三坐标测量基础知识解读
- 格式:ppt
- 大小:1.89 MB
- 文档页数:42
三坐标基础知识[小编整理]第一篇:三坐标基础知识三坐标基础知识1。
坐标测量机:由三个运动导轨,按【笛卡儿坐标系】组成的具有测量功能的测量仪器,称为坐标测量机,并且由计算机来分析处理数据(也可由计算机控制,实现全自动测量),是一种复杂程度很高的计量设备。
2。
坐标测量机的原理:几何量测量是以【点】的坐标位置为基础的,它分为一维、二维和三维测量。
坐标测量机是一种几何量测量仪器,它的基本原理是将被测零件放入它容许的测量空间,精密地测出被测零件在X、Y、Z三个坐标位置的数值,根据这些点的数值经过计算机数据处理,拟合形成测量元素,如圆、球、圆柱、圆锥、曲面等,经过数学计算得出形状、位置公差及其他几何量数据。
坐标测量机的特点及主要用途:从理论上讲,坐标测量机的特点是【高精度、高效率、万能性】。
因而多用于【工业质量保证】,如产品测绘、检验,复杂型面检测,工夹具测量,研制过程中间测量,CNC机床或柔性生产线在线测量等方面。
一台坐标测量机综合应用了电子技术、计算机技术、数控技术、光栅测量技术(激光技术)、精密机械(包括新工艺、新材料和气浮技术)4。
坐标测量机的主要结构有哪几种形式,各有何优缺点主要分为桥式、悬臂式、水平臂和龙门式(也称门架式)。
桥式坐标测量机:使用最多的一种机器,使用于中等测量空间,精度高。
随着测量机自动化程度的提高,在小尺寸测量中用得很广。
【分类:活动桥式测量机:采用的最多的一种结构型式。
它可完成中型到大型零件的测量任务,测量准确度较高。
相对悬臂式而言,测量的开敞性不好。
固定桥式测量机:高精度测量机通常采用这种结构。
】悬臂式测量机:这种结构刚性好,操作方便,测量精度高,是小测量空间的测量机的典型形式。
水平臂式测量机:是大测量范围、低精度坐标测量机的典型形式。
但其操作性能很好,由于其移动质量小,因而非常快速。
在称为“测量机器人”中经常是这种形式测量机。
龙门式测量机:是超大型机器,水平轴最大可到数十米,由于其刚性要比水平臂式好得多,因而对大尺寸而言具有足够的精度。
三坐标测量员应该了解的三坐标测针常识总结三坐标测量员应该了解的三坐标测针常识总结三坐标测量员应该了解的三坐标测针常识总结一:什么是三坐标测针测针是三坐标策略系统的组成部分,它与被测工件接触,使测头机构产生位移。
所产生的信号经处理得出策略结果。
被测工件的外形特征将决定要采用的测针类型和大小。
在所有情况下,测针的最大刚性和测球的球度都至关重要。
为了达到这一要求,Renishaw的测针杆按照严格的标准在数控机床上生产。
我们格外注意保证测针刚性最高,同时测针质量经过最优化处理以适用于Renishaw的各种测头。
Renishaw原产测球是按最高标准制造,保证与测针杆的链接能达到最佳的完整性。
如果您使用的测球球度差、位置不正、螺纹公差大、或因设计不当使测量时产生过量的扰度变形,则很容易降低测量效果。
为了确保您采集的数据的正确性,请务必从Renishaw原产的全系列测针中指定和选用测针。
二、三坐标测针的专业术语:总长度:雷尼绍对测针总长度的标准定义,是从测针的后安装端面到测球中心的长度。
有效工作长度:有效工作长度是在零件发现方向测量时从测球中心道测针杆与被测目标干涉点之间的距离。
三、如何正确选择测针1、尽量选用短测针测针弯曲或变形量越大,精度月底,使用近可能短的测针2、尽量减少接头每增加一个饿着呢的测杆的链接,便增加了一个潜在的弯曲和变性点。
所以使用中应尽量减少三坐标测针的组件数。
3、选用的测球直径要尽量大一是这样能增大测球、测针杆的距离,从而减少由于碰撞测针杆所引起的误触发。
其次测球直径越大,被测工件表面光洁度的影响越小。
查看更多三坐标技术知识请到:扩展阅读:三坐标测量技术小结三坐标三坐标测量机,它是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三坐标量床。
三坐标测量机的工作原理:任何形状都是由空间点组成的,所有的几何量测量都可以归结为空间点的测量,因此精确进行空间点坐标的采集,是评定任何几何形状的基础。
三坐标测量仪初步知识
三坐标测量仪是测量工业产品尺寸及外形的检测测量工具,也叫三坐
