船舶结构与强度设计 第5章 应力集中
- 格式:pptx
- 大小:160.47 KB
- 文档页数:12
船舶结构力学习题答案【篇一:船舶结构力学各章思考题】>(摘自习题)(一)绪论1 什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧生稳定性后,会大大减低船体抵抗总弯曲的能力?3.何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。
4.什么叫做船体结构的计算图形,它是用什么原则来确定的?它与真实结构有什么差别?5.一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构构件,计算图形不是固定的、一成不变的?(二)单跨梁的弯曲理论1 梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?2 单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3 为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下梁梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4 梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么? 5 当梁的边界点上作用有集中外力p或几种外弯矩m时,一种处理是把该项外力放在梁端,写进边界条件中去。
另一种处理时把该项外力放在梁上,不写进边界条件。
在求解梁的弯曲要素时,两种处理方法的具体过程有哪些不同?最后结果有没有差别?6 梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方向及分布范围)有没有关系?为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出?(三)力法1 什么叫力法?如何建立力法方程式?2 什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程式的物理意义是什么?3 当连续梁两端为弹性固定时,如何按变形连续条件建立该处的方程?4 力法可否用来计算不可动节点的复杂钢架?如可以,应如何做?5 用力法计算某些支座有限位移的连续梁或平面刚架时应注意什么问题?6 刚架与板架的受力特征和变形特征有何区别?7 何谓梁的固定系数?它与梁端弹性固定端的柔性系数有何不同?(四)位移法1 试举例说明位移法的基本原理。
船舶结构设计与强度分析船舶作为一种非常重要的交通工具,在人类的生活和经济发展中发挥着巨大的作用。
而船舶的结构设计和强度分析则是保证船舶安全和性能的重要因素之一。
本文将从船舶的设计原则、结构设计和强度分析等方面为读者详细介绍船舶结构设计与强度分析的知识。
一、船舶设计原则船舶设计原则主要包括几个方面,如船舶的设计目的、功能和性能、流体力学、海洋环境、安全等。
在设计船舶时需要充分考虑这些因素,以保证船舶的安全和性能。
首先,船舶的设计目的、功能和性能是设计的重要基础。
不同类型的船舶有不同的设计目的和功能,因此其设计也不同。
例如,客船需要舒适和安全,货船则需要承载大量货物和保证运输效率。
另外,船舶的性能也是非常重要的,如航行速度、稳定性、操纵性等。
设计者需要考虑到这些要素才能满足用户的需求。
其次,流体力学在船舶设计中也是非常重要的。
设计者需要考虑到水动力学因素,如阻力、推进性能等。
另外,船舶的浮力和稳定性也是需要考虑的要素。
在设计船舶时需要确保其稳定性和纵倾角,以保证其在海上航行的安全性能。
除此之外,海洋环境对船舶的设计也有很大的影响。
海洋环境因素,如水深、气候、风浪等,都会影响船舶的性能。
因此在设计船舶时需要考虑到这些因素,充分考虑海洋环境的影响。
最后,安全也是船舶设计中必须考虑的因素。
在设计船舶时需要确保其安全性能,如抗波性、抗风性、耐受性等。
此外,船舶应当装备相应的安全设备以应对不时之需。
