简单模糊推理
- 格式:ppt
- 大小:217.00 KB
- 文档页数:17
模糊控制——理论基础(4模糊推理)1、模糊语句将含有模糊概念的语法规则所构成的语句称为模糊语句。
根据其语义和构成的语法规则不同,可分为以下⼏种类型:(1)模糊陈述句:语句本⾝具有模糊性,⼜称为模糊命题。
如:“今天天⽓很热”。
(2)模糊判断句:是模糊逻辑中最基本的语句。
语句形式:“x是a”,记作(a),且a所表⽰的概念是模糊的。
如“张三是好学⽣”。
(3)模糊推理句:语句形式:若x是a,则x是b。
则为模糊推理语句。
如“今天是晴天,则今天暖和”。
2、模糊推理常⽤的有两种模糊条件推理语句:If A then B else C;If A AND B then C下⾯以第⼆种推理语句为例进⾏探讨,该语句可构成⼀个简单的模糊控制器,如图3-11所⽰。
其中A,B,C分别为论域U上的模糊集合,A为误差信号上的模糊⼦集,B为误差变化率上的模糊⼦集,C为控制器输出上的模糊⼦集。
常⽤的模糊推理⽅法有两种:Zadeh法和Mamdani法。
Mamdani推理法是模糊控制中普遍使⽤的⽅法,其本质是⼀种合成推理⽅法。
注意:求模糊关系时A×B扩展成列向量,由模糊关系求C1时,A1×B1扩展成⾏向量3、模糊关系⽅程①、模糊关系⽅程概念将模糊关系R看成⼀个模糊变换器。
当A为输⼊时,B为输出,如图3-12所⽰。
可分为两种情况讨论:(1)已知输⼊A和模糊关系R,求输出B,这是综合评判,即模糊变换问题。
(2)已知输⼊A和输出B,求模糊关系R,或已知模糊关系R和输出B,求输⼊A,这是模糊综合评判的逆问题,需要求解模糊关系⽅程。
②、模糊关系⽅程的解近似试探法是⽬前实际应⽤中较为常⽤的⽅法之⼀。
模糊推理基础模糊推理基础模糊推理是一种基于模糊逻辑的推理方法,它能够处理现实世界中存在的不确定性和模糊性。
在传统的推理方法中,命题的真假只有两种可能,即真或假,而在模糊推理中,命题的真假不再是二元的,而是一个连续的区间。
这种推理方法可以更好地适应人类思维的特点,能够处理不完全和不确定的信息,广泛应用于人工智能、控制系统、决策分析等领域。
模糊推理的基本原理是将模糊集合与模糊逻辑相结合。
模糊集合是一种介于传统集合和模糊逻辑之间的数学概念,它可以用来描述现实世界中模糊和不确定的概念。
在模糊集合中,每个元素都有一个隶属度,表示它属于该集合的程度。
这样,一个命题的真假可以表示为一个隶属度的区间。
模糊逻辑是一种扩展了传统逻辑的形式体系,它引入了模糊命题和模糊推理规则。
模糊命题是一种具有模糊隶属度的命题,它可以表示为“如果A,则B”,其中A和B都是模糊集合。
模糊推理规则是一种描述了命题之间关系的规则,它可以用来推导出新的命题。
在模糊推理中,推理过程包括模糊化、规则匹配、推理和去模糊化四个步骤。
首先,将输入的模糊命题转化为模糊集合,并进行隶属度的计算。
然后,根据事先定义好的模糊推理规则,对输入的命题进行匹配。
匹配成功后,根据推理规则和隶属度的计算,得到新的命题。
最后,将新的命题进行去模糊化处理,得到最终的推理结果。
模糊推理在实际应用中具有广泛的应用价值。
例如,在人工智能领域中,模糊推理可以用于处理自然语言的不确定性和模糊性,实现智能对话和问答系统。
在控制系统中,模糊推理可以用于处理传感器数据的噪声和不确定性,提高系统的鲁棒性和稳定性。
在决策分析中,模糊推理可以用于处理多指标决策问题,帮助决策者做出更准确和合理的决策。
然而,模糊推理也存在一些挑战和限制。
首先,模糊推理需要事先定义好的模糊集合和推理规则,这对于复杂问题来说可能是困难的。