标检测仪。
它具备测量、编程及分析的全部功能,通常被用于机械零部件,模具,冲压模具,车刀模具,模具产品,车间夹具等精密工具的检测及分析。
三坐标测量仪的测量原理是将物体的相关面坐标转化为三坐标系的坐标,以此来测量物体的圆度、直线度、工件位置、角度等多种参数。
三坐
标测量仪采用光学投影仪获取工件图像,并根据图像计算出一组坐标,依
此坐标判断工件尺寸是否符合要求。
三坐标测量仪的优点是测量精度高,
可检测圆度、直线度、平面度、方位角等参数,准确度远高于传统技术。
三坐标测量仪的缺点是价格较高,而且要求使用者需要较深的技术能力和
经验。
三坐标测量仪初步知识一、三坐标测量机的产生三坐标测量机(Coordinate Measuring Machining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。
它的出现,一方面是由于数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。
现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。
目前,成为现代工业检测和质量控制不可缺少的万能测量设备。
二、三坐标测量机的组成及工作原理(一)CMM的组成三坐标测量机是典型的机电一体化设备,它由机械系统和电子系统两大部分组成。
(1)机械系统:一般由三个正交的直线运动轴构成。
X向导轨系统装在工作台上,移动桥架横梁是Y向导轨系统,Z向导轨系统装在中央滑架内。
三个方向轴上均装有光栅尺用以度量各轴位移值。
人工驱动的手轮及机动、数控驱动的电机一般都在各轴附近。
用来触测被检测零件表面的测头装在Z轴端部。
(2)电子系统:一般由光栅计数系统、测头信号接口和计算机等组成,用于获得被测坐标点数据,并对数据进行处理。
(二)CMM的工作原理三坐标测量机是基于坐标测量的通用化数字测量设备。
它首先将各被测几何元素的测量转化为对这些几何元素上一些点集坐标位置的测量,在测得这些点的坐标位置后,再根据这些点的空间坐标值,经过数学运算求出其尺寸和形位误差。
要测量工件上一圆柱孔的直径,可以在垂直于孔轴线的截面I内,触测内孔壁上三个点(点1、2、3),则根据这三点的坐标值就可计算出孔的直径及圆心坐标OI;如果在该截面内触测更多的点(点1,2,…,n,n为测点数),则可根据最小二乘法或最小条件法计算出该截面圆的圆度误差;如果对多个垂直于孔轴线的截面圆(I,II,…,m,m为测量的截面圆数)进行测量,则根据测得点的坐标值可计算出孔的圆柱度误差以及各截面圆的圆心坐标,再根据各圆心坐标值又可计算出孔轴线位置;如果再在孔端面A上触测三点,则可计算出孔轴线对端面的位置度误差。
一、三坐标测量机的产生三坐标测量机(Coordinate Measuring Machining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。
它的出现,一方面是由于自动机床、数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。
1960年,英国FERRAN TI公司研制成功世界上第一台三坐标测量机,到20世纪60年代末,已有近十个国家的三十多家公司在生产CMM,不过这一时期的CMM 尚处于初级阶段。
进入20世纪80年代后,以ZEISS、LEITZ、DEA、LK、三丰、SIP、FERRANTI、MOORE等为代表的众多公司不断推出新产品,使得CMM的发展速度加快。
现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。
目前,CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备。
二、三坐标测量机的组成及工作原理(一)CMM的组成三坐标测量机是典型的机电一体化设备,它由机械系统和电子系统两大部分组成。
(1)机械系统:一般由三个正交的直线运动轴构成。
如图9-1所示结构中,X向导轨系统装在工作台上,移动桥架横梁是Y向导轨系统,Z向导轨系统装在中央滑架内。
三个方向轴上均装有光栅尺用以度量各轴位移值。
