迹规划方法,Kim和shin[18]又提出一种时间最短轨迹规划方法,这种方法也是基于关节空间的。
运动轨迹是指在运动过程中的位移、速度和加速度。
轨迹规划,是根据作业任务的要求,计算出预期的运动轨迹,然后,在机器人初始位置和目标位置之间用多项式函数来“内插"或者“逼近”给定的路径,并且求出一系列“控制设定点’’,并将其提供给控制单元处理。
根据上述方法求出各轴的移动位移最后,即可规划运动曲线。
在各轴位移求出的情况下,根据所规划速度曲线的形状,可求出各个时间点对应的速度值来确定速度曲线,从而完成运动规划常规的PID控制对于大多数点位控制应用是相当有效的,而对于轨迹跟踪控制问题则效果不理想。
由于并联机器人的绝大多数应用是要求轨迹控制的,因此很少使用常规的PID控制。
并联机器人轨迹规划首先要根据系统运动要求由并联机器人机构的位置逆解方程求解出机器人的始末位姿;然后运用三次多项式插值的方法,分别对并联们器人的三条支路轨迹规划。
Matlab仿真。
并联机器人控制系统模型的建立机器人控制系统的结构如图。
在输入期望轨迹以后,机器人控制系统首先通过轨迹规划,把期望的运动轨迹转换为驱动关节的广义位置坐标。
在机器人控制系统的三个相对独立的回路中分别形成闭环控制回路,通过检测编码器的反馈信号,并与实际的给定位置相比较,根据两者间的误差不断产生控制作用,使机器人关节的实际位置运动到给定值。
系统中轨迹规划和控制在上位机由软件实现,控制输出由运动控制卡和驱动器完成,最终由电机执行。
(哈尔滨工程大学. 6-PRRS并联机器人运动控制方法的研究,2006)建立了6-PRRS并联机器人的运动学模型,并对位置逆解的选取进行了简化,方便了计算。
第1章绪论1、国际标准化组织(ISO)对机器人的定义是什么?国际标准化组织(ISO)给出的机器人定义较为全面和准确,其涵义为:机器人的动作机构具有类似于人或其他生物体某些器官(肢体、感官等)的功能;机器人具有通用性,工作种类多样,动作程序灵活易变;机器人具有不同程度的智能性,如记忆、感知、推理、决策、学习等;机器人具有独立性,完整的机器人系统在工作中可以不依赖于人类的干预。
2、工业机器人是如何定义的?工业机器人是指在工业中应用的一种能进行自动控制的、可重复编程的、多功能的、多自由度的、多用途的操作机,能搬运材料、工件或操持工具,用以完成各种作业。
且这种操作机可以固定在一个地方,也可以在往复运动的小车上。
3、按几何结构,机器人可分为那几种?直角坐标型圆柱坐标型球坐标型关节坐标型4、机器人的参考坐标系有哪些?全局参考坐标系关节参考坐标系工具参考坐标系5、什么是机器人的自由度和工作空间?机器人的自由度(Degree of Freedom, DOF)是指其末端执行器相对于参考坐标系能够独立运动的数目,但并不包括末端执行器的开合自由度。
自由度是机器人的一个重要技术指标,它是由机器人的结构决定的,并直接影响到机器人是否能完成与目标作业相适应的动作。
机器人的工作空间(Working Space)是指机器人末端上参考点所能达到的所有空间区域。
由于末端执行器的形状尺寸是多种多样的,为真实反映机器人的特征参数,工作空间是指不安装末端执行器时的工作区域。
第2章1、机器人系统由哪三部分组成?答:操作机、驱动器、控制系统2、什么是机器人的操作机?分为哪几部分?答:机器人的操作机就是通过活动关节(转动关节或移动关节)连接在一起的空间开链机构,主要由手部、腕部、臂部和机座构成。
3、简述机器人手部的作用,其分为哪几类?答:作用:机器人的手部又称为末端执行器,它是机器人直接用于抓取和握紧(或吸附)工件或操持专用工具(如喷枪、扳手、砂轮、焊枪等)进行操作的部件,它具有模仿人手动作的功能,并安装于机器人手臂的最前端。
机器人技术基础复习要点第一章:绪论1.机器人分类:按开发内容与应用分为工业机器人,操纵型机器人,智能机器人;按发展程度分为第一代,第二代和第三代机器人;按性能指标分为超大型,大型。
中型。
小型和超小型机器人;按结构形式分为直角坐标型机器人,圆柱坐标型机器人,球坐标型机器人和关节坐标型机器人;按控制方式分为点位控制和连续轨迹控制;按驱动方式分为气力驱动式,液力驱动式和电力驱动式。
按机座可动分类分为固定式和移动式。
2.机器人的组成:驱动系统,机械系统,感知系统,控制系统,机器人-环境交互系统,人机交互系统。
3.机器人的技术参数:自由度:是指机器人所具有的独立坐标轴的数目;精度:主要依存于机械误差,控制算法误差与分辨率系统误差;重复定位精度;是关于精度的统计数据;工作范围:指的是机器人手臂末端或手腕中心所能达到的所有店的集合;最大工作速度:不同厂家定义不同,通常在技术参数中加以说明;承载能力:指的是机器人在工作范围内的任何位姿上所能承受的最大质量。
第二章:机器人本体结构1.机器人本体基本结构:传动部件,机身及行走机构,臂部,腕部,手部。
2.机器人本体材料的选择:强度高,弹性模量大,质量轻,阻尼大,经济性好。
3.机身设计要注意的问题:刚度和强度大;动灵活,导套不宜过短,避免卡死;驱动方式适宜;结构布置合理。
4.臂部的基本形式:机器人的手臂由大臂,小臂所组成,手臂的驱动方式主要有液压驱动,气动驱动和电动驱动几种形式,其中电动驱动最为通用;臂部的典型机构有臂部伸缩机构,手臂俯仰运动机构,手臂回转与升降机构。
5.臂部设计需要的注意的问题:足够的承载能力;刚度高;导向性能好,运动迅速,灵活,平稳,定位精度高;重量轻,转动惯性小;合理设计与腕部和机身的连接部位。
6.机器人的平稳性和臂杆平衡方法:机身和臂部的运动较多,质量较大,如果运动速度和负载游较大,当运动状态变化时,将产生冲击和振动。
这将仅影响机器人的精确定位,甚至会使其不能正常运转。