设计者需要充分考虑这些因素,确保设计出的船舶具有良好的安全性能,以保障人民生命和财产安全。
二、船舶结构设计船舶结构设计是指对船体的各个部分进行设计,满足其航行需要和根据需要进行改进。
包括以下几个方面:1. 船体结构设计船体结构设计主要分为船头、船尾和船体三个部分。
其中,船头主要包括船头上部和船头下部,它们的几何形状和在船体中的位置都要满足航行和稳定性的要求。
船尾主要包括船尾甲板、船尾边缘和船尾柱,其中船尾柱的设计对船的稳定性影响较大。
船舶与海洋工程结构物强度课件船舶与海洋工程结构物强度是海洋工程领域中非常重要的课程,涉及到船舶和海洋工程结构物的设计、建造和运行过程中所需的强度学知识。
这门课程通常包括以下内容:1. 结构力学基础,介绍结构力学的基本原理,如受力分析、应力、应变、材料力学等,为后续学习提供基础。
2. 船舶结构强度,讲解船舶结构的设计原理、材料选择、受力分析等,包括船体、甲板、舱壁等部位的强度计算和评估。
3. 海洋工程结构物强度,涵盖海洋平台、海底管道、海洋风电等结构物的强度设计与评估,考虑海洋环境、载荷、材料等因素。
4. 疲劳与断裂力学,介绍材料疲劳与断裂的基本理论,以及在船舶与海洋工程结构中的应用和影响。
5. 结构可靠性与安全评估,讲解结构可靠性理论,以及如何对船舶和海洋工程结构进行安全评估和风险分析。
这门课程的学习对于从事船舶与海洋工程结构设计、工程管理、海洋资源开发等领域的工程师和研究人员来说至关重要。
学生通过学习这门课程可以掌握船舶与海洋工程结构物的强度设计与评估方法,提高工程实践能力,为相关领域的发展和创新做出贡献。
在课件设计方面,通常会包括理论讲解、案例分析、实例演练等多种教学手段,以帮助学生深入理解课程内容。
课件可能包括文字、图片、表格、动画等多种形式,以便更好地呈现和解释相关的知识点和案例。
同时,课件设计也应该注重与工程实际的结合,引入真实的工程案例和实践经验,帮助学生将理论知识应用到实际工程中去。
总的来说,船舶与海洋工程结构物强度课件应该全面系统地介绍相关的理论知识和实际应用,帮助学生掌握强度设计与评估的基本原理和方法,培养工程实践能力,促进相关领域的发展与创新。
船舶结构设计中的疲劳强度分析一、引言随着人民生活水平的不断提高,海洋运输成为国际贸易中不可或缺的一部分,船舶结构的安全性和可靠性越来越受到重视。
而疲劳强度分析技术在船舶结构设计中具有重要的作用。
二、疲劳强度分析概述疲劳强度是指物体在交替应力作用下产生损伤的能力,通常用承受交替应力循环以致导致断裂所需的循环次数来表示。
而疲劳强度分析是通过计算某一结构在规定的载荷条件下的循环次数,确定该结构的疲劳寿命和疲劳强度,从而保证船舶结构的安全性和可靠性。
三、疲劳强度分析技术1. 疲劳载荷谱分析疲劳载荷谱分析是指对船舶在实际使用中所受到的载荷进行统计和分析,确定疲劳载荷谱。
通过对载荷谱分析,可以获得船舶在实际使用时所受到的疲劳载荷谱,为疲劳强度分析提供了重要的基础数据。
2. 有限元疲劳强度分析有限元疲劳强度分析是指采用有限元方法对船舶结构模型进行建模和分析,计算其在实际载荷条件下的疲劳强度。
该方法可以模拟船舶结构的实际使用情况,准确地计算疲劳强度,为船舶结构的设计提供科学依据。
3. 应力集中系数法疲劳强度分析应力集中系数法疲劳强度分析是指通过计算结构中应力集中系数,来评估结构在疲劳载荷下的疲劳性能。
该方法简单易行,适用于设计初期的疲劳强度评估。
4. 频域方法疲劳强度分析频域方法疲劳强度分析是指通过对结构的振动信号进行频域分析,计算出其疲劳强度。
该方法能够准确地计算某一结构的疲劳寿命和疲劳强度,但需要大量的数据处理,复杂度较高。
四、结构材料的疲劳特性船舶结构材料的疲劳特性是指材料在交替应力作用下的损伤特性。
不同种类的结构材料具有不同的疲劳特性。
一般来说,疲劳寿命越长的材料可以承受更多的循环次数,对于船舶结构的设计来说,需要选择具有较长疲劳寿命的材料,以确保结构的安全性和可靠性。
五、结论疲劳强度分析技术在船舶结构设计中具有重要的作用,可以评估船舶在疲劳载荷下的性能,为船舶结构的安全性和可靠性提供保障。