其次,模糊推理需要大量的计算资源和时间,尤其是在处理大规模问题时。
此外,模糊推理对输入数据的准确性要求较高,如果输入数据存在误差或不完整性,可能会导致推理结果的不准确性。
人工智能模糊推理案例一、确定模糊变量在模糊推理中,我们需要确定模糊变量。
这些变量可以是输入变量、输出变量或中间变量。
模糊变量的值称为模糊数,它用一个模糊集合来表示。
例如,假设我们的输入变量是温度,那么我们可以将温度分为“高”、“中”、“低”三个模糊集合,分别用H、M、L表示。
二、建立模糊集合在确定了模糊变量之后,我们需要建立模糊集合。
模糊集合是对该变量的所有可能值的隶属度进行定义的集合。
隶属度是一个介于0和1之间的实数,表示该值属于该集合的程度。
例如,对于温度的三个模糊集合,我们可以定义如下隶属度:●H:当温度大于等于25度时,隶属度为1;当温度小于20度时,隶属度为0;介于20度和25度之间的温度隶属度为线性插值。
●M:当温度在20度到30度之间时,隶属度为1;其它情况隶属度为0。
●L:当温度小于等于15度时,隶属度为1;当温度大于等于20度时,隶属度为0;介于15度和20度之间的温度隶属度为线性插值。
三、确定模糊关系在建立了模糊集合之后,我们需要确定模糊关系。
模糊关系是一个二维的隶属度函数,表示输入变量和输出变量之间的模糊关系。
例如,假设我们的输出变量是风力,那么我们可以定义如下模糊关系:●当温度为H时,风力为强(用S表示)。
●当温度为M时,风力为中(用M表示)。
●当温度为L时,风力为弱(用W表示)。
四、进行模糊推理在确定了模糊变量、建立了模糊集合、确定了模糊关系之后,我们就可以进行模糊推理了。
模糊推理是按照一定的推理规则进行的,例如“IF A THEN B”。
在我们的例子中,我们可以使用如下推理规则:●IF 温度 = H THEN 风力 = S.●IF 温度 = M THEN 风力 = M.●IF 温度 = L THEN 风力 = W.五、反模糊化处理经过模糊推理后,我们得到了一个模糊输出值。
这个值是一个模糊集合,不能直接用于控制风力。
因此,我们需要进行反模糊化处理。
反模糊化处理是将模糊输出值转换为实际数值的过程。
模糊推理方法模糊推理方法是一种基于模糊逻辑的推理方法,它不同于传统的二值逻辑推理,而是考虑了事物之间的不确定性和模糊性。
在现实生活中,我们经常面对各种模糊的问题,例如天气预报、医学诊断、金融风险评估等等,这些问题都存在一定的模糊性和不确定性。
而模糊推理方法正是为了解决这些模糊问题而被提出的。
模糊推理方法的核心是模糊集合理论,它将模糊性作为一个数学概念进行描述。
在模糊集合理论中,每个元素都可以具有一定的隶属度,表示该元素属于该模糊集合的程度。
通过模糊集合的隶属度,我们可以对事物进行模糊分类和模糊推理。
模糊推理方法主要包括模糊逻辑推理和模糊数学推理两种形式。
模糊逻辑推理是通过对模糊命题的模糊逻辑运算,推导出模糊结论的过程。
模糊数学推理则是利用模糊数学的方法,通过模糊关系的运算,得出模糊结论的过程。
在模糊推理方法中,常用的推理规则包括模糊蕴涵规则、模糊合取规则、模糊析取规则等。
这些推理规则可以根据具体的问题和需求进行选择和组合,以实现对模糊问题的推理和决策。
模糊推理方法的应用非常广泛。
在天气预报中,由于气象数据的不确定性和模糊性,传统的二值逻辑推理往往无法准确预测天气情况。
而模糊推理方法可以通过对多个气象数据的模糊运算,得出更准确的天气预报结果。
在医学诊断中,由于病情的复杂性和多样性,传统的二值逻辑推理往往无法全面考虑各种可能性。
而模糊推理方法可以通过对病情特征的模糊分类和模糊推理,提供更全面的医学诊断结果。
