动态规划算法的一般模式
- 格式:ppt
- 大小:671.50 KB
- 文档页数:33
算法分析与设计课程教案课程编号:50c24037-01总学时:51 周学时:4适用年级专业(学科类):2007级计科专业开课时间:2010-2011 学年第1 学期使用教材:王晓东编著计算机算法设计与分析第3版章节第1章1.1~ 1.2 第2 章2.1 课时 2教学目的理解程序与算法的概念、区别与联系;掌握算法在最坏情况、最好情况和平均情况下的计算复杂性概念;掌握算法复杂性的渐近性态的数学表述;理解递归的概念。
教学重点及突出方法重点:程序与算法的概念、算法的时间复杂性、算法复杂性的渐近性态的数学表述以及递归的概念。
通过讲解、举例方法。
教学难点及突破方法难点:算法复杂性与递归通过讲解、举例、提问与引导方法。
相关内容此部分内容基础知识可参考清华大学出版社出版严蔚敏编著的《数据结构》教学过程(教师授课思路、设问及讲解要点)回顾数据结构课程中的算法概念、排序算法等知识,从而引出本课程内容。
提问算法与程序的区别、联系以及算法具有的特性。
讲解算法的复杂性,主要包括时间复杂性与空间复杂性。
讲解最坏情况、最好情况与平均情况的时间复杂性。
讲解算法复杂性在渐近意义下的阶,主要包括O、Ω、θ与o,并通过具体例子说明。
通过具体例子说明递归技术。
主要包括阶乘函数、Fibonacci数列、Ackerman函数、排列问题、整数划分问题、Hanoi塔问题等。
第页章节第2 章2.2~2.5 课时 2 教学目的掌握设计有效算法的分治策略,并掌握范例的设计技巧,掌握计算算法复杂性方法。
教学重点及突出方法重点:分治法的基本思想及分治法的一般设计模式。
通过讲解、举例方法。
教学难点及突破方法难点:计算算法复杂性。
通过讲解、举例、提问与引导方法。
相关内容素材教(教师授课思路、设问及讲解要点)学过程通过生活中解决复杂问题的分解方法,引出分治方法。
讲解分治法的基本思想及其一般算法的设计模式,介绍分治法的计算效率。
通过具体例子采用分治思想来设计有效算法。
动态时间规整算法动态时间规整算法2010-07-18 22:20动态时间规整DTW动态时间规整DTW(dynamic time warping)曾经是语音识别的一种主流方法。
其思想是:由于语音信号是一种具有相当大随机性的信号,即使相同说话者对相同的词,每一次发音的结果都是不同的,也不可能具有完全相同的时间长度。
因此在与已存储模型相匹配时,未知单词的时间轴要不均匀地扭曲或弯折,以使其特征与模板特征对正。
用时间规整手段对正是一种非常有力的措施,对提高系统的识别精度非常有效。
动态时间规整DTW是一个典型的优化问题,它用满足一定条件的的时间规整函数W(n)描述输入模板和参考模板的时间对应关系,求解两模板匹配时累计距离最小所对应的规整函数。
将时间规整与距离测度结合起来,采用动态规划技术,比较两个大小不同的模式,解决语音识别中语速多变的难题;一种非线性时间规整模式匹配算法;DTW(Dynamic Time Warping),即「动态时间扭曲」或是「动态时间规整」。
这是一套根基于「动态规划」(DynamicProgramming,简称DP)的方法,可以有效地将搜寻比对的时间大幅降低。
DTW的目标就是要找出两个向量之间的最短距离。
一般而言,对于两个n维空间中的向量x和y,它们之间的距离可以定义为两点之间的直线距离,称为尤拉距离EuclideanDistance)。
dist(x,yx–y,但是如果向量的长度不同,那它们之间的距离,就无法使用上述的数学式来计算。
一般而言,假设这两个向量的元素位置都是代表时间,由于我们必须容忍在时间轴的偏差,因此我们并不知道两个向量的元素对应关系,因此我们必须靠着一套有效的运算方法,才可以找到最佳的对应关系。
DTW是用于与说话人有关SpeakerDependent)的语音识别,使用者自行录音然后再以自己的声音来比对之前录好的语音资料。
此方法比较适合同一位说话人的声音来进行比较,因此应用范围比较狭隘,譬如目前手机Name Dialing等等。
绪论单元测试1.山东师范大学的管教授在哪个问题上给出了比较好的解决方法。
