2018 高考 回归分析和独立性检验专题复习(学生版)
- 格式:doc
- 大小:517.55 KB
- 文档页数:6
回归分析与独立性检验(一)变量间的相关关系、回归分析的基本思想及初步运用一、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系. 二、散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图. 三、回归分析:对具有相关关系的两个变量进行统计分析的方法叫回归分析. 1、回归直线方程设所求的直线方程为y b x a ∧=+,其中121()(),()ni i i ni i x x y y b a y b x x x ==--==--∑∑,1111,,nni i i i x x y y nn====∑∑(,)x y 称为样本点的中心,回归直线过样本点的中心.回归方程的截距a 和斜率b 是用最小二乘法计算出来的. 2、相关系数:两个变量之间线性相关关系的强弱用相关系数r 来衡量.相关系数:()()ni i x x y y r --=∑0r >,表示两个变量正相关;0r <,表示两个变量负相关;r的绝对值越接近1,表明两个变量的线性相关性越强.r 的绝对值越接近0,表明两个变量之间几乎不存在线性相关关系.通常,r 的绝对值大于0.75时,表明两个变量的线性相关性很强. (二)独立性检验的基本思想及其初步运用一、用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例:是否吸烟,是否患肺癌等 二、独立性检验的方法:列出两个分类变量的频数表(列联表),直观判断.一般步骤: (1)2*2列联表(2)提出假设:设p 与q 没有关系 (3)根据列联表中的数据2K 计算的值22()()()()()()n a d b c Kn a b c d a b c d a c b d -==+++++++其中为样本容量(4)根据计算得到的随机变量2K 的观测值作出判断如:24.232K =因为4.232介于临界值3.841和5.024之间,2( 3.841)p K ≥=0.05,所以两个分类变量没有关系的概率是5%,即两个分类变量有关系的概率为95%.【例1】【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. (1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()ni i x x y y r --=∑0.09≈.【反馈检测1】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()ni i t t y y r --=∑回归方程y a b t =+ 中斜率和截距的最小二乘估计公式分别为:121()()()ni i i ni i t t y y b t t ==--=-∑∑,=.a yb t -【例2】全国人大常委会会议于 2015年12月27日通过了关于修改人口与计划生育法的决定, “全面二孩”从2016年元旦起开始实施,A市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民30人、女性市民70人进行调查, 得到以下的22⨯列联表:(1)根椐以上数据,能否有090的把握认为A市市民“支持全面二孩”与“性别”有关?(2)现从持“支持”态度的市民中再按分层抽样的方法选出15名发放礼品,分别求所抽取的15人中男性市民和女性市民的人数;(3)将上述调查所得到的频率视为概率,.现在从A市所有市民中,采用随机抽样的方法抽取3位市民进行长期跟踪调查, 记被抽取的3位市民中持“支持”态度人数为X.①求X的分布列;②求X的数学期望()E X和方差()D X.参考公式:()()()()()22n a d b cKa b a d a c b d-=++++,其中n a b c d=+++【反馈检测3】【2017课标II ,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:22()()()()()n a d b c K a b c d a c b d -=++++。
高中选修1-2回归分析和独立性检验知识总结与联系-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑选修1-2第一部分 变量间的相关关系与统计案例【基础知识】一、回归分析1.两个变量的线性相关:判断是否线性相关 ①用散点图(1)正相关:在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关:在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. ②用相关系数r(3)除用散点图外,还可用样本相关系数r 来衡量两个变量x ,y 相关关系的强弱,ni ix y nx yr -•=∑当r >0,表明两个变量正相关,当r <0,表明两个变量负相关,r 的绝对值越接近于1,表明两个变量的线性相关性越强;r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |0.75>时,认为这两个变量具有很强的线性相关关系. 2.回归方程:两个变量具有线性相关关系,数据收集如下:可用最小二乘法得到回归方程ˆy bx a =+,其中3.回归分析的基本思想及其初步应用(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,其常用的 研究方法步骤是画出散点图,求出回归直线方程,并利用回归直线方程进行预报.(2)对n 个样本数据(x 1,y 1)、(x 2,y 2)、…、(xn ,yn ),(,)x y 称为样本点的中心.样本点中心一定落在回归直线上。
4、回归效果的刻画:用相关指数2R来刻画回归的效果,公式是2 2121()1()ni iiniiy yRy y==-=--∑∑2R的值越大,说明残差平方和越小,也就是说模型拟合效果好二.独立性检验的基本思想及其初步应用题型一相关关系的判断【例1】对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是()A.r2<r4<0<r3<r1B. r4<r2<0<r 1<r3C. r4<r2<0<r3<r1D. r2<r4<0<r1<r3【变式1】 根据两个变量x ,y 之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).题型二 线性回归方程【例2】在2013年元旦期间,某市物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一价格x 9 9.5 10 10.5 11销售量y11 10 8 6 5 y 关于商品的价格x 的线性回归方程为________.(参考公式:b ^= ,a ^=y -b ^x )【变式3】为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x /cm 174 176 176 176 178儿子身高y /cm175 175 176 177 177则y 对x 的线性回归方程为( ). A .y =x -1 B .y =x +1C .y =88+12x D .y =176题型三 独立性检验【例4】通过随机询问110名性别不同的行人,对过马路是愿意走斑马线由K 2=n (ad -dc )(a +b )(c +d)(a +c )(b +d ),算得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A. 有99%以上的把握认为“选择过马路的方式与性别有关”B. 有99%以上的把握认为“选择过马路的方式与性别无关”C. 在犯错误概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”D. 在犯错误概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关【变式2】 某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分附 K 2巩固提高1.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y ^=b ^x +a ^必过(x ,y );④在一个2×2列联表中,由计算得K 2=13.079,则有99%的把握确认这两个变量间有关系;其中错误的个数是( )A. 0B. 1C. 2D. 32.已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( ) A. y ^=1.23x +4 B. y ^=1.23x +5 C. y ^=1.23x +0.08 D. y ^=0.08x +1.23 3.从所得的散点图分析可知:y 与x 线性相关,且y =0.95x +a ,则a =( ) A. 1.30 B. 1.45 C. 1.65 D. 1.804.根据上表可得回归直线方程:y =0.56x +a ,据此模型预报身高为172 cm 的高三男生的体重为( )A. 70.09 kgB. 70.12 kgC. 70.55 kgD. 71.05 kg5.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x的回归直线方程:y ^=0.254x +0.321.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.6.利用独立性检验对两个分类变量是否有关系进行研究时,若在犯错误的概率不超过0.005的前提下认为事件A 和B 有关系,则具体计算出的数据应该是( )A .k≥6.635B .k <6.635C .k≥7.879D .k <7.8797.某高校“统计初步”课程的教师随机调查了选该课的一些学生的情况,具体数据如下表:非统计专业统计专业男13 10女7 20为了判断主修统计专业是否与性别有关系,根据表中数据得到,k=50(13×20-10×7)220×30×23×27≈4.844,因为k>3.841,所以确定主修统计专业与性别有关系,那么这种判断出错的可能性为________.与销售额(单位:百万元)之间有如下对应数据:(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为百万元时,销售额多大?9.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤,试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤(参考数值:)9.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生60 20 80北方学生10 10 20合计70 30 100(1)甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系学生,其中2名习惯甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.10、我市某校某数学老师这学期分别用两种不同的教学方式试验高一甲、乙两个班(人数均为人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)。
考点11 回归分析与独立性检验概率与统计,是历年高考的必考点,尤其是新高考改革后,各卷都有考查,其主要考查内容有:数字特征与概率的计算问题、随机变量的均值与方差、回归分析与独立性检验、二项分布及其应用等。
例如:2021年全国高考乙卷(文)、(理)[17],2022年全国新高考卷Ⅱ[19],2022年全国乙卷(文)、(理)[19],2022年全国甲卷(文)[17],2022年北京高考[18]等都对数字特征与概率的计算问题进行了考查。
〔1〕回归分析的实际应用1.求回归直线方程(线性回归方程)的一般步骤 (1)画散点图; (2)求回归直线方程; (3)用回归直线方程进行预报。
2.利用回归方程进行预测,把回归直线方程看作一次函数,求函数值。
3.利用回归直线判断正、负相关,决定正相关还是负相关的是系数bˆ。
4.回归方程的拟合效果,可以利用相关系数判断,当||r 越趋近于1时,两变量的线性相关性越强。
〔2〕独立性检验的实际应用 1.独立性检验的一般步骤(1)根据样本数据列出2×2列联表;(2)计算随机变量2K 的观测值k ,查表确定临界值0k ;(3)如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过()02k K P ≥;否则,就认为在犯错误的概率不超过()02k K P ≥的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y有关系”。
2.独立性检验的应用可以利用独立性检验来推断两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。
具体做法是: (1)根据实际问题需要的可信程度(或容许犯错误概率的上界)确定临界值0k ; (2)利用公式,由观测数据计算得到随机变量2K 的观测值k ;(3)如果0k k ≥,就说有()()%100102⨯≥-k K P 的把握认为“X 与Y 有关系”(或说在犯错误的概率不超过()2k K P ≥的前提下认为“X 与Y 有关系”),否则就说样本观测数据没有提供“X 与Y 有关系”的充分证据(或说在犯错误的概率不超过()02k K P ≥的前提下不能认为“X 与Y 有关系”)。
