分子间作用力与氢键
- 格式:pptx
- 大小:1.15 MB
- 文档页数:69
考点49 分子间作用力和氢键聚焦与凝萃1.掌握分子间作用力的本质及分子间作用力与化学键的区别;2.掌握影响分子间作用力的因素,了解分子间作用力对物质性质的影响;3.了解氢键及氢键对物质性质的影响。
解读与打通常规考点1.化学键分类化学键⎩⎪⎨⎪⎧离子键共价键⎩⎪⎨⎪⎧极性(共价)键:X —Y 非极性(共价)键:X —X 2.化学反应的本质反应物分子内化学键的断裂和生成物分子内化学键的形成。
3.分子间作用力(1)定义:把分子聚集在一起的作用力,又称范德华力。
(2)特点①分子间作用力比化学键弱得多;②影响物质的物理性质,如熔点、沸点、溶解度,而化学键影响物质的化学性质和物理性质;③存在于由共价键形成的多数共价化合物和绝大多数非金属单质及稀有气体之间,如CH 4、O 2、Ne 等。
(3)规律一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点越高。
例如:熔、沸点:HCl<HBr<HI ,I 2>Br 2>Cl 2>F 2,Rn >Xe >Kr >Ar >Ne >He 。
4.氢键(1)定义:分子间存在的一种比分子间作用力稍强的相互作用。
(2)形成条件:除H 外,形成氢键的原子通常是O 、F 、N 。
(3)存在:氢键存在广泛,如蛋白质分子、醇、羧酸分子、H 2O 、NH 3、HF 等分子之间。
分子间氢键会使物质的熔点和沸点升高。
特别提醒:(1)氢键不是化学键,是介于分子间作用力和化学键之间的一种作用力。
(2)氢键、分子间作用力的大小主要影响物质的物理性质,如熔点、沸点等。
隐性考点氢键对物质性质的影响(1)对物质熔沸点的影响①某些氢化物分子存在氢键,如H 2O 、NH 3,HF 等,会使同族氢化物沸点反常,如H 2O>H 2Te>H 2Se>H 2S 。
②当氢键存在于分子内时,它对物质性质的影响与分子间氢键对物质性质产生的影响是不同的。
分子间的三种力分子间的三种力是指分子之间相互作用的力,包括范德华力、离子键和氢键。
这些力在化学和生物学中起着重要的作用,影响着物质的性质和行为。
1. 范德华力范德华力是一种吸引力,它是由于分子之间电荷分布不均匀而产生的。
在一个分子中,电子围绕原子核运动,并形成一个电荷云。
这个电荷云并不总是均匀分布的,有时候会出现短暂的极性。
当两个非极性分子靠近时,它们之间会发生相互作用。
范德华力可以被分为两种类型:引力和斥力。
当两个非极性分子靠近时,它们的电荷云会发生重叠,形成一个共享区域。
这个共享区域导致了一个吸引力,在两个分子之间形成了一个临时偶极矩。
这种吸引力被称为范德华引力。
另一方面,当两个极性分子靠近时,它们之间会发生排斥作用。
这是因为它们的电荷云重叠,导致两个分子之间的斥力增加。
范德华力在物质的相变、溶解度、沸点和密度等方面起着重要作用。
它是液体和固体形成的基础,也是分子间相互作用的主要力量之一。
2. 离子键离子键是由正负电荷之间的吸引力形成的。
当一个或多个电子从一个原子转移到另一个原子时,它们会产生一个正离子和一个负离子。
这些离子通过静电吸引力相互吸引在一起,形成稳定的结构。
离子键通常发生在金属和非金属之间,因为金属倾向于失去电子而非金属倾向于获得电子。
这种电荷转移可以导致非金属原子带有负电荷,并形成负离子,而金属原子则带有正电荷,并形成正离子。
离子键是非常强大的化学键,因此具有高熔点和高沸点。
这也是为什么许多盐类物质在常温下呈固体状态的原因。
3. 氢键氢键是一种特殊类型的化学键,它是由于氢原子与较电负的原子(如氮、氧和氟)之间的相互作用而形成的。
在这种相互作用中,氢原子与一个带有部分负电荷的原子发生吸引力。
氢键通常发生在水分子、蛋白质和DNA等生物大分子中。
在水中,氧原子带有部分负电荷,而氢原子带有部分正电荷。
