动态规划算法分析实验报告
- 格式:doc
- 大小:110.49 KB
- 文档页数:6
动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。
本实验旨在通过实际案例,探究动态规划算法的原理和应用。
二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。
它通常适用于具有重叠子问题和最优子结构性质的问题。
三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。
四、实验过程本实验选择了经典的背包问题作为案例进行分析。
背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。
1. 确定状态在动态规划算法中,状态是问题的关键。
对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。
2. 确定状态转移方程状态转移方程是动态规划算法的核心。
对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。
则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。
对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。
4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。
具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。
五、实验结果与分析通过实验,我们得到了背包问题的最优解。
同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。
这为我们提供了在实际问题中应用动态规划算法的思路。
六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。
一、实验背景动态规划是一种重要的算法设计方法,它通过将复杂问题分解为若干个相互重叠的子问题,并存储子问题的解,从而避免重复计算,有效地解决一系列优化问题。
本实验旨在通过具体案例,加深对动态规划算法的理解和应用。
二、实验目的1. 掌握动态规划的基本概念和原理。
2. 熟悉动态规划建模的过程和步骤。
3. 提高运用动态规划解决实际问题的能力。
三、实验内容本次实验选取了“背包问题”作为案例,旨在通过解决背包问题,加深对动态规划算法的理解。
四、实验步骤1. 问题分析背包问题是一个经典的组合优化问题,描述为:给定一个容量为C的背包和N件物品,每件物品有价值和重量两个属性,求如何将物品装入背包,使得背包中的物品总价值最大,且不超过背包的容量。
2. 模型建立(1)定义状态:设dp[i][j]表示在前i件物品中选择若干件装入容量为j的背包所能获得的最大价值。
(2)状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]] + values[i]),其中weights[i]表示第i件物品的重量,values[i]表示第i件物品的价值。
(3)边界条件:dp[0][j] = 0,表示没有物品时,背包价值为0。
3. 编程实现使用C语言编写动态规划程序,实现背包问题的求解。
4. 结果分析(1)运行程序,输入背包容量和物品信息。
(2)观察输出结果,包括物品选择的列表和最大价值。
(3)验证结果是否正确,与理论分析进行对比。
五、实验结果与分析1. 实验结果:通过编程实现,成功求解了背包问题,并得到了最大价值。
2. 结果分析:(1)动态规划算法在解决背包问题时,有效地避免了重复计算,提高了求解效率。
(2)实验结果表明,动态规划算法能够有效地解决背包问题,为实际应用提供了有力支持。
六、实验总结1. 动态规划是一种重要的算法设计方法,具有广泛的应用前景。
2. 动态规划建模过程中,关键在于正确地定义状态和状态转移方程。
一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。
本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。
二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。
动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。
2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。
通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。
3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。
在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。
4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。
在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。
三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。
动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。
这种思维方式有助于我们更好地理解和解决实际问题。
2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。
它描述了子问题之间的关系,是求解问题的关键。
通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。
实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。
(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。
有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。
算法分析与设计实验报告--动态规划《算法分析与设计》实验报告完成⽇期:20011.11.241、实验⽬的(1)掌握动态规划⽅法贪⼼算法思想(2)掌握最优⼦结构原理(3)了解动态规划⼀般问题2、实验内容(1)编写⼀个简单的程序,解决0-1背包问题。
设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}(2)合唱队形安排。
【问题描述】N位同学站成⼀排,⾳乐⽼师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的⼀种队形:设K 位同学从左到右依次编号为1,2…,K,他们的⾝⾼分别为T1,T2,…,TK,则他们的⾝⾼满⾜T1<...Ti+1>…>TK(1<=i<=K)。
已知所有N位同学的⾝⾼,计算最少需要⼏位同学出列,可以使得剩下的同学排成合唱队形。