A:邮递员问题B:背包问题C:装载问题D:最大团问题答案:A第一章测试1.算法具备的四个基本性质是()A:输入B:有限性C:确定性D:输出答案:ABCD2.算法就是程序A:错B:对答案:A3.描述渐进上界的符号是()A:ΩB:ωC:OD:θ答案:C4.f(n)=3n2+n+1,下面不正确的是()A:f(n)=O(n3)B:f(n)=O(n2)C:f(n)=O(2n)D:f(n)=O(3n2)答案:C5.在算法分析中,我们希望找到更加高阶的上界函数A:错B:对答案:A第二章测试1.Strassen 矩阵乘法是利用()实现的算法。
A:贪心法B:分治策略C:动态规划法D:回溯法答案:B2.使用分治法求解不需要满足的条件是()A:子问题不能够重复B:子问题的解可以合并C:子问题必须是一样的D:原问题和子问题使用相同的方法解答案:C3.实现棋盘覆盖算法利用的算法是()。
A:分治法B:回溯法C:动态规划法D:贪心法答案:A4.实现循环赛日程表利用的算法是()。
A:贪心法B:回溯法C:分治策略D:动态规划法答案:C5.从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法A:对B:错答案:A第三章测试1.动态规划算法一般分成()三个阶段。
A:求解B:分析C:分段D:汇总答案:ABC2.动态规划的基本要素有()?A:备忘录方法B:最优子结构C:子问题的重叠性质答案:ABC3.用动态规划法求解的问题都可以分解为相互重叠的子问题。
A:对B:错答案:A4.动态规划法利用递推关系式()计算,实现动态规划过程。
A:循环B:递归C:自底向上D:自顶向下答案:C5.最优子结构是问题可以用动态规划法求解的前提。
A:错B:对答案:B第四章测试1.贪心算法中每次做出的贪心选择都是全局最优选择。
A:对B:错答案:B2.下面问题不能使用贪心法解决的是A:N皇后问题B:最小花费生成树问题C:背包问题D:单源最短路径问题答案:A3.背包问题的贪心算法所需的计算时间为A:O(n2n)B:O(n)C:O(nlogn)D:O(2n)答案:C4.哈夫曼编码是自底向上构造的A:错B:对答案:B5.Kruskal算法的时间复杂度是A:O(eloge)B:O(n)C:O(nlogn)D:O(2n)答案:A第五章测试1.回溯法就是穷举法A:错B:对答案:A2.回溯法使用的是广度优先遍历A:对B:错答案:B3.回溯法必须寻找一个限界函数A:对B:错答案:B4.使用回溯法时可以考虑以下哪些方面()A:约束函数B:解空间结构C:解的向量形式D:解的最优子结构性质答案:ABC5.回溯法在处理n皇后问题时,必须把解空间组织成子集树。
动态规划原理
动态规划是一种解决复杂问题的算法思想。
它通过将问题分解成较小的子问题,并通过寻找子问题的最优解来解决整体问题。
动态规划的核心思想是将整体问题拆分成多个重叠子问题,在解决子问题的过程中记录下每个子问题的解。
这样一来,当我们需要求解更大规模的子问题时,可以直接利用已经计算出的子问题解,避免重复计算,提高算法效率。
其中,动态规划的关键步骤包括定义状态、设计状态转移方程和确定边界条件。
首先,我们需要确定问题的状态。
状态可以理解为问题的属性,它描述了问题在不同阶段、不同状态下的特征。
在动态规划中,我们将问题的状态表示成一个或多个变量,用于描述问题的特征。
接着,我们需要设计状态转移方程。
状态转移方程描述了子问题之间的联系和转移规律。
它通过将问题的解与子问题的解联系起来,建立起子问题与整体问题的关系。
通过推导状态转移方程,我们可以由已知的子问题解计算出更大规模的问题解。
最后,我们需要确定边界条件。
边界条件表示问题的终止条件,它是最小规模子问题的解。
边界条件是问题求解的起点,也是递归求解过程的出口。
通过依次求解子问题,并利用已经计算过的子问题解,动态规
划可以高效地解决复杂问题,并得到全局最优解。
因此,它在解决优化问题、序列问题、最短路径问题等方面有着广泛的应用。
动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