独立性检验与回归分析__________________________________________________________________________________ __________________________________________________________________________________1.了解变量间的相关关系,能根据给出的线性回归方程系数建立线性回归方程.2.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.3.了解回归分析的基本思想、方法及其简单应用.1.独立性检验(1)概念:用2χ统计量研究独立性问题的检验的方法称为独立性检验.(2)m×n列联表指有m行n列的列联表(3)必备公式2χ=2()()()()()n ad bca cb d a bc d-++++2.2χ统计量中的四个临界值经过对2χ统计量分布的研究,已经得到了四个经常用到的临界值:2.706、3.841、6.635、10.828.由2×2列联表计算出2χ,然后与相应的临界值进行比较,当2χ>2.706时,有______的把握说事件A与B有关.当2χ>3.841时,有______的把握说事件A与B有关.当2χ>6.635时,有______的把握说事件A与B有关.当2χ>10.828时,有______的把握说事件A与B有关.当2χ≤2.706时,认为事件A与B是无关的.3.回归分析(1)线性回归模型是指方程y a bxε=++,其中________称为确定性函数,____称为随机误差.(2)线性回归方程是指直线方程ˆˆˆya bx =+,其中回归截距ˆa 、回归系数ˆb 公式如下: ˆb=_______________________ˆa =_____________. (3)参数r 检验线性相关的程度,计算公式为r()()niix x yy --∑即ni ix ynx y-∑化简后r =x yxy x yS S -,其中y S 表示数据i y (i =1,2,…,n )的标准差,这个r 称为y 与x 的样本相关系数,简称相关系数,其中-1≤r ≤1.若r >0,则x 与y 是正相关,若r <0,则x 与y 是负相关,若r =0,则x 与y 不相关,r =1或r =-1时,x 与y 为完全线性相关.类型一.独立性检验例1:为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:判断性别与是否喜欢数学课程有关吗?用独立性检验方法判断父母吸烟对子女是否吸烟有影响.类型二.变量间的相关关系及线性回归方程例2:下列关系中,是带有随机性相关关系的是______. ①正方形的边长与面积之间的关系; ②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.例3:某工业部门进行一项研究,分析该部门的产量与生产费用的关系,从这个工业部门内随机抽选了10个企业作样本,资料如下表:练习1:下列两个变量之间的关系哪个不是函数关系( ) (A)角度和它的余弦值 (B)正方形边长和面积(C)正n 边形的边数和顶点角度之和 (D)人的年龄和身高 类型三.相关检验与回归分析例3:某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系.从这个工业部门内完成下列问题:(1)计算x 与y 的相关系数;(2)对这两个变量之间是否线性相关进行相关性检验;(3)设线性回归方程为ˆˆˆ,ybx a =+求系数ˆˆ,.a b试预测该运动员训练47次以及55次的成绩.1.在调查中学生近视情况中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( )A.期望与方差B.排列与组合C.独立性检验D.概率2.通过对2χ统计量的研究,得到了若干临界值,当2χ≤2.706时,我们认为事件A 与B ( ) A.有90%的把握认为A 与B 有关系 B.有95%的把握认为A 与B 有关系C.没有充分理由说明事件A 与B 有关系D.不能确定3.下列关于2χ的说法中正确的是( )A.2χ在任何相互独立问题中都可以用来检验有关还是无关 B.2χ的值越大,两个事件的相关性就越大C.2χ是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合D.2χ的观测值2χ的计算公式为2()()()()()n ad bc a b c d a c b d χ-=++++4.下列两个变量之间的关系是相关关系的是( ) A.角度和它的余弦值 B.正方形边长和面积 C.正n 边形的边数和顶点数 D.人的年龄和身高5.由一组样本数据1122(,),(,),,(,n x y x y x )n y 得到的回归方程为ˆˆˆ,ybx a =+下面说法不正确的是( )A.直线ˆˆˆybx a =+必经过点(,)x y B.直线ˆˆˆybx a =+至少经过点1122(,),(,),,(,)n n x y x y x y 中的一个点C.直线ˆˆˆybx a =+的斜率为1221()ni ii nii x y nxyxn x ==--∑∑D.直线ˆˆˆybx a =+和各点1122(,),(,),,(,)n n x y x y x y 的偏差平方和21ˆˆ[()]ni ii y bx a =-+∑是该坐标平面上所有直线与这些点的偏差平方和中最小的直线6.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按97.5%的可靠性要求,不能认为“成绩与班级有关系”7.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2≥3.841)≈0.05根据表中数据,得到K 2=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.8.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.(2014重庆卷)已知变量x与y正相关,且由观测数据算得样本平均数x=3,y=3.5,则由该观测数据算得的线性回归方程可能是()A.y^=0.4x+2.3 B.y^=2x-2.4C.y^=-2x+9.5 D.y^=-0.3x+4.42.(2014湖北卷)根据如下样本数据:得到的回归方程为y=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<03.(2014江西卷)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()及格2032A.成绩B.视力C.智商D.阅读量4.下列两个变量之间的关系是相关关系的是()A.正方体的棱长和体积B.角的弧度数和它的正弦值C.单产为常数时,土地面积和总产量D.日照时间与水稻的亩产量5.(2015福建)为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元6.“回归”一词是在研究子女的身高与父母的身高之间的遗传关系时,由高尔顿提出的.他的研究结果是子代的平均身高向中心回归.根据他的结论,在儿子的身高y 与父亲的身高x 的回归方程ˆˆˆya bx =+中,ˆb ( ) A.在(-1,0)内B.等于0C.在(0,1)内D.在[1,+∞)7.线性回归方程ˆˆˆya bx =+中,回归系数ˆb 的含义是________________. 8.在一项打鼾与患心脏病是否有关的调查中,共调查了1978人,经过计算2χ=28.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(填“有关”、“无关”)能力提升1.下列说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个线性回归方程y ^=3-5x ,变量x 增加1个单位时,y 平均增加5个单位;③设具有相关关系的两个变量x ,y 的相关系数为r ,则|r |越接近于0,x 和y 之间的线性相关程度越强;④在一个2×2列联表中,由计算得K 2的值,则K 2的值越大,判断两个变量间有关联的把握就越大.其中错误的个数是( ) A.0B.1C.2D.32.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′3.对相关系数r ,下列说法正确的是( ) A.||r 越大,相关程度越小B.||r 越小,相关程度越大C.||r 越大,相关程度越小,||r 越小,相关程度越大D.||r≤1且||r越接近1,相关程度越大,||r越接近0,相关程度越小4.若由资料知,y对x呈线性相关关系,试求:(1)线性回归方程;(2)估计设备的使用年限为10年时,维修费用约是多少?5.若由资料可知y对x呈线性相关关系,试求:(1)线性回归直线方程;(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?6.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为思心脏病而住院的男性病人中有175人秃顶,利用独立性检验方法判断秃顶与患心脏病是否有关系?课程顾问签字: 教学主管签字:。
回归直线方程与独立性检验【题集】1. 回归直线方程12(1)(2)1.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:(年龄岁)(脂肪含量)根据上表的数据得到如下的散点图.脂肪含量年龄岁)根据上表中的样本数据及其散点图.求.计算样本相关系数(精确到),并刻画它们的相关程度.若关于的线性回归方程为,求的值(精确到),并根据回归方程估计年龄为岁时人体的脂肪含量.附:参考数据:,,,,,.参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为,.(1)12(2)2.我市南澳县是广东唯一的海岛县,海区面积广阔,发展太平洋牡蛎养殖业具有得天独厚的优势,所产的“南澳牡蛎”是中国国家地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布.购买只该基地的“南澳牡蛎”,会买到质量小于的牡蛎的可能性有多大?年该基地考虑增加人工投入,现有以往的人工投入增量(人)与年收益增量(万元)的数据如下:人工投入增量(人)年收益增量(万元)该基地为了预测人工投入增量为人时的年收益增量,建立了与的两个回归模型:模型①:由最小二乘公式可求得与的线性回归方程:;模型②:由散点图的样本点分布,可以认为样本点集中在曲线:的附近,对人工投入增量做变换,令,则,且有,,,.年收益增量(万元)人工投入增量(万人)根据所给的统计量,求模型②中关于的回归方程(精确到).根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测人工投入增量为人时的年收益增量.回归模型模型①模型②回归方程附:若随机变量,则,;样本的最小二乘估计分式为:,,另,刻画回归效果的相关指数.(1)(2)3.某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”,现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示:参考数据:设,,,.参考公式:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计公式分别为:,.根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次.推广期结束后,商场对顾客的支付方式进行统计,结果如下表:支付方式现金会员卡扫码比例商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为,现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少.(1)4.一个工厂在某年里连续个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明.12(2)解答下列各题:建立月总成本与月产量之间的回归方程.通过建立的关于的回归方程,估计某月产量为万件时,此时产品的总成本为多少万元?(均精确到)附注:①参考数据:,,,,.②参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为:,.(1)(2)(3)5.某单位共有名员工,他们某年的收入如下表:员工编号年薪(万元)求该单位员工当年年薪的平均值和中位数.从该单位中任取人,此人中年薪收入高于万的人数记为,求的分布列和期望.已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为万元,万元,万元,万元,预测该员工第五年的年薪为多少?附:线性回归方程中系数计算公式分别为:,,其中,为样本均值.6.全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某部门在该市年发布的全民健身指数中,其中的“运动参与”的评分值进行了统计,制成如图所示的散点图:运动参与评分值年份代码:注:年份代码分别对应年份(1)(2)根据散点图,建立关于的回归方程.从该市的市民中随机抽取了容量为的样本,其中经常参加体育锻炼的人数为,以频率为概率,若从这名市民中随机抽取人,记其中“经常参加体育锻炼”的人数为,求的分布列和数学期望.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.(1)(2)7.某项科研活动共进行了次试验,其数据如表所示:特征量第次第次第次第次第次从次特征量的试验数据中随机地抽取两个数据,求至少有一个大于的概率.求特征量关于的线性回归方程;并预测当特征量为时特征量的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为,).8.某地区某农产品近几年的产量统计如表:年份年份代码年产量(万吨)(1)12(2)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为:,.根据表中数据,建立关于的线性回归方程.若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.根据中所建立的回归方程预测该地区年该农产品的产量.当为何值时,销售额最大?(1)(2)9.在年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾均标有等级代码,为得到小龙虾等级代码数值与销售单价之间的关系,经统计得到如下数据:等级代码数值销售单价(元)已知销售单价与等级代码数值之间存在线性相关关系,求关于的线性回归方程(系数精确到).若莫斯科某餐厅销售的中国小龙虾的等级代码数值为,请估计该等级的中国小龙虾销售单价为多少元?参考公式:对一组数据,,,,其回归直线的斜率和截距最小二乘估计分别为:,.参考数据:,.(1)(2)(3)10.某食品店为了了解气温对销售量的影响,随机记录了该店月份中天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如表:求出与的回归方程.判断与之间是正相关还是负相关;若该地月份某天的最低气温为,请用所求回归方程预测该店当日的销售量.设该地月份的日最低气温,其中近似为样本平均数,近似为样本方差,求.附:①回归方程中,,.②,.若,则,.2. 独立性检验(1)(2)11.我市为改善空气环境质量,控制大气污染,政府相应出台了多项改善环境的措施,其中一项是为了减少燃油汽车对大气环境污染,从年起大力推广使用新能源汽车,鼓励市民如果需要购车,可优先考虑选用新能源汽车,政府对购买使用新能源汽车进行购物补贴,同时为了地方经济发展,对购买本市企业生产的新能源汽车比购买外地企业生产的新能源汽车补贴高,所以市民对购买使用本市企业生产的新能源汽车的满意度也相应有所提高,有关部门随机抽取本市本年度内购买新能源汽车的户,其中有户购买使用本市企业生产的新能源汽车,对购买使用新能源汽车的满意度进行调研,满意度以打分的形式进行,满分分,将分数按照,,,,分成组,得如下频率分布直方图.得分频数组距若本次随机抽取的样本数据中购买使用本市企业生产的新能源汽车的用户中有户满意度得分不少于分,得分不少于分为满意,根据提供的条件数据,完成下面的列联表,并判断是否有的把握认为购买使用新能源汽车的满意度与产地有关?满意不满意总计购买本市企业生产的新能源汽车户数 购买外地企业生产的新能源汽车户数总计以频率作为概率,政府对购买使用新能源汽车的补贴标准是:购买本市企业生产的每台补贴万元,购买外地企业生产的每台补贴万元,但本市本年度所有购买新能源汽车的补贴每台的期望值不超过万元,则购买外地产的新能源汽车每台最多补贴多少万元?附:,其中.(1)1(2)12.