3、实验要求(1)写出源程序,并编译运⾏(2)详细记录程序调试及运⾏结果4、算法思想:利⽤动态规划的思想,解决诸如0—1背包问题,最⼤合唱队形问题等问题的最优解,能在最短的时间内,找到最好的解决⽅案的⼀种算法。
5、实验过程:1、0—1背包问题:源代码如下:#include#includeusing namespace std;#define N 5#define c 10int w[N+1]={0,2,2,6,5,4},v[N+1]={0,6,3,5,4,6};int m[N+1][c+1];int min(int x,int y){if(x<=y)return x;else return y;}int max(int x,int y){if(x>=y) return x;else return y;}void KnapSack(int v[],int w[]){int jMax=min(w[1],c);for (int j=1;j<=jMax;j++) //当0=m[1][j]=0;for (j=w[1];j<=c;j++) // 当j>=w[n]时, m(n,j)=v[n]m[1][j]=v[1];for (int i=2;i<=N;i++) //DP{ int jMax=min(w[i],c);for (j=1;jfor (j=jMax;j<=c;j++) //m(n,j)=v[n] 当j>=w[n] m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]); }}void main(){KnapSack(v,w);for(int i=1;i<=N;i++){for(int j=0;j<=c;j++)cout<cout<}}运⾏截图如下:合唱队形问题:代码如下:#include#includeusing namespace std;#define MAXN 200void main(){int n, a[MAXN], b[MAXN], c[MAXN], i, j, max,lab,pre[MAXN]; cout<<"输⼊数据个数:"; cin>>n;cout<<"\n输⼊"<for (i = 1; i <= n; i++) //O(n)cin>> a[i];memset(b, 0, sizeof(a));memset(c, 0, sizeof(c));b[1] = 1;pre[i]=0; //i=1->nfor (i = 2; i <= n; i++){max = 0;for (j = i - 1; j >= 1; j--) {if (a[j]max) {max = b[j];pre[i]=j;}}b[i] = max + 1;}//lab:max所对应a数组元素下标O(n)max = b[1];for (i = 2; i <= n; i++){ if (b[i] > max){max = b[i];lab=i;}}cout<<"Longest Increasing Subsequence is:"<i = lab;int num=max;j=max;while( num>0 ){c[j--]=a[i];i=pre[i];num--;}//输出数列O(n)for(i=1;i<=max;i++)cout<cout<}截图如下:6.实验过程分析本次实验做的是01背包和合唱队形,之前01背包也⽤贪⼼算法讨论过,但得不到最优解,这次实验⽤动态规划实现的,涉及到剪枝函数部分要考虑清楚,实验过程中通过画图,对理解有很⼤帮助;第⼆个实验其实是利⽤了两次LIS问题,再综合⼀下,总的来说,本次实验还是⽐较成功,对动态规划算法的思想理解得挺透彻的。
南京信息工程大学滨江学院实验(实习)报告1.实验目的动态规划通常用来求解最优化问题。
通过本次实验掌握动态规划算法。
通过矩阵连乘问题和0-1背包问题实现动态规划算法。
学会刻画问题的最优结构特征,并利用最优化问题具有的重叠子问题性质,对每个子问题求解一次,将解存入表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。
2.实验内容及分析设计过程1.矩阵链乘法问题矩阵链乘法问题可描述如下:给定个矩阵的链,矩阵的规模为,求完全括号方案,使得计算乘积所需的标量乘法次数最少。
令m[i,j]表示计算矩阵所需标量乘法次数的最小值,那么,原问题的最优解计是m[1,n]。
最小代价括号化方案的递归求解公式为采用自底向上表格法代替上述递归算法来计算最优代价。
为了实现自底向上方法,我们必须确定计算m[i,j]时需要访问哪些其他表项。
上述公式显示,j-i+l 个矩阵链相乘的最优计算代价m[i,j] 只依赖于那些少于j-i+l 个矩阵链相乘的最优计算代价。
因此,算法应该按长度递增的顺序求解矩阵链括号化问题,并按对应的顺序填写表m。
对如下输入A1 A2 A3 A4 A5 A630⨯35 35⨯15 15⨯5 5⨯10 10⨯20 20⨯25程序运行结果为2.背包问题给定n 个重量为价值为的物品和一个承重为W 的背包。
求这些物品中最有价值的一个子集,并且要能装到背包中。
设V[i,j]是能够放进承重量为j 的背包的前i 个物品中最有价值子集的总价值。
则递推关系为初始条件V[0,j]=0(j>=0),V[i,0]=0(i>=0) 我们的目标是求V[n ,W]。
递归式给出了V[i,j]的计算顺序,V[i,j]只依赖与前一行的那些项。
故可以逐行计算V[i,j].对于物品数量n=5,w[n]={2,2,6,5,4},v[n]={6,3,5,4,6},背包总重量c=10 程序运行结果为3. 实验小结通过本次实验加深了我对动态规划算法的理解。
《算法设计与分析》实验报告实验二递归与分治策略Module 1: 免费馅饼Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 59327 Accepted Submission(s): 20813Problem Description都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。
说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。
馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。
但由于小径两侧都不能站人,所以他只能在小径上接。
由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。
现在给这条小径如图标上坐标:为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。
开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。
问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)Input输入数据有多组。
每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。
在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。
同一秒钟在同一点上可能掉下多个馅饼。
n=0时输入结束。
Output每一组输入数据对应一行输出。