《算法设计与分析》期中试卷一、叙述分治算法的基本思想及一般算法设计模式;二、叙述动态规划算法的基本步骤及动态规划算法的基本要素;三、改进课本P74的Lcs算法,使改进算法不用数组b亦可在O(m+n)的时间内构造最长公共序列;四、求下列函数的渐近表达式(1). 3n2+10n(2).n2/10+2n(3)21+1/n(4)logn3(5)10log3n五、对于下列各组函数发f(n)和g(n),确定f(n)=O((g(n)))或者f(n)= ((g(n)))或者f(n)=θ((g(n))),并简述理由(1). f(n)=logn2 , g(n)=logn+5;(2). f(n)=logn2 , g(n)= √n;(3), f(n)=n, g(n)= logn2;(4). f(n)=nlogn+n,g(n)=logn;(5). f(n)=10.g(n)=log10;(6). f(n)=log2n g(n)=logn(7). f(n)=2n g(n)= 3n;(8). f(n)=2n g(n)= 100n2;六、设a[0:n-1]是已排好序的数组,请改写二分搜索算法,使得当搜索元素x不再数组中时,返回小于x的最大元素位置i和大于x 的最小元素位置j。
当搜索元素在数组中时,i和j相同,均为x 在数组中的位置七、设a[0:n-1]是有n个元素的数组,k(0<=k<=n-1)是非负整数。
试设计一个算法将子数组a[0:k]与a[k+1:n-1]换位。
要求算法在最坏的情况下耗时O(n),且只用到O(1)的辅助空间。
八、在一个由元素组成的表中出现次数最多的元素称为众数。
试写一个寻找众数的算法,并分析其计算复杂性。
九、设计一个O(n2)时间的算法,找出由n个数组成的序列的最长单调递增子序列。
十、给定n中物品和一背包,物品i的重量是ω,体积是b i,其价值为v i ,背包的容量为C,容积为D。
问:应该如何选择装入背包中的物品,使得装入背包中的物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包,不能将物品i装入背包多次,也不能只装入部分的物品i。
五大常用算法之一:分治算法分治算法一、基本概念在计算机科学中,分治法是一种很重要的算法。
字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作一次比较即可排好序。
n=3时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况分治法所能解决的问题一般具有以下几个特征:1) 该问题的规模缩小到一定的程度就可以容易地解决2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
计算机算法设计五⼤常⽤算法的分析及实例摘要算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
也就是说,能够对⼀定规范的输⼊,在有限时间内获得所要求的输出。
如果⼀个算法有缺陷,或不适合于某个问题,执⾏这个算法将不会解决这个问题。
不同的算法可能⽤不同的时间、空间或效率来完成同样的任务。
其中最常见的五中基本算法是递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法。
本⽂通过这种算法的分析以及实例的讲解,让读者对算法有更深刻的认识,同时对这五种算法有更清楚认识关键词:算法,递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法AbstractAlgorithm is the description to the problem solving scheme ,a set of clear instructions to solve the problem and represents the describe the strategy to solve the problem using the method of system mechanism . That is to say, given some confirm import,the Algorithm will find result In a limited time。