这导致了水分子之间的氢键形成,使得水具有高沸点、高表面张力和高溶解度等特性。
在蛋白质和DNA中,氢键起着稳定空间结构和保持功能活性的重要作用。
分子间内氢键作用力与分子间氢键作用力分子间内氢键作用力与分子间氢键作用力是化学中重要的概念。
它们是分子之间相互作用的一种形式,对于分子的稳定性和物理性质都具有重要的影响。
本文将从两种作用力的定义、基本特征、形成机制、应用等方面进行详细的解释和探讨。
一、分子间内氢键作用力1.定义:内氢键是指同一分子内的氢原子与其他原子间的氢键作用力。
2.基本特征:内氢键是一种分子内的相互作用,其特征包括:氢键通常由含有活性氢的官能基团所产生,如甲基羰基、羧基等;内氢键的键能很小,一般为1-3 kcal/mol;内氢键能够影响分子的构象、化学反应和物理性质。
3.形成机制:内氢键作用力的形成机制主要涉及到氢键中氢原子的偏移。
在某些分子中,由于原子的电负性产生分子内电荷分离,它们之间的差异会导致H-C、H-O、H-N之间的偏移,因此建立了内氢键。
4.应用:内氢键作用力是药物分子设计中需要考虑的因素之一。
例如,内氢键的存在可以增加分子的稳定性和药效,同时也有助于解释某些药物的药效和副作用。
二、分子间氢键作用力1.定义:分子间氢键是指不同分子之间,氢原子与非金属原子之间的氢键作用力。
2.基本特征:分子间氢键是分子间的相互作用,其特征包括:分子间氢键通常由含氢官能团的一种分子与其他原子含有氧、氮、氯等原子的另一种分子之间产生氢键;分子间氢键的键能相对较强,一般为5-10 kcal/mol;分子间氢键能够影响分子的物理和化学性质。
3.形成机制:分子间氢键的形成主要涉及到两个分子中的氢键原子之间的相互作用。
一般来说,氢键原子所在的分子通常是具有高电负性的分子,如氨、水、醇等;而另一种分子则具有较强的电正性原子或键合电子云的位置,如含氧化合物、含氮化合物等。
两者之间的相互作用导致氢键的形成。
4.应用:分子间氢键作用力在生物大分子和有机化合物的结构中具有重要的作用。
许多生物大分子,如DNA、蛋白质等,都是由分子间氢键所组成的稳定结构;同时,许多有机物,如醇、醛、酮等,也是通过分子间氢键增加其稳定性和改变其物理性质。
高中化学:分子间作用力和氢键知识点[知识详解]一.分子间作用力1.定义:分子间存在着将分子聚集在一起的作用力,称分子间作用力。
分子间作用力也叫范德华力.2.实质:一种电性的吸引力.3.影响因素:分子间作用力随着分子极性.相对分子质量的增大而增大.分子间作用力的大小对物质的熔点.沸点和溶解度都有影响.一般来说.对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越强,物质的熔沸点也越高.4.只存在于由共价键形成的多数化合物,绝大多数非金属单质分子和分子之间. 化学键是分子中原子和原子之间的一种强烈的作用力,它是决定物质化学性质的主要因素。
但对处于一定聚集状态的物质而言,单凭化学键,还不足以说明它的整体性质,分子和分子之间还存在较弱的作用力。
物质熔化或汽化要克服分子间的作用力,气体凝结成液体和固体也是靠这种作用力。
除此以外,分子间的作用力还是影响物质的汽化热、熔化热、溶解黏度等物理性质的主要因素。
分子间的作用力包括分子间作用力(俗称范德华力)和氢键(一种特殊的分子间作用力)。
分子间作用力约为十几至几十千焦,比化学键小得多。
分子间作用力包括三个部分:取向力、诱导力和色散力。
其中色散力随分子间的距离增大而急剧减小一般说来,组成和结构相似的物质,分子量越大,分子间距越大,分子间作用力减小,物质熔化或汽化所克服的分子间作用力减小,所以物质的溶沸点升高温度止200 150 100, 50 0 -50 -100 -150 -200熔温度尺200 150叫0 -50 -100 -150 -200熔叫相对分子质■筑卤化碳的熔.沸点与相对分子质量的关系化学键与分子间作用力比较化学键分子间作用力概念 相邻的原子间强烈的相互作用 物质分子间存在的微弱的相互作用能量 较大很弱性质影响主要影响物质的化学性质主要影响物质的物理性质.氢键一特殊的分子间作用力1.概念:氢键是指与非金属性很强的元素(主要指N 、O 、F )相结合的氢原子与另一个分子中非金属性极强的原子间所产生的引力而形成的.必须是含氢 化合物,否则就谈不上氢键。
