算法设计思想回顾(递归和分治、动态规划、贪心算法、回溯法、分支限界
- 格式:ppt
- 大小:1.72 MB
- 文档页数:39
五⼤算法设计思想(转载)⼀分治法1.1 概念: 将⼀个难以直接解决的⼤问题,分割成⼀些规模较⼩的相同问题,以便各个击破,分⽽治之。
1.2 思想策略: 对于⼀个规模为n的问题,若该问题可以容易地解决(⽐如说规模n较⼩)则直接解决,否则将其分解为k个规模较⼩的⼦问题,这些⼦问题互相独⽴且与原问题形式相同,递归地解这些⼦问题,然后将各⼦问题的解合并得到原问题的解。
1.3 特征:1) 该问题的规模缩⼩到⼀定的程度就可以容易地解决2) 该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质。
3) 利⽤该问题分解出的⼦问题的解可以合并为该问题的解;4) 该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦⼦问题。
1.4 对特征的解析:第⼀条特征是绝⼤多数问题都可以满⾜的,因为问题的计算复杂性⼀般是随着问题规模的增加⽽增加;第⼆条特征是应⽤分治法的前提它也是⼤多数问题可以满⾜的,此特征反映了递归思想的应⽤;第三条特征是关键,能否利⽤分治法完全取决于问题是否具有第三条特征,如果具备了第⼀条和第⼆条特征,⽽不具备第三条特征,则可以考虑⽤贪⼼法或动态规划法。
第四条特征涉及到分治法的效率,如果各⼦问题是不独⽴的则分治法要做许多不必要的⼯作,重复地解公共的⼦问题,此时虽然可⽤分治法,但⼀般⽤动态规划法较好。
1.5 基本步骤:1 分解:将原问题分解为若⼲个规模较⼩,相互独⽴,与原问题形式相同的⼦问题;2 解决:若⼦问题规模较⼩⽽容易被解决则直接解,否则递归地解各个⼦问题3 合并:将各个⼦问题的解合并为原问题的解。
1.6 适⽤分治法求解的经典问题:1)⼆分搜索2)⼤整数乘法3)Strassen矩阵乘法4)棋盘覆盖5)合并排序6)快速排序7)线性时间选择8)最接近点对问题9)循环赛⽇程表10)汉诺塔⼆动态规划2.1 概念 每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
算法设计课程教学大纲【算法设计】课程教学大纲【课程代码】04034109【课程类别】考查课【学分】3【总学时】72【讲授学时】42【实验学时】0【先修课程】《C++程序设计》、《数据结构》【适用专业】2012级计算机科学与技术【教学目的】计算机算法设计与分析是计算机算法和软件的基础。
本课程的目的是通过授课和实验的方式使学生掌握计算机算法的基本概念和基本理论,一些具体算法的复杂性分析;算法设计的基本方法、技术和分析方法;经典数值计算问题、递归与分治、动态规划、贪心法、回溯法、和分支限界法等解决问题的方法。
【课程的基本内容和要求】(一)算法概述教学内容:1.1算法与程序1.2算法复杂性分析1.3 NP完全理论教学要求:理解程序与算法的概念、区别与联系;掌握算法在最坏情况、最好情况和平均情况下的计算复杂性概念。
(二)递归与分治教学内容:1.递归的概念2.分治法基本思想3.二分搜索技术4.合并排序5.快速排序6.大整数乘法教学要求:理解递归的概念;掌握设计有效算法的分治策略,并掌握范例的设计技巧。
(三)动态规划教学内容:1. 矩阵连乘问题2. 动态规划算法的基本要素3. 最长公共子序列4. 0-1背包问题教学要求:理解动态规划算法的概念,掌握动态规划算法的基本要素,掌握设计动态规划算法的步骤,并通过应用范例学习动态规划算法的设计策略。
(四)贪心算法教学内容:1.活动安排问题2.贪心算法的基本要素3.最优装载4.哈夫曼编码5.单源最短路径教学要求:掌握贪心算法的基本要素,理解贪心算法与动态规划算法的差异,理解贪心算法的一般理论。
(五)回溯算法教学内容:1.回溯法的算法框架2.0-1背包问题3.装载问题4.n后问题5.旅行售货员问题教学要求:理解回溯法深度优先搜索策略,掌握用回溯法解题的算法框架,包括递归回溯、迭代回溯、子集树算法框架、排列树算法框架。
(六)分支限界算法教学内容:1.分支限界法的基本思想2.单源最短路径问题3.装载问题4.0-1背包问题教学要求:理解分支限界法的基本思想与剪枝搜索策略;掌握分支限界法的算法框架,包括队列式(FIFO)分支限界法与优先队列式分支限界法。