除了天气预报和医学诊断,模糊推理方法还广泛应用于金融风险评估、交通流量预测、工程管理等领域。
在金融风险评估中,由于金融市场的不确定性和复杂性,传统的二值逻辑推理往往无法准确评估风险。
而模糊推理方法可以通过对各种金融指标的模糊运算,得出更准确的风险评估结果。
在交通流量预测中,由于交通数据的不确定性和随机性,传统的二值逻辑推理往往无法准确预测交通流量。
而模糊推理方法可以通过对多个交通数据的模糊运算,得出更准确的交通流量预测结果。
模糊推理公式模糊推理是一种非常有趣但也有点让人挠头的概念。
咱们先来说说啥是模糊推理。
比如说,你觉得“天气热”这个概念。
到底多少度算热呢?30 度?35 度?每个人的感受可能都不太一样。
这就是一种模糊性。
而模糊推理呢,就是在这种不那么清晰明确的情况下,尝试做出合理的判断和推测。
咱就拿个实际的例子来说吧。
假设学校要组织一次户外活动,老师需要根据天气情况来决定是否照常进行。
如果只是简单地规定温度超过 30 度就取消活动,这好像有点太绝对了。
因为可能 30 度的时候,有些同学觉得还能忍受,有些同学已经热得不行了。
这时候模糊推理就派上用场啦!老师可能会综合考虑多个因素,比如温度、湿度、风速,甚至同学们的身体状况。
温度高一点,但是湿度低、风速大,也许活动还能继续;要是温度高、湿度也大、风速又小,那可能就得慎重考虑了。
在模糊推理中,有一些常用的公式和方法。
比如说扎德推理法,它通过一系列的运算和规则,来处理那些模糊的信息。
咱再回到前面说的户外活动的例子。
老师可能会给温度、湿度、风速等等因素设定一个模糊的范围和权重。
比如说,温度在 25 到 30 度之间算“有点热”,30 到 35 度之间算“热”,超过 35 度算“非常热”。
湿度在 40%到 60%之间算“舒适”,低于 40%算“干燥”,高于 60%算“潮湿”。
然后根据这些模糊的定义和权重,来计算出一个综合的评估值,从而决定活动是否进行。
还有一种叫 Mamdani 推理法,也是处理模糊推理的一把好手。
它的原理和扎德推理法有点类似,但在具体的运算和规则上可能会有所不同。
想象一下,如果老师用了模糊推理的公式来做决定,同学们可能会觉得老师的决定更加贴心和合理。
不会因为一刀切的规定而感到不满或者失望。
其实啊,模糊推理不仅在学校里的这种小事上能发挥作用,在很多大的领域,比如工程控制、医疗诊断、经济预测等等,都有着广泛的应用。
比如说在医疗诊断中,医生判断一个病人的病情,可不只是看单一的指标。
几种典型的模糊推理方法根据模糊推理的定义可知,模糊推理的结论主要取决于模糊蕴含关系),(~Y X R 及模糊关系与模糊集合之间的合成运算法则。
对于确定的模糊推理系统,模糊蕴含关系),(~Y X R 一般是确定的,而合成运算法则并不唯一。
根据合成运算法则的不同,模糊推理方法又可分为Mamdani 推理法、Larsen 推理法、Zadeh 推理法等等。
一、Mamdani 模糊推理法Mamdani 模糊推理法是最常用的一种推理方法,其模糊蕴涵关系),(~Y X R M 定义简单,可以通过模糊集合A ~和B ~的笛卡尔积(取小)求得,即)()(),(~~~y x y x B A RMμμμΛ= (3.2.1) 例 3.2.1 已知模糊集合3211.04.01~x x x A ++=,33211.03.05.08.0~y y y y B +++=。
求模糊集合A ~和B ~之间的模糊蕴含关系),(~Y X R M 。