If an algorithm is defective or is not suitable for a certain job, it is invalid to execute it. Different algorithms have different need of time or space, and it's efficiency are different.There are most common algorithms: the recursive and divide and conquer、dynamic programming method、greedy algorithm、backtracking、branch and bound method.According to analyze the five algorithms and explain examples, make readers know more about algorithm , and understand the five algorithms more deeply.Keywords: Algorithm, the recursive and divide and conquer, dynamic programming method, greedy algorithm、backtracking, branch and bound method⽬录1. 前⾔ (4)1.1 论⽂背景 (4)2. 算法详解 (5)2.1 算法与程序 (5)2.2 表达算法的抽象机制 (5)2.3 算法复杂性分析 (5)3.五中常⽤算法的详解及实例 (6)3.1 递归与分治策略 (6)3.1.1 递归与分治策略基本思想 (6)3.1.2 实例——棋盘覆盖 (7)3.2 动态规划 (8)3.2.1 动态规划基本思想 (8)3.2.2 动态规划算法的基本步骤 (9)3.2.3 实例——矩阵连乘 (9)3.3 贪⼼算法 (11)3.3.1 贪⼼算法基本思想 (11)3.3.2 贪⼼算法和动态规划的区别 (12)3.3.3 ⽤贪⼼算法解背包问题的基本步骤: (12)3.4 回溯发 (13)3.4.1 回溯法基本思想 (13)3.3.2 回溯发解题基本步骤 (13)3.3.3 实例——0-1背包问题 (14)3.5 分⽀限界法 (15)3.5.1 分⽀限界法思想 (15)3.5.2 实例——装载问题 (16)总结 (18)参考⽂献 (18)1. 前⾔1.1 论⽂背景算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
动态规划法的⼀般⽅法在学习动态规划法之前,我们先来了解动态规划的⼏个概念1、阶段:把问题分成⼏个相互联系的有顺序的⼏个环节,这些环节即称为阶段。
2、状态:某⼀阶段的出发位置称为状态。
3、决策:从某阶段的⼀个状态演变到下⼀个阶段某状态的选择。
4、状态转移⽅程:前⼀阶段的终点就是后⼀阶段的起点,前⼀阶段的决策选择导出了后⼀阶段的状态,这种关系描述了由k阶段到k+1阶段状态的演变规律,称为状态转 移⽅程。
动态规划法的定义:在求解问题中,对于每⼀步决策,列出各种可能的局部解,再依据某种判定条件,舍弃那些肯定不能得到最优解的局部解,在每⼀步都经过筛选,以每⼀步都是最优解来保证全局是最优解,这种求解⽅法称为动态规划法。
⼀般来说,适合于⽤动态规划法求解的问题具有以下特点:1、可以划分成若⼲个阶段,问题的求解过程就是对若⼲个阶段的⼀系列决策过程。
2、每个阶段有若⼲个可能状态3、⼀个决策将你从⼀个阶段的⼀种状态带到下⼀个阶段的某种状态。
4、在任⼀个阶段,最佳的决策序列和该阶段以前的决策⽆关。
5、各阶段状态之间的转换有明确定义的费⽤,⽽且在选择最佳决策时有递推关系(即动态转移⽅程)。
动态规划设计都有着⼀定的模式,⼀般要经历以下⼏个步骤:1、划分阶段:按照问题的时间或空间特征,把问题分为若⼲个阶段。
2、确定状态:将问题发展到各个阶段时所处的各种客观情况⽤不同的状态表⽰出来。
3、确定决策并写出状态转移⽅程:因为决策和状态转移有着天然的联系,状态转移就是根据上⼀阶段的状态和决策来导出本阶段的状态,所以如果确定了决策,状态转移⽅程也就可以写出。
4、寻找边界条件:给出的状态转移⽅程是⼀个递推式,需要⼀个递推的终⽌条件或边界条件。
5、程序设计实现:动态规划的主要难点在于理论上的设计,⼀旦设计完成,实现部分就会⾮常简单。
根据以上的步骤设计,可以得到动态规划设计的⼀般模式:for k:=阶段最⼩值to 阶段最⼤值do {顺推每⼀个阶段}for I:=状态最⼩值to 状态最⼤值do {枚举阶段k的每⼀个状态}for j:=决策最⼩值to 决策最⼤值do {枚举阶段k中状态i可选择的每⼀种决策}f[ik]:=min(max){f[ik-1]+a[ik-1,jk-1]|ik-1通过决策jk-1可达ik}例如:多段图G=(V,E)是⼀个有向图。