大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分分),结果如下表所示:分数人数参加自主招生获得通过的概率这两年学校共培养出优等生人,根据如图等高条形图,填写相应列联表,并根据列联表检验能否在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系?非优等生优等生学习大学先修课程没有学习大学先修课程优等生非优等生总计学习大学先修课程 没有学习大学先修课程总计已知今年全校有名学生报名学习大学先修课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率.2某班有名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.参考数据:参考公式:,其中.(1)(2)13.某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了件产品作为样本.检测一项质量指标值,该项指标值落在内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表质量指标合计频数质量指标值频率组距甲生产线样本的频率分布直方图根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取件恰有件为合格品的概率.现在该企业为提高合格率欲只保留其中一条生产线.根据上述图表所提供的数据,完成下面的列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与生产线有关.若有的把握,请从合格率的角度分析保留哪条生产线较好.甲生产线乙生产线合计合格品不合格品合计附:,.12(1)(2)14.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷,整理分析及开座谈会三个阶段.在随机问卷阶段,,两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对至岁的人群,按比例随机抽取了份,进行了数据统计,具体情况如下表:组别年龄组统计结果组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车人人人人人人人人人人人人先用分层抽样的方法从上述人中按“年龄是否达到岁”抽出一个容量为人的样本,再用分层抽样的方法将“年龄达到岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.求这人中“年龄达到岁且偶尔使用单车”的人数.为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到岁且偶尔使用单车”的人员召开座谈会,会后共有份礼品赠送给其中人,每人份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有人来自组,求组这人中得到礼品的人数的分布列和数学期望.从统计数据可直观得出“是否经常使用共享单车与年龄(记作岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄应取还是?请通过比较的观测值的大小加以说明.参考公式:,其中.15.年,依托用户碎片化时间的娱乐需求,分享需求以及视频态的信息负载力,短视频快速崛起,与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书抽样调查了非一线城市和一线城市各名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于分钟的用户记为“活跃用户”.(1)(2)(3)频率组距日使用时长分钟频率组距日使用时长分钟城市城市请填写以下列联表,并判断是否有的把握认为用户活跃与否与所在城市有关.活跃用户不活跃用户合计城市 城市合计以频率估计概率,从城市中任选名用户,从城市中任选名用户,设这名用户中活跃用户人数为,求的分布列和数学期望.该读书还统计了年个季度的用户使用时长(单位:百万小时),发现与季度()线性相关,得到回归直线为,已知这个季度的用户平均使用时长为百万小时,试以此回归方程估计年第一季度该读书用户使用时长约为多少百万小时.附:,其中.(1)16.在中国移动的赞助下,某大学就业部从该大学年已就业的、两个专业的大学本科毕业生中随机抽取了人进行月薪情况的问卷调查,经统计发现,他们的月薪收入在元到元之间,具体统计数据如下表:月薪(百元)人数将月薪不低于元的毕业生视为“高薪收入群体”,并将样本的频率视为总体的概率,已知该校届大学本科毕业生李阳参与了本次调查问卷,其月薪为元.请根据上述表格中的统计数据填写下面的列联表,并通过计算判断,是否能在犯错误的概率不超过的前提下认为“高薪收入群体”与所学专业有关?12(2) 非高薪收入群体高薪收入群体合计专业专业 合计经统计发现,该大学届的大学本科毕业生月薪(单位:百元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值).若落在区间的左侧,则可认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,为以后的毕业生就业提供更好的指导.试判断李阳是否属于“就业不理想”的学生.中国移动为这次参与调查大学本科毕业生制定了赠送话费的活动,赠送方式为:月薪低于的获赠两次随机话费,月薪不低于的获赠一次随机话费,每次赠送的话费及对应的概率分别为:赠送话费(单位:元)概率则李阳预期获得的话费为多少元?附:,其中,.(1)(2)17.高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了人,从美国某城市的高中生中随机抽取了人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:家占、朋友聚集的地方占、个人空间占.为了考察高中生的“恋家(在家里感到最幸福)”是否与国别有关,构建了如下列联表.在家里最幸福在其它场所幸福合计中国高中生美国高中生合计请将列联表补充完整;试判断能否有的把握认为“恋家”与否与国别有关.从中国高中生的学生中以“是否恋家”为标准采用分层抽样的方法,随机抽取了人,再从这人中随机抽取人.若所选名学生中的“恋家”人数为,求随机变量的分布列及期望.附:,其中.视力频率组距(1)不做操做操近视不近视是否做操是否近视(2)(3)18.眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体名学生中随机抽取了名学生进行视力检查,并得到如图的频率分布直方图.附:,若直方图中后三组的频数成等差数列,试估计全年级视力在以上的人数.为了研究学生的视力与眼保健操是否有关系,对年纪不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过的前提下认为视力与眼保健操有关系?在中调查的名学生中,按照分层抽样在不近视的学生中抽取人,进一步调查他们良好的护眼习惯,在这人中任取人,记坚持做眼保健操的学生人数为,求的分布列和数学期望.19.为调查某地人群年龄与高血压的关系,用简单随机抽样方法从该地区年龄在岁的人群中抽取人测量血压,结果如下:高血压非高血压总计年龄到岁(1)(2)年龄到岁总计附参考公式及参考数据:计算表中的、、值;是否有的把握认为高血压与年龄有关?并说明理由.现从这名高血压患者中按年龄采用分层抽样的方法抽取人,再从这人中随机抽取人,求恰好一名患者年龄在到岁的概率.(1)(2)20.随着移动支付的普及,中国人的生活方式正悄然巨变,带智能手机,不带钱包出门还渐成为中国人的新习惯. 年我国移动支付增长迅猛,据统计,某支付平台年移动支付的笔数占总支付笔数的.从该支付平台 年的所有支付中任取笔,求移动支付笔数的期望和方差.现有名使用该支付平台的用户,其中 名是城市用户,名是农村用户,调查他们年个人移动支付的比例是否达到了,得到列联表如下:个人移动支付达到了个人移动支付达到了合计城市用户农村用户合计根据上表数据,问是否有的把握认为年个人移动支付比例达到了与该用户是城市用户还是农村用户有关?附:.(1)21.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各名进行问卷调查,其中每天自主学习中国古典文学的时间超过小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷非古文迷合计男生女生合计根据表中数据能否判断有的把握认为“古文迷”与性别有关?(2)(3)现从调查的女生中按分层抽样的方法抽出人进行调查,求所抽取的人中“古文迷”和“非古文迷”的人数.现从()中所抽取的人中再随机抽取人进行调查,记这人中“古文迷”的人数为,求随机变量的分布列与数学期望.参考公式:,其中.参考数据:(1)(2)(3)22.每年的月日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间内):本/年频数根据女生的频率分布直方图估计该校女生年阅读量的中位数.在样本中,利用分层抽样的方法,从男生年与度量在,的两组里抽取人,再从这人中随机抽取人,求这一组中至少有人被抽中的概率.若年阅读量不小于本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列列联表,并判断是否有的把握认为月底丰富与性别有关.性别 阅读量丰富不丰富合计男 女 合计附:,其中.频率组距分数(1)(2)(3)23.为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为)中,采用分层抽样的方法抽取名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这名同学的数据,按照以下区间分为八组:①,②,③,④,⑤,⑥,⑦,⑧得到频率分布直方图如图.已知抽取的学生中数学成绩少于分的人数为人.求的值及频率分布直方图中第④组矩形条的高度;如果把“学生数学成绩不低于分”作为是否达标的标准,对抽取的名学生,完成下列列联表:达标未达标合计男生女生合计据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?若从该校的高二年级学生中随机抽取人,记这人中成绩不低于分的学生人数为,求的分布列、数学期望和方差.附1:“ 列联表”的卡方统计量公式:附2:卡方 统计量的概率分布表:…………(1)12(2)24.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”遍布了一二线城市的大街小巷.为了解共享单车在.市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了人进行抽样分析,得到下表(单位:人):经常使用偶尔或不用合计岁及以下岁以上合计根据以上数据,能否在犯错误的概率不超过的前提认为市使用共享单车情况与年龄有关?请回答下列问题:现从所抽取的岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取人,然后,再从这人中随机选出人赠送优惠券,求选出的人中至少有人经常使用共享单车的概率.将频率视为概率,从市所有参与调查的网民中随机抽取人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.参考公式:,其中.参考数据:(1)(2)25.某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知人中同意父母生“二孩”占,统计情况如表:同意不同意合计男生 女生合计求,的值,根据以上数据,能否有的把握认为是否同意父母生“二孩”与性别有关?请说明理由.。
命题角度3.3 独立性检验及回归分析1.已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.(1)请将上表补充完整(不用写计算过程);(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.【答案】(1)(2)故有的把握认为学生的学习成绩与对待学案的使用态度有关.(3)分别从善于使用学案和不善于使用学案的学生中抽取8人和2人,这样更能有效的继续调查.(1)2. 某种多面体玩具共有12个面,在其十二个面上分别标有数字1,2,3,…,12.若该玩具质地均匀,则抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.为检验某批玩具是否合格,制定检验标准为:多次抛掷该玩具,并记录朝上的面上标记的数字,若各数字出现的频率的极差不超过0.05.则认为该玩具合格.(1)对某批玩具中随机抽取20件进行检验,将每个玩具各面数字出现频率的极差绘制成茎叶图(如图所示),试估计这批玩具的合格率;(2)现有该种类玩具一个,将其抛掷100次,并记录朝上的一面标记的数字,得到如下数据:1)试判定该玩具是否合格;2)将该玩具抛掷一次,记事件A :向上的面标记数字是完全平方数(能写成整数的平方形式的数,如293 ,9为完全平方数);事件B :向上的面标记的数字不超过4.试根据上表中的数据,完成以下列联表(其中A 表示A 的对立事件),并回答在犯错误的概率不超过0.01的前提下,能否认为事件A 与事件B 有关.(参考公式及数据: ()()()()()22n ad bc K a b c d a c b d -=++++, ()2 6.6350.01P K ≥=)【答案】(1)85%;(2)1)该玩具合格;2)见解析.试题解析:(1)由题意知,20个样本中,极差为0.052,0.071,0.073的三个玩具不合格,故合格率可估计为170.8520=,即这批玩具的合格率约为85%.(2)1)由数据可知,5点或9点对应最大频率0.10,4点对应最小频率0.06,故频率极差为0.040.05≤,故该玩具合格.2)根据统计数据,可得以下列联表:于是2K 的观测值()21001560151030702575k ⨯⨯-⨯=⨯⨯⨯ 010014.2857 6.6357k =≈>=, 故在犯错误的概率不超过0.01的前提下,能认为事件A 与事件B 有关.3.某城市随机抽取一年(365天)内100天的空气质量指数API 的检测数据,结果统计如下:记某企业每天由空气污染造成的经济损失(单位:元),空气质量指数为.在区间对企业没有造成经济损失;在区间对企业造成经济损失成直线模型(当为150时造成的经济损失为500元,当为200时,造成的经济损失为700元);当大于300时造成的经济损失为2000元.(1)试写出的表达式;(2)估计在本年内随机抽取一天,该天经济损失大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下列列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?【答案】(1);(2);(3)有95%的把握认为空气重度污染与供暖有关.试题解析:(1).(2)设“在本年内随机抽取一天,该天经济损失大于200元且不超过600元”为事件.由,得,频数为39,所以.(3)根据以上数据得到如下列联表:的观测值.所以有95%的把握认为空气重度污染与供暖有关.【方法点睛】本题主要考查分段函数的解析式图、古典概型概率公式以及独立性检验,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)4. 