01背包各种算法代码实现总结(穷举,贪⼼,动态,递归,回溯,分⽀限界)2020-05-22所有背包问题实现的例⼦都是下⾯这张图01背包实现之——穷举法:1.我的难点:(1)在⽤穷举法实现代码的时候,我⾃⼰做的时候认为最难的就是怎么将那么多种情况表⽰出来,⼀开开始想⽤for循环进⾏多次嵌套,但是太⿇烦,⽽且还需要不断的进⾏各种标记。
我现在的⽔平实在太菜,然后就在⼀篇中看到⼀个特别巧妙的枚举算法,如下所⽰:int fun(int x[n]){int i;for(i=0;i<n;i++)if(x[i]!=1) {x[i]=1; return;}//从遇到的第⼀位开始,若是0,将其变成1,然后结束for循环,得到⼀种解法else x[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
得到另⼀种解法。
} 虽然我现在也不知道为什么会这样,但是确实是个很好的规律,找到这个规律后,就可以很轻松的⾃⼰写出各种排列情况,以后遇到排列的问题,就⽤这个⽅法。
语⾔不好描述,上图⽚演⽰(是歪的,凑活看吧。
):(2)算法思想:x[i]的值为0/1,即选或者不选w[i]的值表⽰商品i的重量v[i]的值表⽰商品的价值所以这个算法最核⼼的公式就是tw=x[1]*w[1]+x[2]*w[2]+.......+x[n]*w[n]tv=x[1]*w[1]+x[2]*v[2]+......+x[n]*v[n]tv1:⽤于存储当前最优解limit:背包容量如果 tw<limit&&tv>tv1 则可以找到最优解2.代码实现(借鉴)#include<stdio.h>#include<iostream>using namespace std;#define n 4void possible_solution(int x[n]){int i;for(i=0;i<4;i++) //n=4,有2^4-1种解法if(x[i]!=1){x[i]=1;return; //从遇到的第⼀位开始,若是0,将其变成1,然后结束循环,得到⼀种解法}elsex[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
算法设计策略
算法设计策略是指在解决特定问题时,根据问题的性质和特点,选择合适的算法设计方法来实现问题的解决。
常见的算法设计策略包括以下几种
1. 贪心算法:贪心算法是一种将问题分成多个子问题,每个子问题都求一个局部最优解,然后合并这些局部最优解得到全局最优解的算法。
2. 分治算法:分治算法是一种将大问题分解成若干个小问题,每个小问题都独立地求解,然后将各个小问题的解合并成大问题的解的算法。
3. 动态规划算法:动态规划算法是一种通过分析子问题的最优解来推导出问题的最优解的算法,通常用于求解具有重叠子问题和无后效性的问题
4. 回溯算法:回溯算法是一种通过不断尝试和回溯来搜索所有可能解的算法,通常用于求解具有多解或全部解的问题。
5. 分支限界算法:分支限界算法是一种通过不断扩展当前最优解空间的边界来搜索最优解的算法,通常用于求解具有单解或最优解的问题。
以上算法设计策略各有特点,在实际应用中需要根据问题的特点进行选择,以求得较优的解决方案。
五大算法总结之前的几篇文章里,为大家介绍了几种常用的算法思想,其中贪心、分治、动态规划、回溯、分支限界这五种算法思想并称为五大算法。
它们各举各的特点、优点,很常用。
同样的,枚举以简单易懂、不会错过任何解等等一些独特的优势,经常在写“暴力”的时候,也是很好用的算法,于是在这里,我把它也放入了基本算法思想里。
如果对这些内容还很陌生,不妨来来回顾一下,枚举贪心分治动态规划回溯分支限界在这里再简单的总结一下,0)枚举法枚举法简单暴力,没有什么问题是搞不定的,只要你肯花时间。
同时对于小数据量,枚举法是很优秀的算法。
枚举法简单,人人都能会,能解决问题,但它最大的缺点就是耗时。
1)贪心算法贪心算法可以获取到问题的局部最优解,不一定能获取到全局最优解,同时获取最优解的好坏要看贪心策略的选择。
特点就是简单,能获取到局部最优解,再通过局部最优解找到全局最优解。
不同的贪心策略会导致得到差异非常大的结果。
2)分治算法分治算法的逻辑更简单了,就是一个词,分而治之。
分治算法就是把一个大的问题分为若干个子问题,然后在子问题继续向下分,一直到问题的规模足够小时,通过子问题的解决,一步步向上,最终解决最初的大问题。