解:根据Mamdani 模糊蕴含关系的定义可知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯=1.01.01.01.01.03.04.04.01.03.05.08.0]1.03.05.08.0[1.04.01~~),(~B A Y X R MMamdani 将经典的极大—极小合成运算方法作为模糊关系与模糊集合的合成运算法则。
在此定义下,Mamdani 模糊推理过程易于进行图形解释。
下面通过几种具体情况来分析Mamdani 模糊推理过程。
(i) 具有单个前件的单一规则设*~A 和A ~论域X 上的模糊集合,B ~是论域Y 上的模糊集合,A ~和B ~间的模糊关系是),(~Y X R M ,有大前提(规则): if x is A ~ then y is B ~小前提(事实): x is *~A结论: y is ),(~~~**Y X R A B M =当)()(),(~~~y x y x B A RMμμμΛ=时,有 )()}()]()({[V )]}()([)({V )(~~~~Xx ~~~Xx ~***y y x x y x x y BB A AB A AB μωμμμμμμμΛ=ΛΛ=ΛΛ=∈∈ (3.2.2)其中)]()([V ~~Xx *x x AA μμωΛ=∈,称为A ~和*~A 的适配度。
几种典型的模糊推理方法根据模糊推理的定义可知,模糊推理的结论主要取决于模糊蕴含关系),(~Y X R 及模糊关系与模糊集合之间的合成运算法则。
对于确定的模糊推理系统,模糊蕴含关系),(~Y X R 一般是确定的,而合成运算法则并不唯一。
根据合成运算法则的不同,模糊推理方法又可分为Mamdani 推理法、Larsen 推理法、Zadeh 推理法等等。
一、Mamdani 模糊推理法Mamdani 模糊推理法是最常用的一种推理方法,其模糊蕴涵关系),(~Y X R M 定义简单,可以通过模糊集合A ~和B ~的笛卡尔积(取小)求得,即)()(),(~~~y x y x B A RMμμμΛ= (3.2.1)例 3.2.1 已知模糊集合3211.04.01~x x x A ++=,33211.03.05.08.0~y y y y B +++=。
求模糊集合A ~和B ~之间的模糊蕴含关系),(~Y X R M 。
解:根据Mamdani 模糊蕴含关系的定义可知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯=1.01.01.01.01.03.04.04.01.03.05.08.0]1.03.05.08.0[1.04.01~~),(~ B A Y X R MMamdani 将经典的极大—极小合成运算方法作为模糊关系与模糊集合的合成运算法则。
在此定义下,Mamdani 模糊推理过程易于进行图形解释。
下面通过几种具体情况来分析Mamdani 模糊推理过程。
(i) 具有单个前件的单一规则设*~A 和A ~论域X 上的模糊集合,B ~是论域Y 上的模糊集合,A ~和B ~间的模糊关系是),(~Y X R M ,有大前提(规则): if x is A ~then y is B ~小前提(事实): x is *~A结论: y is ),(~~~**Y X R A B M =当)()(),(~~~y x y x B A RMμμμΛ=时,有)()}()]()({[V )]}()([)({V )(~~~~Xx ~~~Xx ~***y y x x y x x y BB A AB A AB μωμμμμμμμΛ=ΛΛ=ΛΛ=∈∈ (3.2.2)其中)]()([V ~~Xx *x x AA μμωΛ=∈,称为A ~和*~A 的适配度。