在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生表二:女生(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.(2)由表中统计数据填写下面的22参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(1)5.(2)见解析.试题解析:(1)设从高一年级男生中抽出m 人,则45500500400m =+, 25m =,则从女生中抽取20人, 所以251555x =--=, 201532y =--=.表二中非优秀学生共5人,记测评等级为合格的3人为a , b , c ,尚待改进的2人为A , B ,则从这5人中任选2人的所有可能结果为(),a b , (),a c , (),b c , (),A B , (),a A , (),a B , (),b A , (),b B ,(),c A , (),c B ,共10种,设事件C 表示“从表二的非优秀学生中随机选取2人,恰有1人测评等级为合格”,则C 的结果为(),a A ,(),a B , (),b A , (),b B , (),c A , (),c B ,共6种,所以()63105P C ==,即所求概率为35. (2)22⨯列联表如下:点睛:首先要了解分层抽样的特点,按照抽取比例分层抽取即可,对于独立性检验则需熟悉列联表的写法明确公式中的每一个数值代入即可5.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下频数分布直方图:该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的频率;(2)已知选取的是1月与6月的两组数据.(i)请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?(参考公式:,)【答案】(1);(2)(i);(ii)是理想的.(2)(i )由数据求得,由公式求得,所以,所以关于的线性回归方程为.(ii )当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.6.某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由); (2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价i x (单位:元/件,整数)和销量i y (单位:件)(1,2,,8i )如下表所示:①请根据下列数据计算相应的相关指数2R ,并根据计算结果,选择合适的回归模型进行拟合; ②根据所选回归模型,分析售价x 定为多少时?利润z 可以达到最大.(附:相关指数()()22121ˆ1n i i i n ii y yR y y ==-=--∑∑)【答案】(1)年度平均销售额与方案1的运作相关性强于方案2.(2)①采用回归模型211003ˆ2yx =-+进行拟合最为合适. ②40x =试题解析:(1)由等高条形图可知,年度平均销售额与方案1的运作相关性强于方案2.(2)①由已知数据可知,回归模型1200l 500ˆn 0yx =-+对应的相关指数210.6035R =; 回归模型271700ˆyx =-+对应的相关指数220.9076R =; 回归模型211003ˆ2yx =-+对应的相关指数230.9986R =.因为222321R R R >>,所以采用回归模型211003ˆ2yx =-+进行拟合最为合适. ②由(1)可知,采用方案1的运作效果较方案2好, 故年利润()211200153z x x ⎛⎫=-+- ⎪⎝⎭, ()()3040z x x '=-+-, 当()0,40x ∈时, ()211200153z x x ⎛⎫=-+- ⎪⎝⎭单调递增; 当()40,x ∈+∞时, ()211200153z x x ⎛⎫=-+- ⎪⎝⎭单调递减, 故当售价40x =时,利润达到最大.7.在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:(1)在散点图中号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为,求,并估计的预报值; (2)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(1)中的值之差(即:)不超过10%,则使用位置最接近的已有旧井,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果:,)(3)设出油量与钻探深度的比值不低于20的勘探井称为优质井,在原有井号的井中任意勘探3口井,求恰好2口是优质井的概率.【答案】(1),的预报值为24;(2) 可以使用位置最接近的已有旧井;(3).试题解析:(1)因为,回归直线必过样本中心点,则,故回归直线方程为,当时,,即的预报值为24;(2)因为,所以,,即,,均不超过10%,因此可以使用位置最接近的已有旧井;点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.8.参加衡水中学数学选修课的同学,对某公司的一种产品销量与价格进行统计,得到如下数据和散点图:(参考数据:)(I)根据散点图判断,与,与哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(II)根据(I)的判断结果有数据,建立关于的回归方程(方程中的系数均保留两位有效数字);(III)定价为多少元/时,年利润的预报值最大?附:对一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.【答案】(I)由散点图可知,与具有较强的线性相关性; (II); (III)定值为元/时,年利润的预报值最大.试题解析:(I)由散点图可知,与具有较强的线性相关性.(II)由题得,,,,又,则,∴线性回归方程为,则关于的回归方程为.9.在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程ˆy bx a =+;(2)假设该公司在A 区获得的总年利润z (单位:百万元)与,x y 之间的关系为20.05 1.4z y x =--,请结合(1)中的线性回归方程,估算该公司应在A 区开设多少个分店时,才能使A 区平均每个分店的年利润最大?(参考公式: ˆy bxa =+,其中()()()1122211ˆ,ˆnni i iii i nni ii i x y nxy x x y y b a y bxx nx x x ====---===---∑∑∑∑) 【答案】(1) 0.850.6y x =+;(2) 该公司应开设4个分店时,在该区的每个分店的平均利润最大. 【解析】试题分析:(1)根据所给数据,按照公式计算回归方程中的系数即可; (2)利用(1)得利润z 与分店数x 之间的估计值,计算zx,由基本不等式可得最大值. 试题解析:(1)由表中数据和参考数据得: 4,4x y ==,()()()5521110,8.5ii i i i x x x x y y ==-=--=∑∑,∴()()()1218.50.851ˆ0niii nii x x y y bx x ==--===-∑∑,∴440.850.6ˆˆa y bx=-=-⨯=, ∴0.850.6y x =+.10.在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如表:(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;(Ⅱ)用表中数据画出散点图易发现历史成绩y 与语文成绩x 具有较强的线性相关关系,求y 与x 的线性回归方程(系数精确到0.1).参考公式:回归直线方程是ˆˆˆybx a =+,其中()()121()ˆniii niix x y y b x x ==--=-∑∑, ˆˆa y bx=- 【答案】(Ⅰ)24、16.(Ⅱ) 0.624.2y x =+ 【解析】试题分析:(1)将频率试作概率,按照表中所给数据计算优秀人数即可;(2)利用计算公式分别求得ˆˆ,ba 的值即可求得回归直线方程.点睛:回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义. 根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.。
高考数学复习考点知识与题型专题讲解专题18 回归分析、独立性检验1.有关独立性检验的问题,解题思路如下:(1)利用频率估计概率;(2)根据题意,求得2K的值,对照临界值得结果.2.对于非线性回归方程及其应用,考查将非线性回归问题转化为线性回归问题求解,在解题的过程中,要注重回归方程的公式的正确计算,注意所给数据的正确应用.2倍.1 / 31(1)求表中a,b的值,并补全表中所缺数据;(2)运用独立性检验思想,判断是否有99.5%的把握认为中学生使用手机对学习有影响?参考数据:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【试题来源】三省三校“3 3 3”2021届高考备考诊断性联考卷(二)【答案】(1)28,14,ab=⎧⎨=⎩,表格答案见解析;(2)有99.5%的把握认为中学生使用手机对学习有影响.【分析】(1)由题意可得122680,2a ba b+++=⎧⎨=⎩从而可求出,a b的值,进而可填出列联表;(2)直接利用公式()()()()()22n ad bcKa b c d a c b d-=++++求解,然后根据临界值表得结论【解析】(1)由己知得122680,2a ba b+++=⎧⎨=⎩解得28,14,ab=⎧⎨=⎩补全表中所缺数据如下:(2)根据题意计算观测值为()2280282614129.8257.87942384040K⨯⨯-⨯=≈>⨯⨯⨯,所以有99.5%的把握认为中学生使用手机对学习有影响.2.某校高二生物研究性学习小组的同学们为了研究当地某种昆虫的产卵数与温度的变化关系,他们收集了一只该种昆虫在温度Cx︒时相对应产卵数个数为y的8组数据,为了对数据进行分析,他们绘制了如下散点图:(1)根据散点图,甲、乙两位同学分别用y bx a=+和z dx c=+(其中lnz y=)两种模型进行回归分析,试判断这两位同学得到的回归方程中,哪一个的相关指数2R更接近1;(给出判断即可,不必说明理由)(2)根据(1)的结论选定上述两个模型中更适宜作为对昆虫产卵数与温度变化关系进行回归分析的模型,并利用下表中数据,计算该模型的回归方程:(方程3 / 31表示为()y f x =的形式,数据计算结果保留两位小数)(3)据测算,若只此种昆虫的产卵数超过4e ,则会发生虫害.研究性学习小组的同学通过查阅气象资料得知近期当地温度维持在25C ︒左右,试利用(2)中的回归方程预测近期当地是否会发生虫害. 附:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u βα=+的斜率和截距的最小二乘估计分别为1221ˆˆˆ,nl i i ni i u v nuvv u unu βαβ==-==--∑∑. 【试题来源】甘肃省兰州市2020-2021学年高三下学期诊断试题【答案】(1)乙同学模型的相关指数2R 更接近1;(2)应选择z dx c =+做为回归方程,0.22 2.22x y e -=;(3)近期当地不会发生虫害.【分析】(1)通过观察图象即可得出结论;(2)根据(1)的结论,应选择z dx c =+做为回归方程,利用最小二乘法即可求解,求出,d c 即可. (3)当25x =时,求出估计值,即可判断得出结论.【解析】(1)乙同学模型的相关指数2R 更接近1.(2)根据(1)的结论,应选择z dx c =+做为回归方程,根据公式,812221757826 3.30.22, 3.30.2226 2.425722826i i i nii x z nxzd c z dx xnx =-=--⨯⨯==≈=-≈-⨯=--⨯-∑∑, 0.22 2.42z x ∴=-,5 / 31故y 关于x 的回归方程为0.22 2.22x y e -=.(3)当25x =时,0.22 2.22 3.084x y e e e -==<,因此近期当地不会发生虫害. 3.人均可支配收入是反映一个地区居民收入水平和城市经济发展水平的重要指标,并且对人均消费水平有重大影响,下图是根据国家统计局发布的《2020年上半年居民收入和消费支出情况》绘制的,是我国31个省(区、市)2020年上半年人均可支配收入x (单位:元)与人均消费支出y (单位:元)的散点图.(1)由散点图可以看出,可以用线性回归模型ˆˆybx a =+拟合人均消费支出y 与人均可支配收入x 的关系,请用相关系数加以说明; (2)建立y 关于x 的线性回归方程(精确到0.01);(3)根据(2)的结论,规定半年人均盈余(人均可支配收入-人均消费支出)不低于4620元的省(区、市)达到阶段小康的标准,则估计达到阶段小康标准的省(区、市)的半年人均可支配收入至少为多少元? 参考数据:参考公式:相关系数()()niix x y y r --=∑,回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 【试题来源】2021年新高考测评卷数学(第二模拟)【答案】(1)答案见解析;(2)ˆ0.482192y x =+;(3)13100元.【分析】(1)将已知数据代入相关系数的求解公式即可得解;(2)根据题中数据及参考公式求得ˆb ,ˆa ,即可建立y 关于x 的线性回归方程;(3)由题意知半年人均盈余为ˆx y-,得到不等式ˆ4620x y -≥,解不等式即可. 【解析】(1)由题意知()()316839000000.983800018400iix x yy r --==≈⨯∑,因为y 与x 的相关系数近似为0.98,接近1,所以y 关于x 的线性相关程度非常高,因此可以用线性回归模型拟合y 与x 的关系.(2)()()()3113121683900000ˆ0.481412000000ii i ii xx y y bxx ==--==≈-∑∑,ˆˆ96320.48155002192ay bx =-≈-⨯=,所以ˆ0.482192y x =+. (3)半年人均盈余为ˆ0.4821920.522192x yx x x -=--=-, 令0.5221924620x -≥,得13100x ≥,故估计达到阶段小康标准的省(区、市)的半年人均可支配收入至少为131007 / 31元.4.近年来,明代著名医药学家李时珍故乡黄冈市蕲春县大力发展大健康产业,蕲艾产业化种植已经成为该县脱贫攻坚的主要产业之一,已知蕲艾的株高y (单位:cm)与一定范围内的温度x (单位:℃)有关,现收集了蕲艾的13组观测数据,得到如下的散点图:现根据散点图利用y a =+dy c x=+建立y 关于x 的回归方程,令s =1t =得到如下数据:213t131i =∑21.22且(i s ,i y )与(i t ,i y )(i =1,2,3,…,13)的相关系数分别为1r ,2r ,且2r =﹣0.9953.(1)用相关系数说明哪种模型建立y 与x 的回归方程更合适; (2)根据(1)的结果及表中数据,建立y 关于x 的回归方程;(3)已知蕲艾的利润z 与x 、y 的关系为1202z y x =-,当x 为何值时,z 的预报值最大.