在选择结构材料时,需要考虑其疲劳特性,选择具有较长疲劳寿命的材料。
第四章应力集中模块一、应力集中及应力集中系数在船体构造中,构件的中断常常是不行防止的。
中断构件在其剖面形状与尺寸突变处的应力,在局部范围内会产生急剧增大的现象,这种现象称为应力集中。
因为船体在波涛上的总纵曲折拥有交弯的特征,应力集中又拥有三向应力特征,严重的应力集中更易于惹起局部裂纹和促使裂纹的逐渐扩展。
第二次世界大战中和大战后,因为构造张口惹起应力集中从而产生裂痕致使船体折断的事故占整个船体构造海损事故总数中的极大多数。
所以,在第二次世界大战后,对于船体构造的应力集中问题,曾惹起了造船界的广泛重视,展开了大批的研究工作。
此刻,对这个问题已经有了比较清楚地认识。
因为应力集中是致使构造破坏的一个重要原由,构造设计工作者在设计中一定一直注意这个问题。
再进一步对船体构造中比较突出的几个应力集中问题及该地区的构造设计作一些介绍。
往常,用应力集中系数来表示应力集中的程度。
应力集中区的最大应力m ax 或m ax 分别与所选基准应务0 或0 之比值,即k max 或k max(1)00称为应力集中系数。
基准应力不一样,应力集中系数也不一样。
所以,给定应力集中系数时,应指明基准应力的取法。
中断构件的应力变化规律以及应力集中系数的大小很大程度上决定于这些构件的形状。
当前,已经能够确立各样形状的中断构件的应力集中系数。
二、张口的应力集中及降低角隅处应力集中的举措在大型船舶上,强力甲板上的货舱口、机舱口等大张口,都严重地破坏了船体构造的连续性。
当船舶总纵曲折时,在甲板开吵嘴隅外的应力梯度急剧高升,惹起严重的应力集中,造成船体构造的单薄环节。
对于舱吵嘴隅处应力集中确实定,致使去除方角而采纳圆弧形角隅,并在角隅处采纳加复板或厚板进行增强,同时要采纳IV级或V 级的资料。
1.张口的应力集中对于孔边的应力集中,可用拥有小椭圆开孔的无穷宽板受位抻的状况来说明(见下列图)。
应用弹性理论可求得A、B 两点的应力分别为:aA(12 )(2)pB式中为无穷远处的拉伸应力;b2/ a为椭圆孔在 A 点的曲率半径;2a 与 2b分别为垂直及平行于拉伸方向的椭圆主轴,负号代表压应力。
1、结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和(或)载荷效应,并且在偶然事件发生时及发生后,仍能保持必须的整体稳定性。
此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。
2、船体强度计算包括:(1)确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷(2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。
响应(3)确定合适的强度标准,并检验强度条件。
衡准(结构的安全性衡准都普遍采用确定性的许用应力法)3、通常将船体强度分为总强度和局部强度来研究。
4、结构的安全性是属于概率性的。
5、把船体当做一根漂浮的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏的能力,通常成为总强度。
总强度就是研究船体梁纵弯曲问题。
从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。
6、作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷、局部性载荷。
按载荷随时间变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。
7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。
局部性载荷是指引起局部结构、构件变形或破坏的载荷。
冲击载荷,是指在非常短的时间内突然作用的载荷,例如砰击。
8、结构设计的基本任务是:选择合适的结构材料和结构型式,决定全部构件的尺寸和连接方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。
