地球重力场讲解
- 格式:ppt
- 大小:9.61 MB
- 文档页数:31
《应用重力学》第二讲地球重力场一、重力(Gravity)重力 = 地球引力惯性离心力微弱,可忽略=吸引力FF GM E R 3惯性离心力Cm RC = m ⎤ 2r重力GG=F+C地球重力场:在地球内部及其附近存在重力作用的空间。
④重力场强度:单位质量的物体在重力场中所受的重力 ( =G/m )④重力加速度g=G/m④重力加速度在数值上(包括方向)等于单位质量所受的重力,也就是等于重力场强度。
重力加速度重力重力场强度④重力勘探所提的重力都是指重力加速度或重力场强度。
重力(重力加速度)单位④在CGS单位制(克、厘米、秒):“cm/s2 ”,“伽”或“Gal”1 cm/s2 = 1 Gal④在SI单位制(千克、米、秒):“m/s2”,“g.u.”1 m/s2 = 106 g.u.1 Gal = 1 cm/s21 g.u. = 10-6m/s21 Gal = ? g.u.1 Gal (伽) = 1 cm/s2 = 10-2 m/s2 = 104 g.u.1 mGal (毫伽) = 10-5 m/s2 = 10 g.u.1 uGal (微伽) = 10-8 m/s2 = 10-2 g.u.重力的变化④包括随不同测点位置的空间变化以及同一测点的重力随时间的变化。
④空间上:地球形状、地形:引起约 6万 g.u. 的变化;地球自转:重力有 3.4万 g.u. 的变化;地下物质密度分布不均匀:能达到几千 g.u.变化人类的历史活动遗迹和建筑物等北赤南极道极在地球表面上,全球重力平均值约为9.8m/s2,赤道重力平均值为9.780m/s2,两极平均值为9.832 m/s2,从赤道到两极重力变化大约为0.05m/s2。
④时间上:潮汐变化:太阳、月亮等天体引力引起的重力的周期性变化,其大小可达 3 g.u.非潮汐变化:地球形状的变化和地下物质运动等引起的非周期性变化,其变化大小一般不超过 1 g.u.④海水每天有两次涨落运动,其中早晨出现的潮涨称为潮,晚上出现的潮落称为汐,总称潮汐。
地球重力场的定义地球重力场的定义地球重力场是指地球引力作用下,周围物体所受到的重力影响。
在地球表面上,重力加速度的大小约为9.8m/s²,这是由于地球质量、密度和大小等因素所决定的。
地球重力场不仅影响着人类生活,还对许多自然现象产生了重要影响。
一、地球引力的基本概念1.引力的定义引力是指物体之间由于它们之间存在质量而产生的相互吸引作用。
它是经典物理学中最基本、最普遍的力之一。
2.万有引力定律万有引力定律是牛顿在1687年发现的一条规律,它描述了两个物体之间相互作用的大小与距离平方成反比例关系。
即:F=G(m1m2/r²),其中F表示两个物体之间相互作用产生的引力,G为万有引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
二、地球重力场特点1.强度变化在不同位置处,由于地球半径和密度分布不同,地球表面上所受到的重力加速度大小也不同。
例如,在地球赤道上,重力加速度约为9.78m/s²,而在北极地区则约为9.83m/s²。
2.方向变化地球重力场的方向指向地心,因此在地球表面上垂直于水平面。
但在不同位置处,由于地球自转和引力作用的影响,重力方向也会发生微小的变化。
3.形状特征地球重力场呈现出类似于一个椭球形的形状,其中离地心较远处的引力作用较弱,而靠近地心处则较强。
三、地球重力场应用1.测量地球质量和密度通过测量不同位置处的重力加速度大小和方向等参数,可以推算出地球质量和密度分布情况。
这对于了解地球内部结构和演化历史等问题具有重要意义。
2.卫星导航系统卫星导航系统是利用卫星发射信号,在空中进行定位、导航和测量等操作的一种技术。
其中最基本的原理就是利用卫星所受到的重力影响来计算其位置信息。
3.天文学研究天文学研究中经常需要考虑重力作用的影响,例如行星运动、恒星演化等问题。
地球重力场的研究也为天文学研究提供了基础数据。
四、地球重力场研究方法1.重力仪测量法重力仪是一种专门用来测量地球重力场的仪器。
地球重力场的基本知识1.1 引力与离心力1、万有引力(1)引力的定义:指质量和质量之间的一种相互吸引力,简称为引力。