必修2第一章第三节化学键第三课时【学习目的】1、掌握分子间作用力含义与氢键的判断2、强化离子键和共价键的知识【学习重点】分子间作用力、氢键的应用【学习难点】氢键的判断【新知学习】一、化学键:1、定义:使离子或原子相结合的作用力称为化学键。
2、分类:、、3、离子键和共价键的比较:4、化学反应的实质:旧键的和新键的。
二、分子间作用力①概念:分子之间存在着一种把分子叫做分子间作用力,又称。
②强弱:分子间作用力比化学键,它主要影响物质的、等物理性质,化学键属分子内作用力,主要影响物质的化学性质。
③规律:一般来说,对于组成和结构相似的物质,越大,分子间作用力,物质的熔点、沸点也越。
④存在:分子间作用力只存在于由分子组成的共价化合物、共价单质和稀有气体的分子之间。
在离子化合物、金属单质、金刚石、晶体硅、二氧化硅等物质中只有化学键,没有分子间作用力。
三、氢键①概念:像、、这样分子之间存在着一种比的相互作用,使它们只能在较高的温度下才能汽化,这种相互作用叫做氢键。
②对物质性质的影响:分子间形成的氢键会使物质的熔点和沸点,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,消耗更多的能量。
【注意】分子间作用力和氢键由于作用力较弱,都不属于化学键!四、知识整理1、离子键:使阴、阳离子结合成化合物的静电作用叫做离子键由离子键结合在一起的化合物叫离子化合物【离子键的存在范围】(1)、活泼金属与活泼非金属形成的化合物;(2)、活泼金属阳离子(或NH4+)与酸根离子之间;(3)、活泼金属阳离子与OH—之间;2、电子式:在元素符号周围用小黑点或小叉表示最外层电子数的式子叫电子式掌握NaCl/MgO/K2O/CaCl2/Na2O2/NH4Cl/NaOH 电子式的写法3、共价键:原子之间通过共用电子对所形成的相互作用,叫做共价键掌握NH3,CH4,CO2,N2,O2,HClO,H2O2电子式的写法4、极性键与非极性键同种非金属元素原子之间形成非极性共价键(非极性键,可存在于非金属单质和化合物中)不同种非金属元素原子之间形成极性共价键(极性键,只存在与化合物中)(1)、含有离子键的化合物一定是离子化合物(2)、含有共价键的化合物不一定是共价化合物注意离子化合物的形成过程与共价化合物的形成过程写法的不同。
关于分子间氢键和分子间作用力的探讨及水H 2O 氟化氢HF 氨NH 3沸点比较分子间作用力与氢键 :★分子间作用力: 分子间存在着将分子聚集在一起的作用力,这种作用力称为分子间作用力又称为范德华力①存在: 由分子构成的物质②大小: 比化学键弱得多③意义: 影响物质的熔沸点和溶解性等物理性质④影响因素: 一般情况下,相同类型的分子,相对分子量越大,分子间作用力越大,熔沸点越高历史根源:分子间力(包括色散力、诱导力、偶极力)早在1873年就已引起van der Waals 的注意并首先进行研究,所以,后人就把这种分子间力也称为范德华(van der Waals )力。
实践出真知:(请看下面的题)问题:干冰受热汽化转化为二氧化碳气体,而二氧化碳气体在加热条件下却不易被分解。
这是为什么?答:干冰受热转化为气体,只是克服能量较低的分子间作用力,而二氧化碳分解则需要克服能量较高的共价键,因此比较困难。
★氢键概念:分子中与氢原子形成共价键的非金属原子,如果该非金属原子(如F 、O 或N)吸引电子的能力很强,其原子半径又很小,则使氢原予几乎成为“裸露”的质子,带部分正电荷。