参考数据和公式:0.21×21.22=4.4562,11.67×21.22=247.6374=15.7365,对于一组数据(i u ,i v )(i =1,2,3,…,n ),其回归直线方程v uαβ=+的斜率和截距的最小二乘法估计分别为1221ni i i nii u vnu v unuβ==-⋅=-∑∑,v u αβ=-,相关系数ni i u vnu vr -⋅∑.【试题来源】湖北省八市2021届高三下学期3月联考 【答案】(1)用d y c x =+模型建立y 与x 的回归方程更合适;(2)10ˆ111.54yx=-;(3)当温度为20时这种草药的利润最大.【分析】(1)利用相关系数1r ,2r ,比较1||r 与2||r 的大小,得出用模型dy c x=+建立回归方程更合适;(2)根据(1)的结论求出y 关于x 的回归方程即可;(3)由题意写出利润函数ˆz,利用基本不等式求得利润z 的最大值以及对应的x 值.【解析】(1)由题意知20.9953r =-,10.8858r ====,因为121r r <<,所有用dy c x=+模型建立y 与x 的回归方程更合适. (2)因为1311322113 2.1ˆ100.2113i ii ii t y t ydtt ==-⋅-===--∑∑, ˆˆ109.94100.16111.54cy dt =-=+⨯=,9 / 31所以ˆy关于x 的回归方程为10ˆ111.54y x=- (3)由题意知11012020(111.54ˆˆ)22zy x x x =-=--20012230.8()2x x =-+ 2230.8202210.8≤-=,所以22.8ˆ10z≤,当且仅当20x 时等号成立,所以当温度为20时这种草药的利润最大.5.已知某班有50位学生,现对该班关于“举办辩论赛”的态度进行调查,,他们综合评价成绩的频数分布以及对“举办辩论赛”的赞成人数如下表:(1)请根据以上统计数据填写下面2×2列联表,并回答:是否有95%的把握认为“综合评价成绩以80分位分界点”对“举办辩论赛”的态度有差异?(2)若采用分层抽样在综合评价成绩在[60,70),[70,80)的学生中随机抽取10人进行追踪调查,并选其中3人担任辩论赛主持人,求担任主持人的3人中至少有1人在[60,70)的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【试题来源】山东省聊城市第一中学2021届高三一模检测题(一)【答案】(1)表格见解析,不能;(2)2930.【分析】(1)由已知完成列联表,结合公式计算2K 根据参考数据即可判断结果;(2)由分层抽样得在[)60,70里面抽6个,[)70,80里面抽4个,再用对立事件求解概率即可. 【解析】(1)做个皮尔逊卡方检验的话,有()2250286412 3.125 3.84132184010K ⨯⨯-⨯==<⨯⨯⨯故此不能推翻零假设,不能认定成绩和态度有关.(2)这样分层抽样,会在[)60,70里面抽6个,[)70,80里面抽4个,11 / 31设A 为没有人在[60,70)内的事件,则概率即为()1P P A =-3431029130C C =-=.6.某疫苗进行安全性临床试验.该疫苗安全性的一个重要指标是注射疫苗后人体血液中的高铁血红蛋白(MetHb )的含量(以下简称为“M 含量”)不超过1%,则为阴性,认为受试者没有出现血症.若一批受试者的M 含量平均数不超过0.65%,出现血症的被测试者的比例不超过5%,同时满足这两个条件则认为该疫苗在M 含量指标上是“安全的”;否则为“不安全”.现有男、女志愿者各200名接受了该疫苗注射.经数据整理,制得频率分布直方图如图.(注:在频率分布直方图中,同一组数据用该区间的中点值作代表.)(1)请说明该疫苗在M 含量指标上的安全性;(2)按照性别分层抽样,随机抽取50名志愿者进行M 含量的检测,其中女性志愿者被检测出阳性的恰好1人.请利用样本估计总体的思想,完成这400名志愿者的22⨯列联表,并判断是否有超过95%的把握认为,注射该疫苗后,高铁血红蛋白血症与性别有关?附:()()()()()22n ad bcKa b c d a c b d-=++++.【试题来源】江西省九所重点中学(玉山一中、临川一中等)2021届高三3月联合考试【答案】(1)该疫苗在M含量指标上是“安全的”;(2)表格见解析,没有. 【分析】(1)求出区间(]1.0,1.2上的频率,以及平均数即可得结论;(2)根据题意写出列联表,计算2K的值,并与3.841比较即可得出结论. 【解析】(1)由频率分布直方图得M含量数据落在区间(]1.0,1.2上的频率为0.150.20.03⨯=,故出现血症的比例为3%5%<,由直方图得平均数为0.30.20.50.30.70.30.90.17 1.10.030.606x=⨯+⨯+⨯+⨯+⨯=即志愿者的M含量的平均数为0.606%0.65%<综上,该疫苗在M含量指标上是“安全的”.(2)依题意得,抽取的50名志愿者中女性志愿者应为25人由已知,25名女性志愿者被检测出阳性恰有1人,故女性中阳性的频率0.04 所以全部女性志愿者阳性共有2000.048⨯=人由(1)知400名志愿者中,阳性的频率为0.03,所以阳性的人数共有4000.0312⨯=人因此男性志愿者被检测出阳性的人数是1284-=人.所以完成表格如下:由22⨯列联表可()22400419281961.375 3.84120020012388K⨯⨯-⨯=≈<⨯⨯⨯,由参考表格,可得,故没有超过95%的把握认为注射疫苗后,高铁血红蛋白血症与性别有关.7.某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x(单位:年)与失效费y(单位:万元)的统计数据如下表所示:(1)由上表数据可知,可用线性回归模型拟合y与x的关系.请用相关系数加以说明;(精确到0.01)(2)求出y关于x的线性回归方程,并估算该种机械设备使用10年的失效费.13 / 31参考公式:相关系数()()niix x y y r --=∑.线性回归方程ˆˆˆybx a =+中斜率和截距最小二乘估计计算公式:()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-. 参考数据:()71()14.00i i i x x y y =--=∑,()7217.08i iy y =-=∑14.10≈.【试题来源】四川省成都市2021届高三第二次诊断性检测【答案】(1)答案见解析;(2)ˆ0.5 2.3yx =+,7.3万元. 【分析】(1)根据统计数据求x 、y 、()721i i x x =-∑,结合参考数据及相关系数公式,求相关系数r ,进而判断y 与x 的相关程度;(2)利用最小二乘法公式估计ˆb 、ˆa ,写出线性回归方程,进而将10x =代入估算求值.【解析】(1)由题意,知123456747x ++++++==,2.903.30 3.604.40 4.805.20 5.904.307y ++++++==,()()()()()()()()72222222211424344454647428i i x x =-=-+-+-+-+-+-+-=∑.所以结合参考数据知14.000.9914.10r ==≈≈.因为y 与x 的相关系数近似为0.99,所以y 与x 的线性相关程度相当大,从而可以用线性回归模型拟合y 与x 的关系.15 / 31(2)因为()()()7172114ˆ0.528iii ii x x y y bx x ==--===-∑∑, 所以ˆˆ 4.30.54 2.3ay bx =-=-⨯=. 所以y 关于x 的线性回归方程为ˆ0.5 2.3y x =+,将10x =代入线性回归方程,得ˆ0.510 2.37.3y=⨯+=. 所以估算该种机械设备使用10年的失效费为7.3万元.8.人类已经进入大数据时代.目前,数据量级已经从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024PB )乃至ZB (1ZB =1024EB )级别.国际数据公司(IDC )研究结果表明,2008年全球产生的数据量为0.49ZB ,2009年数据量为0.8ZB ,2010年增长到1.2ZB ,2011年数据量更是高达1.82ZB .下表是国际数据公司(IDC )研究的全球近6年每年产生的数据量(单位:ZB )及相关统计量的值:表中ln i i z y =,6116i i z z ==∑.(1)根据上表数据信息判断,方程21c xy c e =⋅(e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(2c 精确到0.01).(2)有人预计2021年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由.参考数据: 4.5695.58e ≈, 4.5897.51e ≈,回归方程y a bx =+中,斜率最小二乘法公式为()()()1122211n niii ii i nniij i x x y y x y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.【试题来源】2021年高三数学二轮复习讲练测(新高考版) 【答案】(1) 1.520.38x y e +=;(2)见解析.【分析】(1)设ln z y =,则12ln z c c x =+,再根据参考数据及公式即可得解 (2)先将8x =代入得预计2021年数据量,进而和2011年的50倍比较大小即可得解【解析】(1)由21c xy c e =⋅,两边同时取自然对数得()2112ln ln ln c xy c e c c x =⋅=+,设ln z y =,则12ln z c c x =+. 因为 3.5x =, 2.85z =,()62117.58i i x x=-=∑,()()616.7.i i i x x z z =--=∑,所以()()()12216.730.3817.58niii nij x x y z c x x ==--==≈-∑∑,12ln 2.850.38 3.5 1.52c z c x =-=-⨯=.17 / 31所以 1.520.38ln z x y =+=,所以 1.520.38x y e +=;(2)令8x =,得 1.520.388 4.56ˆ95.58 1.825091ye e +⨯==≈>⨯=. 预计2021年全世界产生的数据规模会超过2011年的50倍.【名师点睛】对于非线性回归方程的求解,一般要结合题意作变换,转化为线性回归方程来求解,同时也要注意相应数据的变化.9.随着手机游戏的发展,在给社会带来经济利益的同时,也使许多人深陷其中,从而产生一些负面的影响.A ,B 两所学校为了解学生每天玩游戏的时间,各自抽取了100名学生进行调查,得到的数据如表所示:A 学校B 学校(1)以样本估计总体,计算A 学校学生日游戏时间的平均数以及B 学校学生日游戏时间的中位数.(2)为了调查家长对孩子玩游戏的态度,学校相关领导随机抽取了200名男性家长和200名女性家长进行调查,并将所得结果统计如表所示,判断是否有99.9%的把握认为家长对孩子玩游戏的态度与家长性别有关?附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【试题来源】普通高等学校招生全国统一考试数学预测卷(一)【答案】(1)A学校学生日游戏时间的平均数为64.7()min;B学校学生日游戏时间的中位数为74()min;(2)没有.【分析】(1)根据频率分布表,利用平均数公式求解;由中位数的定义求解;(2)根据22⨯列联表中的数据,利用()()()()()22n ad bcKa b c d a c b d-=++++求得2K的值,再与临界值表对照下结论.【解析】(1)A学校学生日游戏时间的平均数为3.50.1450.14550.16650.2750.18850.13950.0964.7⨯+⨯+⨯+⨯+⨯+⨯+⨯=()min.B学校学生日游戏时间的中位数为5037102070107425----+⨯=()min.19 / 31(2)由已知可得22⨯列联表:则()2240013639161648.17210.828200200297103K ⨯⨯-⨯=≈<⨯⨯⨯, 所以没有99.9%的把握认为家长对孩子玩游戏的态度与家长性别有关. 10.为了解国内不同年龄段的民众旅游消费的基本情况.某旅游网站从其数据库中随机抽取了1000条客户信息进行分析,这些客户一年的旅游消费金额数据如下表所示;把一年的旅游消费金额满8千元称为“高消费”,否则称为“低消费”. (1)从这些客户中随机选一人,求该客户是高消费的中老年人的概率; (2)完成下面的22⨯列联表,并判断能否有99%的把握认为旅游消费的高低与年龄有关.附表及公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++【试题来源】学科网2021年高三1月大联考考后强化卷(新课标Ⅱ卷)【答案】(1)15;(2)填表见解析;有.【分析】(1)用频率估计概率,计算样本中高消费的中老年人的频率即为概率;(2)将数据填入列联表,用2K的计算公式计算2K的观测值k,与附表中的数据比较可得出结论.【解析】(1)样本中总客户数为1000,其中高消费的中老年人有200人,随机选一人,则该客户是高消费的中老年人的概率为2001 10005=.(2)2×2列联表如下:21 / 31可得2K的观测值21000(300200100400)7.937400600700300k ⨯⨯-⨯=≈⨯⨯⨯, 因为7.937 6.635>,所以有99%的把握认为旅游消费的高低与年龄有关. 11.2020山东省旅游发展大会暨首届中国国际文化旅游博览会在济南奥体中心东荷体育馆隆重开幕.大会以“文旅融合发展,乐享好客山东”为主题,来自38个国家和地区的友好宾朋,跨越空间阻隔,相约线上交流,共同推动山东文化和旅游业发展谱写新的篇章.某机构为了解人们对博览会的关注度是否与年龄有关,随机抽取了200位市民(其中40周岁及以下与40周岁以上各100人)进行问卷调查,并得到如下的22⨯列联表:(1)根据22⨯列联表,判断是否有90%的把握认为对博览会的关注度与年龄有关;(2)若从关注度极高的被调查者中按年龄分层抽样的方法抽取9人了解他们从事的职业情况,再从9人中任意选取2人谈谈关注博览会的原因,求这2人中两个年龄段的市民各一人的概率.附:22()()()()()n ad bc Ka b c d a c b d -=++++,其中n a b c d =+++.参考数据:【试题来源】普通高等学校招生全国统一考试数学预测卷(三)【答案】(1)有;(2)59.【分析】(1)根据22⨯列联表中的数据求得2K 值,再与临界值表对照下结论; (2)先利用分层抽样的方法抽取各层的人数,然后再求得9人中任意选取2人的基本事件数和这2人中两个年龄段的市民各一人的基本事件数,代入古典概型的概率公式求解.【解析】(1)由22⨯列联表可得22200(60524840) 2.899 2.70610010010892K ⨯⨯-⨯=≈>⨯⨯⨯,故有90%的把握认为对博览会的关注度与年龄有关.(2)根据题意,从关注度极高的被调查者中按年龄分层抽样的方法抽取9人, 则抽取40周岁及以下的有6095108⨯=人,40周岁以上的有954-=人. 从9人中任意选取2人的基本事件有29C 36=个,这2人中两个年龄段的市民各一人的基本事件有1154C C 20=个;则这2人中两个年龄段的市民各一人的概率205369P ==. 12.