9、船体结构设计,一般随全船设计过程分为三个阶段,即初步设计、详细设计和生产设计。
10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。
11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。
但是,减小结构尺寸、降低结构重量,往往会增加建造工作量,从而增加制造成本同时还会引起维护保养费用的增加。
船舶结构强度直接计算分析中应力的选取摘要:船舶结构强度进行计算的过程中如何选择更加适合的应力一直以来都是十分重要的问题,文章分析了计算过程中常见的应力选取情况。
1、前言船舶进行结构强度计算的过程中应力从不同的角度可以分别分为中面应力表面应力,和节点应力单元节心应力两个方面,文章分析了如何选择应力。
2、中面应力与表面应力2.1分析船体是由许多构件组成的复杂结构,每一构件各自承担着一定的作用,其受力和变形极其复杂。
但它们具有的共同特点是,在承受外部载荷后,将顺序地传递所受到的力,并发生相应的变形。
构件在受力和传力的过程中会受到多种作用,产生多种应力。
在传统的船体结构强度分析方法中,对于纵向强力构件,习惯上把应力人为地区分为4种,即总纵弯曲应力(1)、板架弯曲应力(2)、由纵骨弯曲引起的应力(3)和由板格局部弯曲引起的应力(4),根据各种构件在传递载荷过程中所产生的应力种类和数目,用合成应力来校核其总纵强度。
这种方法是近似的和不合理的[3]。
用有限元方法对船体结构进行计算分析时,无所谓总强度、横强度和局部强度之分,而且,只要网格足够细,上述纵向构件的4种弯曲应力是一起算出的,消除了上述对各种应力的合成过程中的近似性和不合理性,因此比常规的方法更有效和可靠。
原则上说,用线弹性计算理论和基于屈服强度的强度准则对承受面外压力的板进行强度校核时,应采用板的上下表面应力进行校核,因为板的局部弯曲使得板的上(或下)表面的应力较其中面应力有所增加。
但是,由于下面的原因,我们认为取板单元的中面应力作为工作应力是合理的:1)受到骨架支持的板格,只要骨架有足够的刚度而不失稳,板格表面小的局部屈服并不会引起其承载力的明显减小和正常使用;2)根据3种常规船型结构强度直接计算分析指南中规定的建模准则,有限元网格沿横向按纵骨间距或类似的间距划分,纵向按肋骨间距或类似的间距划分,而板壳单元采用线性位移模式的4节点四边形单元或3节点三角形单元,也就是说按照这样的网格模型,由板的局部弯曲引起的弯曲应力是算不出来的;3)正常载荷作用下,由板的局部弯曲引起的应力与板的薄膜应力相比并不大。
第五章船舶推进装置第五章船舶推进装置第⼀节船舶推进装置的传动⽅式船舶推进装置按传递到螺旋桨功率⽅式不同可分为以下⼏种。
⼀、直接传动直接传动是主机动⼒直接通过轴系传给螺旋桨的传动⽅式。
在这种传动⽅式中,主机和螺旋桨之间除了传动轴系外,没有减速和离合设备,运转中螺旋桨和主机始终具有相同的转向和转速。
它的主要优点是:(1)结构简单,维护管理⽅便。
只要安装时定位正确,平时管理中注意润滑冷却,⼀般不会出现⼤问题。
(2)经济性好,传动损失少,传动效率⾼。
主机多为耗油率低的⼤型低速柴油机。
螺旋桨转速较低,推进效率较⾼。
(3)⼯作可靠,寿命长。
因此普遍应⽤于⼤、中功率的民⽤船上。
其缺点是:整个动⼒装置的重量尺⼨⼤,要求主机有可反转性能,⾮设计⼯况下运转时经济性差,船舶微速航⾏速度受到主机最低稳定转速的限制。
⼆、间接传动间接传动是主机和螺旋桨之间的动⼒传递除经过轴系外,还经过某些特设的中间环节(离合器、减速器等)的⼀种传动⽅式。
根据中间传动设备的不同,⼜可分为只带齿轮减速器;只带滑差离合器和同时具有齿轮减速器和离合器三种。
它的主要优点是:(1)主机转速可以不受螺旋桨要求低转速的限制。
只要适当选择减速⽐,就可使主机的转速适应螺旋桨的转速要求。
(2)轴系布置⽐较⾃由。
主机曲轴和螺旋桨轴可以同⼼布置也可以不同⼼布置,以改善螺旋桨的⼯作条件。
(3)在带有倒顺车离合器的装置中,主机不⽤换向,使主机结构简单,⼯作可靠,管理⽅便,机动性提⾼。