分治算法是递归的典型应用。
3)动态规划算法当最优化问题具有重复子问题和最优子结构的时候,就是动态规划出场的时候了。
动态规划算法的核心就是提供了一个记忆来缓存重复子问题的结果,避免了递归的过程中的大量的重复计算。
动态规划算法的难点在于怎么将问题转化为能够利用动态规划算法来解决,也就是递推式的推导过程。
4)回溯算法回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个分岔路,再选择一条路走,一直这样递归下去,直到遍历完所有的路径。
简单的来说,能进则进,不进则退。
5)分支限界算法和回溯法是一对兄弟,回溯是深度优先,那么分支限界法就是广度优先的一个经典的例子。
回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解(一般来说要获取最优解)。
计算机算法设计五⼤常⽤算法的分析及实例摘要算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
也就是说,能够对⼀定规范的输⼊,在有限时间内获得所要求的输出。
如果⼀个算法有缺陷,或不适合于某个问题,执⾏这个算法将不会解决这个问题。
不同的算法可能⽤不同的时间、空间或效率来完成同样的任务。
其中最常见的五中基本算法是递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法。
本⽂通过这种算法的分析以及实例的讲解,让读者对算法有更深刻的认识,同时对这五种算法有更清楚认识关键词:算法,递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法AbstractAlgorithm is the description to the problem solving scheme ,a set of clear instructions to solve the problem and represents the describe the strategy to solve the problem using the method of system mechanism . That is to say, given some confirm import,the Algorithm will find result In a limited time。
If an algorithm is defective or is not suitable for a certain job, it is invalid to execute it. Different algorithms have different need of time or space, and it's efficiency are different.There are most common algorithms: the recursive and divide and conquer、dynamic programming method、greedy algorithm、backtracking、branch and bound method.According to analyze the five algorithms and explain examples, make readers know more about algorithm , and understand the five algorithms more deeply.Keywords: Algorithm, the recursive and divide and conquer, dynamic programming method, greedy algorithm、backtracking, branch and bound method⽬录1. 前⾔ (4)1.1 论⽂背景 (4)2. 算法详解 (5)2.1 算法与程序 (5)2.2 表达算法的抽象机制 (5)2.3 算法复杂性分析 (5)3.