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:23 / 31(1)求相关系数r 的大小(精确到0.01),并判断管理时间y 与土地使用面积x 的线性相关程度;(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()niix x y y r --=∑,()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 临界值表:22.02.【试题来源】重组卷05-冲刺2021年高考数学之精选真题模拟重组卷(新课标卷)【答案】(1)0.84;管理时间y 与土地使用面积x 的线性相关程度为强相关;(2)有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.【分析】(1)根据参考公式和数据计算相关系数r 的值,并判断强弱关系;(2)根据列联表计算2K ,并和临界数表比较大小. 【解析】(1)1234535x ++++==,911142620165y ++++==, ()()()()()()()()113916231116331416niii x x y y =--=-⨯-+--+-⨯-∑()()()()43261653201637+--+--=,()()()()()()2222221132333435310ni i x x =-=-+-+-+-+-=∑, ()()()()()()22222219161116141626162016194ni i y y =-=-+-+-+-+-=∑44.04=≈,()()370.840.7544.04niix x y y r --==≈>∑, 所以管理时间y 与土地使用面积x 的线性相关程度为强相关.(2)由条件可知女性不愿意参与管理的人数为300140604060---=()223001406060402510.828200100180120K ⨯⨯-⨯==>⨯⨯⨯,所以有99.9%的把握认为村民的性别与参与管理的意愿具有相关性. 13.某公司对项目进A 行生产投资,所获得的利润有如下统计数据表:(1)请用线性回归模型拟合y 与x 的关系,并用相关系数加以说明; (2)该公司计划用7百万元对A 、B 两个项目进行投资.若公司对项目B 投资25 / 31()16x x ≤≤百万元所获得的利润y 近似满足:0.490.160.491y x x =-++,求A 、B 两个项目投资金额分别为多少时,获得的总利润最大? 附:①对于一组数据()11,x y 、()22,x y 、、(),n n x y ,其回归直线方程y bx a=+的斜率和截距的最小二乘法估计公式分别为1221ni ii nii x y nx yb xnx==-⋅=-∑∑,ˆa y bx=-. ②线性相关系数ni ix y nx yr -⋅=∑.一般地,相关系数r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱. 参考数据:对项目A 投资的统计数据表中111ni i i x y ==∑,212.24ni i y ==∑ 2.1≈.【试题来源】2021年高考数学金榜预测卷(山东、海南专用)【答案】(1)0.2y x =;答案见解析;(2)对A 、B 项目分别投资4.5百万元,2.5百万元时,获得总利润最大.【分析】(1)计算出x 、y 的值,将表格中的数据代入最小二乘法公式,求出b 、a 的值,可得出回归直线方程,并计算出相关系数r 的值,可得出结论;(2)求得()0.491.930.0411y x x ⎡⎤-++⎢+⎣=⎥⎦,利用基本不等式可求得y 的最大值,利用等号成立求得x 的值,即可得出结论.【解析】(1)对项目A 投资的统计数据进行计算,有3x =,0.6y =,52155i i x ==∑,所以515222151190.255535i ii i i x y x yb x x==-⋅-===-⨯-∑∑,0.60.230a y bx =--⨯==,所以回归直线方程为0.2y x =.线性相关系数55i ix y x yr -⋅==∑0.95340.95=≈>, 这说明投资金额x 与所获利润y 之间的线性相关关系较强, 用线性回归方程0.2y x =对该组数据进行拟合合理;(2)设对B 项目投资()16x x ≤≤百万元,则对A 项目投资()7x -百万元. 所获总利润()()0.490.490.490.27 1.930.60411110.x x y x x x ⎡⎤++-=⎥=--++⎢++⎣⎦1.93 1.65≤-=, 当且仅当()100.04194.x x =++,即 2.5x =时取等号, 所以对A 、B 项目分别投资4.5百万元,2.5百万元时,获得总利润最大. 14.有一种速度叫中国速度,有一种骄傲叫中国高铁.中国高铁经过十几年的发展,取得了举世瞩目的成就,使我国完成了从较落后向先进铁路国的跨越式转变.中国的高铁技术不但越来越成熟,而且还走向国外,帮助不少国家修建了高铁.高铁可以说是中国一张行走的名片.截至到2020年,中国高铁运营里程已经达到3.9万公里.下表是2013年至2020年中国高铁每年的运营里程统计表,它反映了中国高铁近几年的飞速发展:27 / 31根据以上数据,回答下面问题.(1)甲同学用曲线y =bx +a 来拟合,并算得相关系数r 1=0.97,乙同学用曲线y =ce dx 来拟合,并算得转化为线性回归方程所对应的相关系数r 2=0.99,试问哪一个更适合作为y 关于x 的回归方程类型,并说明理由;(2)根据(1)的判断结果及表中数据,求y 关于x 的回归方程(系数精确到0.01). 参考公式:用最小二乘法求线性回归方程的系数公式:121()()ˆˆ,()niii nii x x y y ba y bxx x ==--==--∑∑;参考数据:882112.48,()()15.50,()42.00,i i i i i y x x y y x x ===--=-=∑∑令8820.4411ln ,0.84,()() 6.50,() 1.01, 1.15.i i i i i w y w x x w w w w e ====--=-==∑∑【试题来源】安徽省示范高中皖北协作区2021届高三下学期第23届联考 【答案】(1)答案见解析;(2)0.151.15x y e =.【分析】(1)比较已知的相关系数大小关系即可得出正确答案;(2)由已知数据求出x ,结合回归方程变形为ln ln y c dx =+,求出d 和ln c ,从而可求出回归方程.【解析】(1)因为1201r r <<<,所以dx y ce =更适合作为y 关于x 的回归方程类型. (2)12345678364.588x =++++++===,由dx y ce =得ln ln y c dx =+,即ln c dx ω=+,则1821()()6.50.1542()Niii ii x x d x x ωω==--==≈-∑∑, 13ln 0.84 4.50.1484c dx ω=-=-⨯≈,所以0.140.150.140.150.151.15dx x x x y ce e e e e +====. 【名师点睛】本题考查了回归方程的求解,本题第二问的关键是对回归方程,结合对数的运算性质进行变形,结合最小二乘法求线性回归方程的系数公式进行求解.15.打乒乓球是一项众多中学生喜爱的体育运动,某中学体育协会为了解这项运动与性别的关联性,随机调查了100名男生和100名女生,每位学生回答喜欢或不喜欢,得到下面的列联表:(1)分别估计该中学男、女生喜欢打乒乓球的概率;(2)能否有99.5%的把握认为中学生喜欢打乒乓球与性别有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【试题来源】吉林省白山市2021届高三第三次联考(4月份)【答案】(1)男生喜欢打乒乓球的概率的估计值为0.55,女生喜欢打乒乓球的概率的估计值为0.35;(2)有99.5%的把握认为中学生喜欢打乒乓球与性别有关.【分析】(1)根据题意,利用公式求得男生和女生喜欢打乒乓球的频率,从而估计出其概率;(2)由题意,求得2K的值,对照临界值得出结论.【解析】(1)由调查数据可知,男生喜欢打乒乓球的频率为550.55 100=,女生喜欢打乒乓球的频率为350.35 100=,因此该中学男生喜欢打乒乓球的概率的估计值为0.55,女生喜欢打乒乓球的概率的估计值为0.35.(2)因为2 2200(55653545)8001001009011099 K⨯⨯-⨯==⨯⨯⨯且80080087.879 99100>=>,所以有99.5%的把握认为中学生喜欢打乒乓球与性别有关.16.某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.29 / 31表中1i i u x =,8118i i u u ==∑(1)根据散点图判断:y a bx =+与dy c x=+哪一个模型更适合作为该图书每册的成本费y 与印刷数量x 的回归方程?(只要求给出判断,不必说明理由) (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程(结果精确到0.01);(3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)附:对于一组数据1122(,),(,,,),()n n v v v ωωω⋯,其回归直线v αβω=+的斜率和截距的最小二乘估计分别为121()()()niii nii v v ωωβωω==--=-∑∑,v αβω=-.【试题来源】2021年高考数学考前信息必刷卷(江苏专用) 【答案】(1)d y c x =+更适合;(2)8.961.22y x=+;(3)至少印刷11120册才能使销售利润不低于80000元.【分析】(1)由散点图可知成反比例函数模型,故dy c x=+更适合; (2)令1u x=,根据表中的数据计算即可得y 关于u 的线性回归方程为1.228.96y u=+,进而得y 关于x 的回归方程为8.961.22y x=+; (3)根据题意只需解不等式8.969.22 1.2280x x x ⎛⎫-+≥ ⎪⎝⎭即可得答案.【解析】(1)由散点图判断,dy c x=+更适合作为该图书每册的成本费y (单位:元)与印刷数量x (单位:千册)的回归方程. (2)令1u x=,先建立y 关于u 的线性回归方程,由于81821()()7.0498.9578.960.787()i iiiiu u y ydu u==-⋅-==≈≈-∑∑,所以 3.638.9570.269 1.22c yd u=-⋅=-⨯≈,所以y关于u的线性回归方程为 1.228.96y u=+,所以y关于x的回归方程为8.961.22yx =+(3)假设印刷x千册,依题意得8.969.22 1.2280x xx⎛⎫-+≥⎪⎝⎭,解得11.12x≥,所以至少印刷11120册才能使销售利润不低于80000元.31 / 31。
高考真题——回归分析和独立性检验副标题一、选择题(本大题共9小题,共45.0分)1.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是()参考公式:K2=附表:列联表中c的值为30,b的值为35B. 列联表中c的值为15,b的值为50C. 根据列联表中的数据,若按的可靠性要求,能认为“成绩与班级有关系”D. 根据列联表中的数据,若按的可靠性要求,不能认为“成绩与班级有关系”2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2表3表4成绩视力 C. 智商 D. 阅读量3.下列两个变量中具有相关关系的是()A. 正方形的面积与边长B. 匀速行驶的车辆的行驶距离与时间C. 人的身高与体重D. 人的身高与视力4.下列说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个线性回归方程=3-5x,变量x增加1个单位时,y平均增加5个单位;③线性回归方程=x+必过(,);④设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越高;⑤在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.其中错误的个数是()A. 0B. 1C. 2D. 35.某次考试,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学、物理分数对应如下表:绘出散点图如下:根据以上信息,判断下列结论:①根据此散点图,可以判断数学成绩与物理成绩具有线性相关关系;②根据此散点图,可以判断数学成绩与物理成绩具有一次函数关系;③甲同学数学考了80分,那么,他的物理成绩一定比数学只考了60分的乙同学的物理成绩要高.其中正确的个数为A. 0B. 3C. 2D. 16.有人认为在机动车驾驶技术上,男性优于女性.这是真的么?某社会调查机构与交警合作随机统计了经常开车的100名驾驶员最近三个月内是否有交通事故或交通违法事件发生,得到下面的列联表:附:K2=据此表,可得()A. 认为机动车驾驶技术与性别有关的可靠性不足B. 认为机动车驾驶技术与性别有关的可靠性超过C. 认为机动车驾驶技术与性别有关的可靠性不足D. 认为机动车驾驶技术与性别有关的可靠性超过7.如图是相关变量x,y的散点图,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程y=b1x+a1,相关系数为r1;方案二:剔除点(10,21),根据剩下数据得到线性回归直线方程y=b2x+a2,相关系数为r2.则()A. B. C. D.8.由K2=得K2=≈8.333>7.879A. 有以上的把握认为“爱好该项运动与性别有关”B. 有以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”9.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和身体健康情况;④圆的半径与面积;⑤汽车的重量和每千米耗油量.其中两个变量成正相关的是()A. ①③B. ②④C. ②⑤D. ④⑤二、填空题(本大题共1小题,共5.0分)10.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生。