人工驱动的手轮及机动、数控驱动的电机一般都在各轴附近。
用来触测被检测零件表面的测头装在Z轴端部。
(2)电子系统:一般由光栅计数系统、测头信号接口和计算机等组成,用于获得被测坐标点数据,并对数据进行处理。
(二)CMM的工作原理三坐标测量机是基于坐标测量的通用化数字测量设备。
它首先将各被测几何元素的测量转化为对这些几何元素上一些点集坐标位置的测量,在测得这些点的坐标位置后,再根据这些点的空间坐标值,经过数学运算求出其尺寸和形位误差。
引言概述:三坐标测量技术是一种高精度的测量技术,广泛应用于制造业中的质量控制和产品开发过程中。
为了提高企业的生产效率和产品质量,三坐标测量技术的培训教程变得尤为重要。
本文将围绕三坐标测量技术的基本原理、操作方法、常见问题及解决方案、数据处理与分析以及仪器维护等五个大点展开详细阐述。
正文内容:一、三坐标测量技术的基本原理1.1测量原理:介绍三坐标测量仪的构造和工作原理,以及测量过程中所涉及的关键参数和数据处理方法。
1.2坐标系及基准:详细解释三个坐标轴的定义,以及三坐标测量中常用的基准系统和坐标系转换方法。
1.3仪器校准方法:介绍三坐标测量仪的标定和校准过程,以及常见的校准方法和误差修正技术。
二、三坐标测量技术的操作方法2.1仪器准备:详述三坐标测量仪的启动和检查过程,以及所需的标准件和工装夹具的准备工作。
2.2测量基本步骤:从样品放置、坐标系建立、测量参数设定到测量完成的流程,逐步介绍三坐标测量的基本操作。
2.3特殊测量方法:阐述特殊形状的工件测量时的操作技巧和注意事项,如曲面测量、尺寸间接测量等。
三、三坐标测量技术的常见问题及解决方案3.1特殊工件的测量难点:探讨在测量过程中常遇到的特殊形状工件的测量难题,并提供相应的解决思路和方法。
3.2数据异常处理:介绍数据采集过程中可能出现的异常情况,如测量误差较大、数据偏离预期等,以及解决这些问题的技巧和方法。
3.3环境因素对测量的影响:分析环境温度、湿度等因素对测量结果的影响,并提供相应的控制和校正方法。
四、三坐标测量技术的数据处理与分析4.1数据处理软件:介绍常用的数据处理软件,如CAD、CAM、SPC等,讲解数据导入、整理、处理和分析的方法和技巧。
4.2数据分析方法:针对不同的测量任务和要求,介绍常用的数据分析方法,如正态分布分析、拟合曲线分析等。
4.3结果评判标准:详细说明三坐标测量结果的评判标准和合格要求,以及不同行业和产品的相关规范和标准。
三坐标基础知识1.基础理论1.1 什么是坐标测量机由三个运动导轨,按笛卡儿坐标系组成的具有测量功能的测量仪器,称为坐标测量机,并且由计算机来分析处理数据(也可由计算机控制,实现全自动测量),是一种复杂程度很高的计量设备。
1.2 坐标测量机的原理是什么几何量测量是以点的坐标位置为基础的,它分为一维、二维和三维测量。
坐标测量机是一种几何量测量仪器,它的基本原理是将被测零件放入它容许的测量空间,精密地测出被测零件在X、Y、Z三个坐标位置的数值,根据这些点的数值经过计算机数据处理,拟合形成测量元素,如圆、球、圆柱、圆锥、曲面等,经过数学计算得出形状、位置公差及其他几何量数据。
1.3 坐标测量机的特点及主要用途是什么从理论上讲,坐标测量机的特点是高精度(达到µm级)、高效率(数十、数百倍于传统测量手段)、万能性(可代替多种长度计量仪器)。
因而多用于产品测绘,复杂型面检测,工夹具测量,研制过程中间测量,CNC机床或柔性生产线在线测量等方面。
一台坐标测量机综合应用了电子技术、计算机技术、数控技术、光栅测量技术(激光技术)、精密机械(包括新工艺、新材料和气浮技术)以及各种类型的测头系统等,能完成多种复杂零件的测量,还可以与计算机辅助设计连用,与加工设备连用等,用于产品的检验(形位测量、复杂型面的测量、工夹具模具测量、与CNC机床或柔性生产线在线测量),因此坐标测量技术已经在工业质量保证中找到了自己的特定地位。
使用坐标测量机可以解决困难的测量问题,提高工作效率,并且节省专用夹具的制造,贮存,维修等工作。
尤其在现代工业向高度自动化发展的今天,将CAD/CAM技术应用于测量机一一加工中心联机系统,测量机一-计算机工作站一一数控机床(生产线)的联机系统将得到进一步的推广,在新产品开发和计算机管理的自动生产线上,测量机的使用将越来越多越来越广。