五中常⽤算法的详解及实例 (6)3.1 递归与分治策略 (6)3.1.1 递归与分治策略基本思想 (6)3.1.2 实例——棋盘覆盖 (7)3.2 动态规划 (8)3.2.1 动态规划基本思想 (8)3.2.2 动态规划算法的基本步骤 (9)3.2.3 实例——矩阵连乘 (9)3.3 贪⼼算法 (11)3.3.1 贪⼼算法基本思想 (11)3.3.2 贪⼼算法和动态规划的区别 (12)3.3.3 ⽤贪⼼算法解背包问题的基本步骤: (12)3.4 回溯发 (13)3.4.1 回溯法基本思想 (13)3.3.2 回溯发解题基本步骤 (13)3.3.3 实例——0-1背包问题 (14)3.5 分⽀限界法 (15)3.5.1 分⽀限界法思想 (15)3.5.2 实例——装载问题 (16)总结 (18)参考⽂献 (18)1. 前⾔1.1 论⽂背景算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。
全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。
主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。
书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。
为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。
常见算法设计策略一、前言算法是计算机科学中的一个重要概念,它是解决问题的方法和步骤。
在计算机科学中,算法设计策略是指在设计算法时所采用的一些常见方法和技巧。
下面将介绍几种常见的算法设计策略。
二、贪心算法贪心算法是一种在每个阶段选择局部最优解,从而达到全局最优解的策略。
贪心算法通常可以用于求解最小生成树、背包问题等。
其基本思想是:每次选择当前状态下的最优解,并且该选择不会影响到后续状态的选择。
三、分治算法分治算法是将一个大问题分成若干个小问题,然后递归地求解各个小问题,最后将结果合并起来得到原问题的解。
分治算法通常可以用于求解排序、查找等问题。
四、动态规划动态规划是一种通过把原问题分解为相对简单的子问题来求解复杂问题的方法。
动态规划通常可以用于求解背包问题、最长公共子序列等。
其基本思想是:将大问题分成若干个小问题,并且在求解每个小问题时记录下已经得到的结果,在后续求解中可以直接使用这些结果,从而避免重复计算。
五、回溯算法回溯算法是一种通过不断尝试可能的解来求解问题的方法。
回溯算法通常可以用于求解八皇后问题、数独等。
其基本思想是:在每一步中,尝试所有可能的解,并且记录下已经尝试过的解,在后续求解中可以避免重复尝试。
六、分支限界算法分支限界算法是一种通过不断减小问题规模来求解问题的方法。
分支限界算法通常可以用于求解旅行商问题、0-1背包问题等。
其基本思想是:将大问题分成若干个小问题,并且在每个小问题中都进行剪枝操作,从而减少搜索空间。
七、总结以上介绍了几种常见的算法设计策略,每种策略都有其适用范围和优缺点。
在实际应用中需要根据具体情况选择合适的策略,并且需要注意算法的正确性和效率。
算法设计方法十一种
算法设计是解决计算问题的基础和核心。
本文将介绍十一种算法设计方法。
1. 贪心算法:每一步选择当前状态下最优的决策。
2. 动态规划:利用历史信息,按顺序进行决策,将整个问题划分为相似子问题,对每个子问题作出决策,以获得全局最优解。
3. 分治算法:将问题划分为多个相互独立的子问题,分别求解这些子问题,然后组合它们的解来获得原问题的解。
4. 回溯算法:从开头开始,逐步查找更多解决方案,如果无法继续,则返回上一步重新选择一条路径。
5. 分支限界算法:利用树形结构来表示问题的解空间,每次扩展一个节点,直到找到最优解为止。
6. 线性规划:用数学模型来描述问题,通过线性方程和不等式来表示限制条件,利用单纯性法求出最优解。
7. 区间图算法:处理一些与线段重叠有关的问题,如求多个区间的交集或各自覆盖的长度。
8. 图论算法:处理网络结构的问题,如最短路径问题和最小生成树问题。
9. 数论算法:研究数学中的整数和它们的性质,如欧几里得算法求最大公约数和扩展欧几里得算法求最小公倍数。
10. 字符串算法:处理字符串匹配、编辑距离等问题。
11. 概率算法:运用概率统计知识来解决问题,如蒙特卡罗方法解决求π问题。
以上这些算法设计方法不仅在学术界产生了重要的研究意义,同时在实际应用中也有着广泛的应用。
算法设计の研究不仅仅是单个技术问题的研究,同时也是对计算领域的整体认识。