(4)有利于多机并车运⾏及设置轴带发电机。
间接传动的主要缺点是轴系结构复杂,传动效率较低。
这种传动⽅式多⽤于中⼩型船舶以及以⼤功率中速柴油机、汽轮机和燃⽓轮机为主机的⼤型船舶。
近年来由于动⼒装置节能的需要,提⾼螺旋桨的推进效率越来越被⼈们重视,⽽采⽤⼤直径低转速螺旋桨是有效途径。
在70年代初,低速柴油机利⽤直接传动⽅式带动的螺旋桨转速多在100r/min以上,中速机通过减速箱减速⼀般也不低于90r/min。
5.1.1 船舶建造规范的产生、发展和作用18世纪40年代以前,所有的船舶都凭经验建造,也经历了带有巨大损失的尝试。
后来,通过对建造实绩和航行经验的总结与提高,逐渐形成了造船所应遵循的规范。
规定建造规范的初步措施是俄罗斯政治家——彼得大帝作出的,他于1723年颁布了“关于按照新的船样建造河船”的条例。
在此条例中规定了船体的基本构件。
随着产业革命,贸易也发达起来,船舶建造愈来愈多,轮船保险商感到各船舶的吨位、建造日期、建造材料及船舶所有人等资料有集中的必要。
于是1760年成立了世界上第一个船级机构——英国劳氏船级协会。
以后,各航运事业发达的国家都相继成立了船舶协会。
起初,船级协会的主要工作是制订船舶登记册,载有关于入级船舶的船体和轮机状况。
直到1835年才出现第一本船级协会颁布的《建造规范》。
该规范系英国劳氏船级协会出版,适用于一百七十英尺长、一百总吨左右的木船,结构尺寸按吨位数字决定。
自那以后,随着造船材料、构件连接方式及船体强度理论的发展,建造规范也经历着不断发展(例如,1855年、1888年相继出现了《铁船规范》、《钢船规范》)和逐步完善的漫长过程。
目前,世界上船级社很多,其中比较主要的有以下几个:中国船检局(中国船级社)(CCS)美国船检局(ABS)英国劳氏船级社(LR)德国劳氏船级社(GL)日本海事协会(NK)法国船级社(BV)挪威船级社(DNV)意大利船级社(RI.N.A)俄罗斯船舶登记局(RS)船级社规范监督船的建造,并允许船舶正式“入级”,给它们所登记的船办各种国际协定所要求的证书;此外,还对使用中的船舶作定期检查,以确定这些船是否仍保持在“级”内。
各主要船级社在世界各地都有办事处,几乎在各港口都能找到它的代表。
建造规范也为航运、造船、相关的制造业和保险业服务。
经过“入级”登记的船,符合公认的健全的建造标准,这就等于告诉运货人说,他将他的货物交给已经入级的船承运时,他并没有冒险脱离实际的风险;同时,保险公司有被请求给船保险时,船的入级有助于保险公司判断隐含着的危险性质。
第一章:绪论1由于船舶经常在航行状态下工作,它所受到的外力是相当复杂的。
这些外力包括船的各种载重(静载荷)、水压力、冲击力、以及运动所产生的惯性力(动载荷)等。
为了保证船舶在各种受力下都能正常工作,船舶具有一定的强度。
所谓具有一定的强度是指船体结构在正常使用的过程中和一定的年限内具有不破坏或不发生过大变形的能力。
2船体强度包括中拱状态、总纵强度、局部强度、扭转强度问题、应力集中问题、低周期疲劳。
3把船舶整体当做空心薄壁梁计算出来的强度就成为船体的总纵强度。
局部强度是指船体的横向构件(如横梁、肋骨、及肋板等)一集船体的局部构建(如船底板、底纵衍等)在局部载荷作用下的强度。
4船体强度所研究的问题通常包括外力,结构在外力作用下的响应,及内力与变形,以及许用应力的确定等一系列问题。
船舶结构力学只研究船体结构的静力响应,及内力与变形,以及受压结构的稳定性问题,因此,船舶结构力学的首要任务是阐明结构力学的基本原理与方法,即阐明经典的方法、位移法及能量原理。
5船舶设计与制造是一个综合性很强的行业。
学习本课程不要仅仅满足于会计算船体结构中一些典型构件(如连续梁、钢架、板架、板)还应学会解决一般工程结构的计算问题。
6船体结构是由板和骨架等构件组成的空间复杂结构,在进行结构计算之前需要对实际的船体结构加以简化。
简化后的结构图形称为实际结构的理想化图形或计算图形(又称计算模型或力学模型等)7结构的计算图形是根据实际结构的受力特征,构建之间的相互影响,计算精度的要求以及所采用的计算方法,计算工具等因素确定的。