回归直线方程与独立性检验一、课堂目标1、明确建立回归模型的基本步骤、熟练运用线性回归模型解决非线性相关问题.2、能够运用独立性检验对两个分类变量是否线性相关作出判断.二、直击高考知识模块知识内容全国卷常见题型回归分析一元线性回归模型2020年全国三卷18题解答题回归直线方程独立性检验分类变量2020年全国二卷18题解答题三、知识讲解1. 回归分析知识回顾方法提升考点一:回归直线方程的求解对于一组具有线性相关关系的数据:,,,,,我们知道其回归直线的斜率和截距的最小二乘法估计分别为:其中,,称为样本点的中心,位于回归直线上.【思想方法与技巧】利用线性相关回归分析处理非线性问题:研究两个变量的关系是,我们常常根据样本生成点坐标在平面直角坐标系中作出散点图,观察散点图中样本点的分布.从整体看,如果样本点并没有分布在某一条直线附近,这两个变量之间不具有线性相关关系,也就是非线性相关关系.考点二:相关系数的求解对于变量与随机抽到的对数据,,,,,可以利用相关系数来衡量两个变量之间线性相关关系,样本相关系数的计算公式为:.【思想方法与技巧】利用相关系数评判结果如下:(1)时,表示两个变量正相关;(2)时,表示两个变量负相关;(3)越接近于,表明两个变量的线性相关程度越强;(4)越接近于,表明两个变量的线性相关程度越弱.高考链接1.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的个地块,从这些地块中用简单随机抽样的方法抽取个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单(1)(2)(3)位:公顷)和这种野生动物的数量,并计算得,,,,.附:相关系数,.求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数).求样本的相关系数(精确到).根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.(1)(2)2.下图是某地区年至年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据年至年的数据(时间变量的值依次为)建立模型①:.根据年至年的数据(时间变量的值依次为)建立模型②:.年份投资额分别利用这两个模型,求该地区年的环境基础设施投资额的预测值.你认为用哪个模型得到的预测值更可靠?并说明理由.3.下图是我国年至年生活垃圾无害化处理量(单位:亿吨)的折线图(1)(2)年份代码年生活垃圾无害化处理量注:年份代码分别对应年亿吨参考数据:,,,.参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为:,.由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明.建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量.方法应用4.随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客提升销售额,每年双十一都会进行某种商品的促销活动,该商品促销活动规则如下:①“价由客定”,即所有参与该商品促销活动的人进行网络报价,每个人并不知晓其他人的报价也不知道参与该商品促销活动的总人数;②报价时间截止后,系统根据当年双十一该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;③每人限购一件,且参与人员分配到名额时必须购买,某位顾客拟参加年双十一该商品促销活动,他为了预测该商品最低成交价,根据该购物平台的公告统计了最近年双十一参与该商品促销活动的人数(见表):年份年份编号参与人数(百万人)12(2)由收集数据的散点图发现,可用线性回归模拟拟合参与人数(百万人)与年份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测年双十一参与该商品促销活动的人数.该购物平台调研部门对位拟参与年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:报价区间(千元)频数求这位参与人员报价的平均值和样本方差(同一区间的报价可用该价格区间的中点值代替).假设所有参与该商品促销活动人员的报价可视为服从正态分布且与可分别由①中所求的样本平均值和样本方差估值,若预计年双十一该商品最终销售量为,请你合理预测(需说明理由)该商品的最低成交价.参考公式及数据()回归方程:,其中,.(),,.()若随机变量服从正态分布,则,,.5.我国全面二孩政策已于年月日起正式实施,国家统计局发布的数据显示,从年到年,中国的人口自然增长率变化始终不大,在上下波动(如图).中国内地总人口和自然增长率总人口自然增长率出生率(万人)为了了解年龄介于岁至岁之间的适孕夫妻对生育二孩的态度如何,统计部门按年龄分为组,每组选取对夫妻进行调查,统计有生育二孩意愿的夫妻数,得到下表:‰(1)(2)有意愿数(参考数据和公式:,,,,,)设每个年龄区间的中间值为 ,有意愿数为,求样本数据的线性回归直线方程,并求该模型的相关系数(结果保留两位小数).从,,,,这五个年龄段中各选出一对夫妻(能代表该年龄段超过半数夫妻的意愿)进一步调研,再从这对夫妻中任选对夫妻,设其中不愿意生育二孩的夫妻数为,求的分布列和数学期望.(1)(2)6.某小区为了调查居民的生活水平,随机从小区住户中抽取个家庭,得到数据如下:家庭编号月收入(千元)月支出(千元)参考公式:回归直线的方程是:,其中,,.据题中数据,求月支出(千元)关于月收入(千元)的线性回归方程(保留一位小数);从这个家庭中随机抽取个,记月支出超过千家庭个数为,求的分布列与数学期望.7.如表中的数据是一次阶段性考试某班的数学、物理原始成绩:学号数学物理学号数学(1)(2)(3)理用这人的两科成绩制作如下散点图:物理数学学号为号的同学由于严重感冒导致物理考试发挥失常,学号为号的同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将、两同学的成绩(对应于图中、两点)剔除后,用剩下的个同学的数据作分析,计算得到下列统计指标:数学学科平均分为,标准差为,物理学科的平均分为,标准差为,数学成绩与物理成绩的相关系数为,回归直线(如图所示)的方程为.若不剔除、两同学的数据,用全部的成绩作回归分析,设数学成绩与物理成绩的相关系数为,回归直线为,试分析与的大小关系,并在图中画出回归直线的大致位置.如果同学参加了这次物理考试,估计同学的物理分数(精确到个位).就这次考试而言,学号为号的同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平可按公式统一化成标准分再进行比较,其中为学科原始分,为学科平均分,为学科标准差).(1)(2)8.已知某校个学生的数学和物理成绩如下表:学生的编号数学物理若在本次考试中,规定数学在分以上(包括分)且物理在分以上(包括分)的学生为理科小能手.从这个学生中抽出个学生,设表示理科小能手的人数,求的分布列和数学期望.通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求与的回归方程.参考公式:,其中,.(1)(2)某调查机构为了了解某产品年产量(吨)对价格(千元/吨)和利润的影响,对近五年该产品的年产量和价格统计如下表:求关于的线性回归方程若每吨该产品的成本为千元,假设该产品可全部卖出,预测当年产量为多少时,年利润取到最大值?参考公式:,.(1)(2)10.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每棵种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差摄氏度发芽颗该农科所确定的研究方案是:先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.若选取的组数据恰好是连续天的数据(表示数据来自互不相邻的三天),求的分布列及期望.根据月日至日数据,求出发芽数关于温差的线性回归方程.由所求得线性回归方程得到的估计数据与剩下的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?附:参考公式:,.(1)11.在年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾均标有等级代码,为得到小龙虾等级代码数值与销售单价之间的关系,经统计得到如下数据:等级代码数值销售单价(元)已知销售单价与等级代码数值之间存在线性相关关系,求关于的线性回归方程(系数精(2)若莫斯科某个餐厅打算从上表的种等级的中国小龙虾中随机选种进行促销,记被选中的种等级代码数值在以下(不含)的数量为,求的分布列及数学期望.参考公式:对一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为:,.(1)(2)12.某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关):年份年份代号年利润(单位:亿元)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润.当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.2. 独立性检验知识回顾方法提升考点:独立性检验求解步骤(1)准确作出列联表;(2)统计假设成立;(3)计算;(4)将上一步计算得到的观测值与临界值比较,从而接收或拒绝假设.【思想方法与技巧】1、在列联表中,越小,说明两个分类变量之间关系越弱;越大,说明两个分类变量之间关系越强.2、(1)制作列联表时要注意表中相关数据的位置及对应,避免出错;(2)作的列联表的独立性检验时,要求表中的个数据都要大于,因此,在选取样本容量时一定要注意.高考链接13.某学生兴趣小组随机调查了某市天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)(2)(3)锻炼人次空气质量等级(优)(良)(轻度污染)(中度污染)分别估计该市一天的空气质量等级为,,,的概率.求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表).若某天的空气质量等级为或,则称这天“空气质量好”;若某天的空气质量等级为或,则称这天“空气质量不好”.根据所给数据,完成下面的列联表;并根据列联表,判断是否有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次人次空气质量好空气质量不好附:.第一种生产方式第二种生产方式14.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图:(1)(2)(3)根据茎叶图判断哪种生产方式的效率更高?并说明理由.求名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式根据()中的列联表,能否有的把握认为两种生产方式的效率有差异?附:,(1)(2)(3)15.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取个网箱,测量各箱水产品的产量(单位:),其频率直方图如下:频率组距箱产量旧养殖法频率组距箱产量新养殖法附:.设两种养殖方法的箱产量相互独立,记表示事件:旧养殖法的箱产量低于, 新养殖法的箱产量不低于,估计的概率.填写下面列联表,并根据列联表判断是否有的把握认为箱产量与养殖方法有关.箱产量箱产量旧养殖法新养殖法根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到).方法应用(1)(2)(3)16.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区名患者的相关信息,得到如下表格:潜伏期(单位:天)人数求这名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表).该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过天为标准进行分层抽样,从上述名患者中抽取人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关.潜伏期天潜伏期天总计岁以上(含岁)岁以下总计附:,其中.以这名患者的潜伏期超过天的频率,代替该地区名患者潜伏期超过天发生的概率,每名患者的潜伏期是否超过天相互独立.为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过天的人数最有可能(即概率最大)是多少?17.为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取件产品进行质量检测,所有产品质量指标值均在以内,规定质量指标值大于的产品为优质品,质量指标值在的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.(1)(2)(3)频率组距质量指标值质量指标值频数合计请分别估计新、旧设备所生产的产品的优质品率.优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有的把握认为“产品质量高与新设备有关”.非优质品优质品合计新设备产品旧设备产品合计附:,其中.用频率代替概率,从新设备所生产的产品中随机抽取件产品,其中优质品数为件,求的分布列及数学期望.18.冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便,石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜,从石墨分离石墨烯的一(1)(2)种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶,现在有材料,材料供选择,研究人员对附着在材料,材料上再结晶各做了次试验,得到如下等高条形图.材料试验结果材料试验结果石墨烯再结晶试验试验成功试验失败根据上面的等高条形图,填写如下列联表,判断是否有的把握认为试验成功与材料有关.材料材料合计成功不成功合计研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及胶层,②石墨烯层,③表面封装层,第一,二环节生产合格的概率均为,第三个环节生产合格的概率为,且各生产环节相互独立,已知生产吨的石墨烯发热膜的固定成本为万元,若生产不合格还需进行修复,第三个环节的修复费用为元,其余环节修复费用均为元.如何定价,才能实现每生产吨石墨烯发热膜获利可达万元以上的目标.附:参考公式:,其中.19.由团中央学校部、全国学联秘书处、中国青年报社共同举办的年度全国“最美中学生”寻访活动结果出炉啦,此项活动于年月启动,面向全国中学在校学生,通过投票方式寻访一批在热爱祖国、勤奋学习、热心助人、见义勇为等方面表现突出、自觉树立和践行社会主义核心价值观的“最美中学生”.现随机抽取了名学生的票数,绘成如图所示的茎叶图,若规定票数在票以上(包括票)定义为风华组.票数在票以下(不包括票)的学生定义为青春组.(1)(2)(3)在这名学生中,青春组学生中有男生人,风华组学生中有女生人,试问有没有的把握认为票数分在青春组或风华组与性别有关.如果用分层抽样的方法从青春组和风华组中抽取人,再从这人中随机抽取人,那么至少有人在青春组的概率是多少?用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取人,用表示所选人中青春组的人数,试写出的分布列,并求出的数学期望.附:;其中,独立性检验临界表:(1)(2)(3)20.为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有家企事业单位,家个体经营户,普查情况如下表所示:普查对象类型顺利不顺利合计企事业单位个体经营户合计写出选择个国家综合试点地区采用的抽样方法.根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.以频率作为概率,某普查小组从该小区随机选择家企事业单位,家个体经营户作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:.