这样的分子之间,氢核与带部分负电荷的非金属原子相互吸引而产生的比分子间作用力稍强的作用力,称之为氢键。
形成条件: (F O N 三种元素)氢键的表示方法:氢键不是化学键,为了与化学键相区别。
用“…”来表示氢键. (X-H …Y )注意:①氢键切莫理解为化学键,是一种比分子间作用力稍强的静电引力。
如在水分子中,O-H 键的键能为462.8lkJ·mol 一1,而水分子间氢键的键能仅为18.8lkJ·mol 一1。
它比化学键弱得多,但比分子间作用力稍强。
②氢键只存在于固态、液态物质中,气态时无氢键★关于H 2O HF NH 3沸点的比较:结论为:H 2O 100℃ > HF 19℃ > NH 3 -31℃一个水分子可以和另外四个水分子形成氢键(两个氢和另外两个水分子中的氧,一个氧和另外两个水分子的氢),但HF 只能与另外两个分子形成氢键,而NH3的氢键比水的弱,所以H2O 熔沸点高。
分子间作用力范德华力与氢键范德华力是由于非极性分子中的电子云不均匀分布所产生的。
虽然分子是中性的,但在任何时刻都可能存在由于电子运动而导致的电子云的不均匀分布。
这种不均匀分布导致了瞬时偶极矩的产生,进而产生相互作用力。
范德华力一般都比较弱,但当大量分子紧密排列在一起时,它们的总和可以产生很大的影响,例如固体的结构和性质。
氢键是一种相对较强的分子间作用力,它只存在于包含氢原子和带有电负性较高的原子(如氧、氮、氟等)的分子之间。
氢键的形成需要两个条件:一是氢原子与电负性较高的原子之间的电子不对称分布,形成部分正电荷;二是电负性较高的原子与另一个分子中的电子云形成相互作用。
这种相互作用力很强,可以影响分子的结构和性质。
范德华力和氢键在化学和生物学中扮演着重要的角色。
在化学反应中,它们可以影响反应速率和平衡常数。
在分子团聚和相互吸引方面,它们可以影响物质的物理性质。
在生物分子的结构和功能中,它们可以影响分子的折叠和稳定性,并在生物大分子的相互作用和识别中起到关键作用。
在生物体内,范德华力和氢键对蛋白质的折叠和稳定性起到了至关重要的作用。
蛋白质是生物体内功能最为复杂和多样的大分子,其折叠结构决定了其功能。
范德华力和氢键可以通过长程作用和局域作用相互协同,使蛋白质在折叠过程中形成稳定的三维结构。
此外,范德华力和氢键还可以参与蛋白质与其他分子(如酶底物或配体)的结合,从而影响蛋白质的功能。
在药物设计和分子识别中,范德华力和氢键也被广泛应用。
药物分子与靶蛋白之间的相互作用通常涉及范德华力和/或氢键。
通过理解和优化范德华力和氢键的作用,可以设计更有效的药物分子和分子识别工具。
总之,范德华力和氢键是分子间作用力中重要的组成部分。
它们在化学、生物学和药物设计等领域都扮演着重要的角色。
理解和掌握这些作用力的特性和原理,对于理解分子结构、物性和功能具有重要意义。
分子间的作用力是范德华力和氢键
分子间的作用力是化学中非常重要的概念,其中范德华力和氢键是两种常见的分子间作用力。
首先,让我们来谈谈范德华力。
范德华力是一种由分子间的瞬时诱导极化引起的吸引力,它是由于分子内部电子的运动而产生的瞬时偶极矩而产生的。
这种作用力是所有分子之间都存在的,即使是非极性分子也会受到范德华力的影响。
范德华力的大小取决于分子的极化能力和分子间的距离,通常随着分子间距离的增加而迅速减小。
其次,让我们来谈谈氢键。
氢键是一种比范德华力更强的分子间作用力,它通常发生在含有氢原子的极性分子中。
氢键是由于一个带有部分正电荷的氢原子与一个带有部分负电荷的氧、氮或氟原子之间的相互作用而产生的。
这种作用力在生物学和化学中起着至关重要的作用,例如在蛋白质的空间结构和DNA的双螺旋结构中起着关键作用。
总的来说,范德华力和氢键都是分子间作用力的重要代表,它们对物质的性质和行为产生着深远的影响。
通过研究和理解这些分
子间作用力,我们可以更好地理解物质的性质和化学反应,为材料科学、药物设计等领域的发展提供重要的理论基础。