1.4 坐标测量机的主要结构有哪几种形式,各有何优缺点从结构形式上分,主要分为桥式、悬臂式、水平臂和龙门式(也称门架式)。
三坐标测量机测量原理三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。
三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。
将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。
三坐标测量机的组成:1,主机机械系统(X、Y、Z三轴或其它);2,测头系统;3,电气控制硬件系统;4,数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为C AD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。
广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。
正向工程:产品设计-->制造-->检验(三坐标测量机)逆向工程:早期:美工设计-->手工模型(1:1)-->3轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)-->设计à制造逆向工程设备:1,测量机:获得产品三维数字化数据(点云/特征);2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构;3,CAD/CAE/CAM软件;4,数控机床;逆向工程中的技术难点:1,获得产品的数字化点云(测量扫描系统);2,将点云数据构建成曲面及边界,甚至是实体(逆向工程软件);3,与CAD/CAE/CAM系统的集成;(通用CAD/CAM/CAE软件)4,为快速准确地完成以上工作,需要经验丰富的专业工程师(人员);三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。
三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。
三坐标基础知识三坐标测量技术是现代制造业中一种非常重要的精密测量手段,它能够对物体的几何尺寸、形状和位置进行高精度的测量。
三坐标测量机(Coordinate Measuring Machine, CMM)是实现这种测量的设备,它通过三个互相垂直的坐标轴来确定空间中的点的位置。
三坐标测量机主要由以下几个部分组成:1. 机械结构:包括立柱、横梁和工作台,它们构成了测量机的主体框架,支撑着测量头和工件。
2. 测量系统:通常由传感器、编码器和测量头组成,负责捕捉和记录测量数据。
3. 控制系统:负责指挥测量机的移动和测量过程,以及数据的处理和输出。
4. 软件系统:用于操作界面的显示、数据的分析和报告的生成。
三坐标测量机的工作原理基于笛卡尔坐标系,通过测量机的三个坐标轴(X轴、Y轴和Z轴)的移动,测量头可以到达空间中的任意一点。
测量头通常装有触觉探头或光学探头,用于接触或非接触地测量工件表面。
在进行测量之前,需要对三坐标测量机进行校准,以确保测量的准确性。
校准过程包括对测量机的各个轴进行精确定位,以及对测量头的灵敏度和精度进行调整。
三坐标测量技术的应用非常广泛,包括但不限于:- 汽车制造:用于测量汽车零件的尺寸和形状,确保其符合设计要求。
- 航空航天:用于测量飞机和航天器的复杂零件,以保证其精确装配。
- 医疗器械:用于测量医疗器械的精密部件,确保其安全性和功能性。
- 电子产品:用于测量电子组件的尺寸,以保证其在电路板上的正确安装。
三坐标测量机的优点在于其高精度和灵活性,能够适应各种复杂的测量需求。
然而,它也有一定的局限性,比如测量速度相对较慢,且对操作人员的技术水平要求较高。
随着技术的发展,现代三坐标测量机正逐渐集成更多的自动化和智能化功能,如自动测量路径规划、3D扫描和实时数据反馈等,以提高测量效率和准确性。
此外,随着计算机辅助设计(CAD)和计算机辅助制造(CAM)技术的发展,三坐标测量机与这些系统的集成也越来越紧密,为制造业提供了更加全面和高效的解决方案。