(2)引力的公式设有两质点M (a.b.c )和P (x.y.z ),质量分别为M 和m ,则两点之间的引力的大小与两点质量的乘积成正比,与两点之间距离的平方成反比,其方向在两点的联线上。
式中,f —万有引力常数,实验得知6.67×10-8;M 称为吸引点,P 为被吸引点,则引力的方向朝向M 点,在公式中有“-”号,表示引力的方向与向径(矢径)的方向相反。
可知,为沿X ,Y ,Z 轴的单位向量,模为:当P=1时,即P 为单位质点,则上式变为2M F f r=− 引力的三个方向余弦为:(3)引力的三个坐标轴分量(模乘以方向余弦):2、地球引力(1)假设:地球为圆球,物质按同一密度按同心层分布。
(2M:地球质量m:质点质量r:质点至地心距离(3)方向:指向地心3、地球上一点的离心力(1)定义:离心力是一个惯性力,是地球上一点以等角速度绕地球自转轴而产生的。
(2)公式:P= m ω2ρ,式中: ω—地球自转角速度;ρ—质点所在平行圈半径,随纬度不同而不同: ①在旋转轴上离心力=0;②离旋转轴越远,离心力越大;③在赤道上,离心力达到最大值,约为引力的1/200还小。
(3)方向:指向质点所在平行圈半径的外方向。
4、重力(1)定义:指相对于地球固定的单位质点所受的力。
因地球上的质点同时受到引力和离心力的共同影响。
(2)表达式:P F g+=其中,F :指地球及其它天体质量产生的引力;P :指相对于地球瞬时角速度的离心力,而自转角速度是随时间变化的,地球地极也不是固定不变的,故指相对于地球的平均角速度和平均地极的离心力。
(3)地极:过地球质心的自转轴与地面的交点,称为地极,是随时间变化的。
(4)对实测重力应加改正:(因重力测量是单位质点在测量时刻的真正重力,不是前面定义的重力,故应加改正)包括:①相对于地球运动的天体的影响;②由这些天体影响造成的地球形状变化的影响; ③大气的影响;④地球的自转角速度变化和极移的影响(极移:地极点在地球表面上的位置随时间变化的现象,称为地极移动,简称极移) (5)方向:重力的方向主要取决于地球引力的方向,总是朝向地球内部。
地球重力场的测量与重力加速度地球是我们所居住的家园,它无时无刻不在产生着重力场。
在日常生活中,我们往往无法感知到地球重力的存在,但它却是影响着万事万物的力量。
如何测量地球的重力场,以及重力加速度的确定,成为了科学家长期以来努力探索的课题。
一、重力场的概念和特征重力场是指由地球或其他天体引起的一种力场。
它是空间中以物体为中心,向四周辐射的力线所形成的场。
在地球上,重力场的强度与不同地点的海拔高度、地球构造有关。
我们都知道在极地地区,重力场比赤道地区稍强,这也间接说明了地球是一个非球形的椭球体。
二、重力场测量的方法为了测量地球的重力场,科学家们开展了各种方法的研究。
其中最早且最常用的方法是重力测量仪的使用。
重力测量仪可以通过测量重力加速度来推断重力场的分布情况。
科学家可以在地球表面的不同地点进行重力测量,绘制出重力场的地图,进一步研究地球内部的结构和性质。
近年来,随着技术的发展,人们还尝试使用卫星测量重力场,这种方法不受地面地形的限制,能够提供更为全面和精确的数据。
三、重力场测量的意义和应用测量地球重力场的目的不仅仅是为了满足科学探索的需求,更重要的是它的应用价值。
首先,地球重力场的测量有助于研究地球内部的特性,包括地壳、地幔和地核的结构和分布情况。
这对于地震的预测和地质资源的开发具有重要意义。
其次,重力场的测量还可以用于导航系统的改进和定位精度的提高,比如全球定位系统(GPS)就是基于重力场进行测量和计算的。
此外,重力场的测量还被广泛应用于航天和飞行器的轨道控制和姿态稳定。
四、重力加速度的确定重力加速度是指在地球上任意一点的万有引力产生的加速度,通常用小写字母"g"表示。
我们通常将重力加速度的平均值固定为9.8米每秒²。
然而,重力加速度在不同地点会有微小的差异,受地球形状、海拔高度和地下物质分布等因素的影响。
为了精确测量和确定重力加速度,科学家们进行了一系列的实验和观测。
地球重力场分类
地球的重力场可以分为两种主要分类:地球引力和地球重力加速度。
1. 地球引力:地球引力是指地球对任何物体施加的吸引力。
根据牛顿的普遍引力定律,地球引力的大小取决于两个物体的质量和它们之间的距离。
地球引力对任何物体都存在,无论其质量大小。
地球引力使物体向地球的中心靠拢,这也是我们通常所说的重力作用。