(1)(2)(3)21.黄冈市有很多名优土特产,黄冈市的蕲春县就有闻名于世的“蕲春四宝”(蕲竹、蕲艾、蕲蛇、蕲龟),很多人慕名而来旅游,通过随机询问名不同性别的游客在购买“蕲春四宝”时是否在来蕲春县之前就知道“蕲春四宝”,得到如下列联表:男女总计事先知道“蕲春四宝”事先不知道“蕲春四宝”总计附:.写出列联表中各字母代表的数字.由以上列联表判断,能否在犯错误的概率不超过的前提下认为购买“蕲春四宝”和是否“事先知道’蕲春四宝’有关系”?从被询问的名事先知道“蕲春四宝”的顾客中随机选取名顾客,求抽到的女顾客人数的分布列及其数学期望.(1)22.在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调查了某地区的个捐款居民每月平均的经济收入.在捐款超过元的居民中,每月平均的经济收入没有达到元的有个,达到元的有个;在捐款不超过元的居民中,每月平均的经济收入没有达到元的有个.参考数据当时,无充分证据判定变量,有关联,可以认为两变量无关联;当时,有的把握判定变量,有关联;当时,有的把握判定变量,有关联;当时,有的把握判定变量,有关联.附:,其中.在下图表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否超过元和居民每月平均的经济收入是否达到元有关?每月平均经济收入达到元每月平均经济收入没有达到元合计捐款超过元 捐款不超过元(2)合计将上述调查所得到的频率视为概率.现在从该地区大量居民中,采用随机抽样方法每次抽取个居民,共抽取次,记被抽取的个居民中经济收入达到元的人数为,求和期望的值.(1)(2)23.2016年月日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在岁之间的人进行调查,某机构随机抽取了在之间的人进行调查,经统计“青少年”与“中老年”的人数之比为.根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”.关注不关注合计青少年中老年合计现从抽取的青少年中采取分层抽样的办法选取人进行问卷调查,在这人中再选取人进行面对面询问,记选取的人中关注“国际教育信息化大会”的人数为,求的分布列及数学期望.附:参考公式:,其中.临界值表:(1)(2)24.为了研究家用轿车在高速公路上的车速情况,交通部门对名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在名男性驾驶员中,平均车速超过的有人,不超过的有人.在名女性驾驶员中,平均车速超过的有人,不超过的有人.完成下面的列联表,并判断是否有的把握认为平均车速超过的人与性别有关.平均车速超过人数平均车速不超过人数合计男性驾驶员人数 女性驾驶员人数合计以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取辆,记这辆车中驾驶员为男性且车速超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.参考公式与数据:,其中,对服务满意对服务不满意合计对商品满意 对商品不满意合计(1)(2)25.近年来,我国电子商务蓬勃发展.年“”期间,某网购平台的销售业绩高达亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对服务的满意率为,其中对商品和服务都满意的交易为次.根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对服务满意之间有关系”?若将频率视为概率,某人在该网购平台上进行的次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.附:(其中为样本容量)26.万众瞩目的第届全国冬季运动运会(简称“十四冬”)于年月日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:。
回归分析与独立性检验综合训练回归分析: 热身练习1. 在画两个变量的散点图时,下面哪个叙述是正确的( )(A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上 2. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm; B.身高在145.83cm 以上; C.身高在145.83cm 以下; D.身高在145.83cm 左右.3. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A.模型1的相关指数2R 为0.98 B.模型2的相关指数2R 为0.80 C.模型3的相关指数2R 为0.50 D.模型4的相关指数2R 为0.254. 若有一组数据的总偏差平方和为100,相关指数为0.5,则期残差平方和为_______ 回归平方和为____________5.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090yx =+,下列判断正确的是() A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资为90 独立性检验: 热身练习1.下面是一个2×2列联表:则表中a 、b 处的值分别为( )A .94、96B .52、50C .52、60D .54、52 2.下列关于等高条形图的叙述正确的是( ).A .从等高条形图中可以精确地判断两个分类变量是否有关系B .从等高条形图中可以看出两个变量频数的相对大小C .从等高条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.关于分类变量x 与y 的随机变量K 2的观测值k ,下列说法正确的是( ).A .k 的值越大,“X 和Y 有关系”可信程度越小B .k 的值越小,“X 和Y 有关系”可信程度越小C .k 的值越接近于0,“X 和Y 无关”程度越小D .k 的值越大,“X 和Y 无关”程度越大 4.若由一个2×2列联表中的数据计算得k =4.013,那么在犯错误的概率不超过________的前提下认为两个变量之间有关系.5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到k =50×13×20-10×7223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性约为________.6.第16届亚运会于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招幕了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.(1)根据以上数据完成以下2×2列联表:喜爱运动 不喜爱运动 总计 男 10 16 女 614 总计30(2) 基础练习1.下列变量间的关系,不是函数关系的是( ) A .角度和它的余弦值 B .正方形的边长和面积C .正多边形的边数和顶点的角度之和D .人的年龄和身高2. “回归”一词是在研究子女的身高与父母的身高之间的遗传关系时,由高尔顿提出的.他的研究结果是子代的平均身高向中心回归.根据他提出的结论,在儿子的身高y 与父亲的身高x 的回归方程ˆya bx =+中,b ( )A .在(-1,0)内B .等于0C .在(0,1)内D .在[1,)+∞内 3.已知回归直线斜率的估计值为1.23,样本的中心点为(4,5),则回归直线方程为( )A .ˆ 1.234yx =+ B .ˆ 1.235y x =+ C .ˆ 1.230.08y x =+ D .ˆ0.08 1.23y x =+ 4.对于回归直线方程ˆ 4.67 2.85yx =+,当21x =时,y 的估计值为 5.一所大学图书馆有6台复印机供学生使用管理人员发现,每台机器的维修费用与其使用的时间有一定的关系,根据去年一年的记录,得到每周使用时间(单位:小时)与年维修费用(单位:元)的数据如下:时间 33 21 31 37 46 42 费用 16 14 25 29 38 34则使用时间与维修费用之间的相关系数为6.某种产品的广告支出与销售额(单位:百万元)之间有如下的对应关系x 2 4 5 6 8 y3040605070(1)假定x 与y 之间具有线性相关关系,求回归直线方程.(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?7.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:32.5435464.566.5⨯+⨯+⨯+⨯=) 8.下表为收集到的一组数据:(1)作出x 与y 的散点图,猜测(2)建立x 与y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报x =40时y 的值.综合练习:一、选择题1.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ) Ay ∧=1.23x +4 By ∧=1.23x+5 C y ∧=1.23x+0.08 D y ∧=0.08x+1.232.回归分析中,相关指数R 2的值越大,说明残差平方和( )A 越小B 越大C 可能大也可能小D 以上都不对3.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是()A 1l 与2l 一定平行B 1l 与2l 相交于点),(y xC 1l 与2l 重合D 无法判断1l 和2l 是否相交 4.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问题中,y 的预报最大取值是10,则x 的最大取值不能超过( )A 16B 17C 15D 12二、填空题5.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是____________6.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度。
回归分析与独立性检验
(一)变量间的相关关系、回归分析的基本思想及初步运用
一、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系. 二、散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图. 三、回归分析:对具有相关关系的两个变量进行统计分析的方法叫回归分析. 1、回归直线方程
设所求的直线方程为y b x a ∧
=+,其中1
2
1
()()
,()
n
i i i n
i i x x y y b a y b x x x ==--==--∑
∑
,1
1
11,,n
n
i i i i x x y y n
n
===
=
∑
∑
(,)
x y 称为样本点的中心,回归直线过样本点的中心.回归方程的截距a 和斜率b 是用最小二乘法计算出来的. 2、相关系数:两个变量之间线性相关关系的强弱用相关系数r 来衡量.
相关系数:()()
n
i i x x y y r --=
∑
0r >,表示两个变量正相关;0r <,表示两个变量负相关;
r
的绝对值越接近1,表明两个变量的线性相关性越强.r 的绝对值越接近0,表明两个变量之间几乎不存在
线性相关关系.通常,r 的绝对值大于0.75时,表明两个变量的线性相关性很强. (二)独立性检验的基本思想及其初步运用
一、用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例:是否吸烟,是否患肺癌等 二、独立性检验的方法:列出两个分类变量的频数表(列联表),直观判断.一般步骤: (1)2*2列联表
(2)提出假设:设p 与q 没有关系 (3)根据列联表中的数据2
K 计算的值
2
2
()
()()()()()
n a d b c K
n a b c d a b c d a c b d -=
=+++++++其中为样本容量
(4)根据计算得到的随机变量2K 的观测值作出判断
如:2
4.232K =因为4.232介于临界值3.841和
5.024之间,2
( 3.841)p K ≥=0.05,所以两个分类变量
没有关系的概率是5%,即两个分类变量有关系的概率为95%.
【例1】【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得
16
1
1
9.9716
i i x x ==
=∑,0.212s =
=
≈,
18.439≈,16
1
()(8.5) 2.78i i x x i =--=-∑,
其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. (1)求(,)i x i (1
,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进
行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅
的相关系数()()
n
i i x x y y r --=
∑
0.09≈.
【反馈检测1】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:参考数据:7
1
9.32i i y ==∑,7
1
40.17i i i t y ==∑
0.55=
2.646≈.
参考公式:相关系数()()
n
i i t t y y r --=
∑
回归方程y a b t =+ 中斜率和截距的最小二乘估计公式分别为:1
2
1
()()
()
n
i i i n
i i t t y y b t t ==--=
-∑
∑
,=.
a y
b t -
【例2】全国人大常委会会议于 2015年12月27日通过了关于修改人口与计划生育法的决定, “全面二孩”从2016年元旦起开始实施,A市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民30人、女性市民70人进行调查, 得到以下的22
⨯列联表:
(1)根椐以上数据,能否有0
90的把握认为A市市民“支持全面二孩”与“性别”有关?
(2)现从持“支持”态度的市民中再按分层抽样的方法选出15名发放礼品,分别求所抽取的15人中男性市民和女性市民的人数;
(3)将上述调查所得到的频率视为概率,.现在从A市所有市民中,采用随机抽样的方法抽取3位市民进行长期跟踪调查, 记被抽取的3位市民中持“支持”态度人数为X.
①求X的分布列;②求X的数学期望()
E X和方差()
D X.
参考公式:
()
()()()()
2
2
n a d b c
K
a b a d a c b d
-
=
++++
,其中n a b c d
=+++
【反馈检测3】【2017课标II ,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收
获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3
)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01
)
附:
2
2
()
()()()()
n a d b c K a b c d a c b d -=
++++。