输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input65 14 1rollcake[time][pos]++;if(time>maxTime)maxTime=time;}calAns();//求解过程printf("%d\n",ans);}return 0;}运行结果:。
实验三动态规划算法的应用一、实验目的1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。
2.熟练掌握分阶段的和递推的最优子结构分析方法。
3.学会利用动态规划算法解决实际问题。
二、实验内容1.问题描述:题目一:数塔问题给定一个数塔,其存储形式为如下所示的下三角矩阵。
在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。
请找出一条路径,使路径上的数值和最大。
输入样例(数塔):912 1510 6 82 18 9 519 7 10 4 16输出样例(最大路径和):59题目二:最长单调递增子序列问题设计一个O(n2)复杂度的算法,找出由n个数组成的序列的最长单调递增子序列。
题目三:Common SubsequenceA subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.输入样例abcfbc abfcabprogramming contestabcd mnp输出样例42题目四 0-1背包问题给定n种物品和一个背包。
动态规划实验报告《动态规划实验报告》动态规划是一种重要的算法设计技术,它在解决许多实际问题中具有广泛的应用。
本实验报告将介绍动态规划算法的基本原理,并通过一个实际问题的求解过程来展示其应用效果。
首先,我们来了解一下动态规划的基本原理。
动态规划是一种将原问题分解为子问题来求解的方法,它通常用于求解最优化问题。
动态规划算法的核心思想是将原问题分解为若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。
为了避免重复计算子问题,动态规划算法通常采用记忆化搜索或者自底向上的方式来进行计算。
接下来,我们将通过一个实际问题来展示动态规划算法的应用效果。
假设我们有一组数字,我们希望找到其中的一个子序列,使得这个子序列的和最大。
这个问题可以通过动态规划算法来求解,具体的求解过程如下:1. 定义状态:我们定义一个状态数组dp,其中dp[i]表示以第i个数字结尾的子序列的最大和。
2. 状态转移方程:我们可以通过以下状态转移方程来求解dp数组:dp[i] = max(dp[i-1] + nums[i], nums[i]),其中nums[i]表示第i个数字。
3. 初始状态:我们将dp数组的初始状态设为dp[0] = nums[0]。
4. 求解最优解:最终的最优解即为dp数组中的最大值。
通过以上求解过程,我们可以得到原问题的最优解,即最大子序列的和。
这个实例展示了动态规划算法在实际问题中的应用效果,通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的最优化问题。
综上所述,动态规划算法是一种重要的算法设计技术,它在解决最优化问题中具有广泛的应用。
通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的实际问题。
希望本实验报告能够帮助读者更好地理解动态规划算法的基本原理和应用方法。
四、实验结果显示
五、实验总结
通过理解最优子结构的性质和子问题重叠性质,在VC++6.0环境下实现动态规划算法。
动态规划算法是由单阶段的决策最优逐步转化为多阶段的决策最优,最后构造一个最优解。
经过反复的调试操作,程序运行才得出结果。
六、附录 A
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <iostream.h>
#define MAX 100
#define n 12
#define k 5
int c[n][n];
void init(int cost[])
{
int i,j;
for(i=0;i<13;i++)
{
for(j=0;j<13;j++)
{
c[i][j]=MAX;
}
}
c[1][2]=9; c[1][3]=7;c[1][4]=3; c[1][5]=2;
c[2][6]=4; c[2][7]=2; c[2][8]=1;
c[3][6]=2; c[3][7]=7;
c[4][8]=11;
c[5][7]=11;c[5][8]=8;
c[6][9]=6; c[6][10]=5;
c[7][9]=4; c[7][10]=3;
c[8][10]=5;c[8][11]=6;
c[9][12]=4;
c[10][12]=2;
c[11][12]=5;
}
void fgraph(int cost[],int path[],int d[])
{
int r,j,temp,min;
for(j=0;j<=n;j++)
cost[j]=0;
for(j=n-1;j>=1;j--)
{
temp=0;
min=c[j][temp]+cost[temp];
for(r=0;r<=n;r++)
{
if(c[j][r]!=MAX)
{
if((c[j][r]+cost[r])<min)
{
min=c[j][r]+cost[r];
temp=r;
}
}
}
cost[j]=c[j][temp]+cost[temp];
d[j]=temp;
}
path[1]=1;
path[k]=n;
for(j=2;j<k;j++)
path[j]=d[path[j-1]];
}
void bgraph(int bcost[],int path1[],int d[]) {
int r,j,temp,min;
for(j=0;j<=n;j++)
bcost[j]=0;
for(j=2;j<=n;j++)
{
temp=12;
min=c[temp][j]+bcost[temp];
for(r=0;r<=n;r++)
{
if(c[r][j]!=MAX)
{
if((c[r][j]+bcost[r])<min)
{
min=c[r][j]+bcost[r];
temp=r;
}
}
}
bcost[j]=c[temp][j]+bcost[temp];
d[j]=temp;
}
path1[1]=1;
path1[k]=n;
for(int i=4;i>=2;i--)
{
path1[i]=d[path1[i+1]];
}
}
void main()
{
int cur=-1;
int cost[13],d[12],bcost[13];
int path[k];
int path1[k];
init(cost);
fgraph(cost,path,d);
cout<<"使用向前递推算法后的最短路径:\n\n";
for(int i=1;i<=5;i++)
{
cout<<path[i]<<" ";
}
cout<<"\n";
cout<<endl<<"最短路径为长度:"<<cost[1]<<endl;
cout<<"\n";
cout<<"\n使用向后递推算法后的最短路径:\n\n";
bgraph(bcost,path1,d);
for(i=1;i<=5;i++)
{
cout<<path1[i]<<" ";
}
cout<<"\n";
cout<<endl<<"最短路径为长度:"<<bcost[12]<<endl;
cout<<"\n";
}。