2. 地球重力加速度:地球重力加速度是指在地球表面上物体受到的重力加速度。
由于地球的质量和大小不均匀分布,地球重力加速度在不同地点有所不同。
在标准条件下,地球重力加速度的平均值约为9.8米/秒²。
这意味着在没有其他外力作用的情况下,自由下落的物体每秒钟会增加9.8米/秒的速度。
总结:地球的重力场可以分类为地球引力和地球重力加速度。
地球引力是地球对物体施加的吸引力,而地球重力加速度是在地球表面上物体受到的重力加速度。
地球重力场对物体有着普遍的影响,并且在不同地点具有不同的强度。
第四章 地球的正常重力场重力测量结果表明,地球在其表面上的重力分布是有规律的;总的说来,它由赤道向两极逐渐增加,由赤道上的978Gal 逐渐增加到两极的983Gal 。
在大地测量中,参数合适的旋转椭球是地面点坐标的参考架,当参考椭球选定后,大地水准面相对参考椭球面的起伏不超过110m ,起伏只占参考椭球赤道半径的2×10—6.因而自然想到,用质量等于地球总质量、以地球自转角速度绕其极半径旋转的旋转椭球来模拟真实地球,用这种地球模型(正常场地球模型),在其表面上和外部空间产生的重力场称为地球的正常重力场.当正常场地球模型在地球内部定位后,地球的重力场可以分解为两部分,一部分是正常场地球模型在该点产生的重力场,第二部分为真实地球与正常场地球模型的密度分布不同在该点产生的重力场;前者称为地球在该点产生的正常重力场,后者称为地球在该点产生的重力异常场。
重力测量结果表明,当正常场地球模型选择合适后,大地水准面上的重力异常场不超过150 mGal ,约占地球正常重力场的1×10—4~2×10—4。
地球的重力异常场虽只占地球重力场的万分之一二,但它却包含了有关地球内部结构和大地水准面形状的重要信息,因而研究地球重力异常场空间分布规律以及它们与地球内部结构和大地水准面形状之间的关系已成为重力测量的重要目的之一。
根据第三章的结果,本章给出正常场地球模型在旋转椭球面上产生的重力、正常重力位二次导数张量以及它在其外部空间产生的大地位球函数展开系数.4。
1 旋转椭球的几何参数引入笛卡尔直角坐标系123Ox x x ,坐标原点O 置于旋转椭球的中心,3Ox 沿其极半径,12Ox x 在其赤道平面内,则旋转椭球面的方程为其子午椭圆的方程为其中a 、c 分别为旋转椭球的赤道半径和极半径,它们是决定旋转椭球形状的两个几何参数.考虑到参考椭球的赤道半径a 和极半径c 相差很小,其扁率 约为3×10—3量级,因而参考椭球的子午椭圆与圆非常接近,为了讨论问题方便,对子午椭圆常引入下面几个几何参数:子午椭圆的扁率α、第一偏心率e、第二偏心率'e有下述关系ϕ为A点的地心纬度,A点子午椭圆的法线与如图4.1.1所示,OA与Ox轴之间的角度Ox轴之间的角度B称为A点的大地纬度,因为子午椭圆与圆非常接近,A点的地心纬度和大地纬度相差很小,其差约为子午椭圆扁率的量级。
重力场基本原理分解重力场是一种物质周围的物理现象,它是由物体的质量或能量引起的。
基本上,重力场是指物质物体周围的区域或空间中存在的一种力场,即重力。
重力场的基本原理涉及到质量和质点之间的相互作用。
根据万有引力定律,任何两个物体之间都存在着引力。
重力是一种吸引力,它的大小和距离之间的关系满足牛顿第二定律。
在地球上,重力场可以被描述为物体周围的一种力场。
物体在重力场中受到的力称为重力。
重力的大小与物体的质量成正比,与物体之间的距离的平方成反比。
这可以通过以下公式表示:F=G*(m1*m2)/r^2其中F是物体受到的重力的大小,m1和m2是两个物体的质量,r是它们之间的距离,G是一个常数,称为万有引力常数。
重力场的另一个基本原理是质点在重力场中的自由落体运动。
根据牛顿第二定律,物体的质量与物体所受的力之间存在着直接的关系。
因此,质点在重力场中的运动可以用以下方程来描述:F=m*a其中F是物体所受的力,m是物体的质量,a是物体的加速度。
在重力场中,物体的加速度被称为重力加速度,并且它的大小近似于9.8米/秒^2重力场还可以通过势能差来描述。
势能是物体在特定位置处具有的能量。
在重力场中,物体的势能与它的质量、高度和重力加速度之间存在一定的关系。
物体的势能可以通过以下公式计算:PE=m*g*h其中PE是物体的势能,m是物体的质量,g是重力加速度,h是物体的高度。
最后,重力场还受到牛顿第三定律的限制。