因此,对于同一个实际结构,基于不同的考虑就会得出不同的计算图形,对于同一个实际结构,其计算图形不是唯一的,一成不变的。
8首先是船体结构中的板,板是船体的纵、横骨架相连接的,且通常被纵、横骨架划分成许多矩形的板格。
9其次是船体结构中的骨架,船体结构中的骨架无外乎是横向构件—横梁、肋骨、肋板和纵向构件—纵桁、纵骨等,它们大都是细长的型钢或组合型材,故称为“杆件”或简称为“杆”。
《船舶强度与结构设计》习题集第一章船体外载荷模块1、空船在重量曲线可用抛物线和矩形之和表示,即把空船重量的一半作为均匀分布,另一半作为二次抛物线分布.如下图所示 .试求证距船中x 处单位长度的重量为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2175.05.02)(l x i w x ω (kN/m)式中W ——空船重量,kN;l ——船长的一半,m.2、某长方形货驳和10m ,均匀装载正浮于静水中。
若认为货驳自身质量沿船长均匀分布,此时在货驳中央加10t 集中装载荷。
试画出其载荷、剪力和弯矩曲线,并求出最大剪力和最大弯矩。
3、长方形浮码头,长20m 、宽5m 、深3m,空载时吃 水1m (淡水)。
当中部8m 范围内承受布载荷时,吃水增加到2m 。
假定船体质量沿船长均匀分布。
试作出该载荷条件下的浮力曲线、载荷曲线、静水剪力和弯矩曲线,并求出最大剪力与最大弯矩值。
4、某箱形船,长100m 、宽18m ,在淡水中正浮时吃水为5m 。
假定船体质量沿船长均匀分布。
将一个150t 的载荷加在船中后50m 处的一点上,试画出其载荷、剪力和弯矩曲线,并计算此时船中的变矩值。
5、水线面形状如下图所示的一直壁式船,静置于L z h y π2cos 2=的余弦波上,试计算波谷在船中时的最大静波浪弯矩。
6、若将题1.3的船静置于波高h=0.5m 的余弦波上,试求最大静波浪弯矩。
第二章总纵强度模块1、某型深3.5m 的横骨架式船舶,第一次近似计算船中剖面要素时,参考轴选在基线上1.5m 处,并得到以下各数值(对半剖面):(1)使船底板在第二次计算时的折减系数不小于0.5(肋距为500mm ,每四档肋距设一实肋板),该船底板的最小厚度至少应为多少?(2)剖面上甲板宽度为2m ,舱口旁的甲板厚度为5mm ,舷侧板厚度为6mm 。
若该剖面受到1600kN 剪力的作用,求甲板距中心线4m 处和舷侧板在中和轴处的剪应力。
船舶结构与强度设计第5章应力集中应力集中是指应力在结构中的一些特定区域或位置较大,远远超过了结构中其他部位的应力水平。
应力集中可能导致结构的破坏或失效,因此在船舶结构的设计中需要对应力集中进行合理的分析和处理。
应力集中的原因主要有以下几点:1.几何形状:如悬臂结构、重点转移处、缺陷等。
2.荷载:如集中载荷、可变载荷、动载荷等。
3.连接方式:如焊缝、铆接、螺栓连接等。
4.材料性能:如材料硬度不均匀、材料断裂韧性不足等。
在船舶结构的设计中,需要对应力集中进行充分的分析和评估。
首先需要确定应力集中的位置和程度,可以使用应力计算公式或有限元分析方法。
然后,根据应力集中的程度以及结构的设计要求,选择合适的处理方式。
常见的应力集中处理方式包括:1.加强结构的几何形状:如在应力集中处增加圆角,减小应力集中的效果。
2.增加材料的厚度或宽度:通过增加结构的截面面积来分散应力,减小应力集中的效果。
3.使用合适的连接方式:选择适当的焊接、铆接或螺栓连接方式,使其在应力集中处的承载能力得到提高。
4.使用合适的材料:选择强度高、韧性好的材料,使其在应力集中处具有较好的抗破坏能力。
除了以上常见的处理方式外,还可以根据具体情况采取一些特殊的处理措施,如增加支撑或剪切刚度、采用特殊材料或涂层等。
在船舶结构的设计过程中,应力集中的分析和处理是一个重要的环节。
合理的应力集中处理可以有效地提高结构的安全性和可靠性,降低结构的失效风险。
因此,设计人员需要具备扎实的理论知识和实践经验,以便对应力集中进行准确的分析和处理。
同时,结构的制造和施工过程也需要严格控制,以保证应力集中处理的有效性和可靠性。