牛顿第三定律表明,任何两个物体之间的力是相互作用力,大小相等、方向相反的。
因此,一个物体在重力场中受到的重力与另一个物体对第一个物体施加的重力具有相同的大小和相反的方向。
总结起来,重力场的基本原理包括:重力的大小与物体之间的质量和距离有关;物体在重力场中的自由落体运动可以用牛顿第二定律来描述;重力场可以通过势能差来描述;重力场受到牛顿第三定律的限制。
这些原理一起构成了重力场的基本特征和行为。
重力场(earth's gravity field)受地球重力作用的空间范围。
研究地球的重力场,在大地测量学中可用以推求平均地球椭球的形状,建立国家大地网和国家水准网;在空间科学中用以确定空间飞行器受地球引力场作用的轨道改正;在固体地球物理学中用以研究地球内部构造及矿产资源分布。
由于地球内部质量分布的不规则性,致使地球重力场不是一个按简单规律变化的力场。
但从总的方面看,地球非常接近于一个旋转椭球,因此可将实际地球规则化,称为正常地球,同它相应的重力场称为正常重力场。
地球重力场的非规则部分称为异常重力场。
地球重力场中任一点的重力位与正常位之差值称为扰动位。
扰动位是由于地球的质量分布和形状与平均地球椭球有所不同而引起的。
与扰动位相应的有重力异常和扰动重力。
根据全球重力测量和卫星大地测量的结果,可以确定地球的总质量和地球的平均密度;配合天文测量结果,可以求出地球绕其自转轴的转动惯量;根据地面上大范围甚至全球范围的重力测量结果,可以研究地核-地幔边界的起伏,地幔地壳边界的起伏,地幔中的热对流,地壳均衡的状态等。
相对标高标高分相对标高和绝对标高。
相对标高表示建筑物各部分的高度。
相对标高是把室内首层地面高度定为相对标高的零点,用于建筑物施工图的标高标注。
在建筑施工图的总平面图说明上,一般都含有“本工程一层地面为工程相对标高±0.000米,绝对标高为36.55米”。
这里的一层地坪±0.000是相对于工程项目内的假定高度,但它比黄海平均海平面高36.55米。
当我们再施工到二层地面时,图纸上给出的二层地面建筑高度为+4.5米,那么我们说,二层地面比一层地面±0.000高出4.5米。
绝对标高绝对标高,我国是把黄海平均海平面定为绝对标高的零点,其他各地标高以此为基准。
任何一地点相对于黄海的平均海平面的高差,我们就称它为绝对标高。
这个标准在中国境内只在一个。
地球重力场地球重力场:在地球内部及其附近存在重力作用的空间。
重力场强度:单位质量的物体在重力场中所受的重力( =G/m )重力加速度g=G/m重力加速度在数值上(包括方向)等于单位质量所受的重力,也就是等于重力场强度。
重力加速度重力重力场强度重力勘探所提的重力都是指重力加速度或重力场强度。
重力(重力加速度)单位在CGS单位制(克、厘米、秒):“cm/s2”,“伽”或“Gal”1 cm/s2 = 1 Gal在SI单位制(千克、米、秒):“m/s2”,“g.u.”1 m/s2 = 106 g.u.重力的变化包括随不同测点位置的空间变化以及同一测点的重力随时间的变化。
空间上:9地球形状、地形:引起约6万g.u. 的变化;9地球自转:重力有3.4万g.u. 的变化;9地下物质密度分布不均匀:能达到几千g.u.变化9人类的历史活动遗迹和建筑物等时间上:9潮汐变化:太阳、月亮等天体引力引起的重力的周期性变化,其大小可达 3 g.u.9非潮汐变化:地球形状的变化和地下物质运动等引起的非周期性变化,其变化大小一般不超过 1 g.u.海水每天有两次涨落运动,其中早晨出现的潮涨称为潮,晚上出现的潮落称为汐,总称潮汐。
地球上海潮涨落主要是由月球还是太阳引起的?月球和太阳对地球的引力不但可以引起地球表面流体的潮汐(如海潮、大气潮),还能引起地球固体部分的周期性形变(固体潮)。
太阳的质量虽比月球的质量大得多,但月球同地球的距离比太阳同地球的距离近,月球的引潮力比太阳的引潮力大。
在日、月引力作用下,地球固体表面也会像海水一样产生周期性的涨落,这就是地球的潮汐现象,称为地球固体潮。
固体潮随时间和空间的变化,除了和地球、太阳、月亮三者之间相对位置的变化有关外,还和地球内部物质的物理性质有关。
因而,利用固体潮资料可以研究地壳内部物质的物理性质和各种物质的分布规律。
它在空间上的变化主要反映地壳和上地幔区域结构的变化。
它在时间上的变化可能与某些灾难性的地震有直接和间接的联系。