垂径定理的教案
- 格式:doc
- 大小:214.50 KB
- 文档页数:4
垂径定理教学设计一、教学目标:1. 理解垂径定理的定义和几何意义;2. 掌握垂径定理的基本运用;3. 培养学生的几何思维和逻辑推理能力。
二、教学内容:垂径定理是平面几何中的重要定理,它为解决与圆相关的问题提供了有力的工具。
垂径定理是指,如果一个直径的两个端点与圆上的两点相连,并且这两条线段相互垂直,则这两条线段的中点一定在圆上。
三、教学过程:1. 理论讲解(15分钟)a. 引入垂径定理的概念,解释定理的定义和意义;b. 对与垂径定理相关的基本术语进行解释,如直径、垂直等;c. 展示垂径定理的证明过程,说明定理的正确性和普适性。
2. 实例演示(20分钟)a. 通过几个具体的实例,演示垂径定理的运用方法;b. 教师可以将实例分为直接应用和间接应用两种情况,让学生思考不同情况下如何运用垂径定理解决问题;c. 引导学生进行讨论和解答,帮助他们理解垂径定理的应用。
3. 案例分析(25分钟)a. 布置几个与垂径定理相关的问题;b. 学生以小组形式进行分析和解答,并展示他们的思路和解题过程;c. 教师根据学生的表现和分析结果,对解题思路进行点评和指导。
4. 提升拓展(20分钟)a. 强化学生对垂径定理的理解,通过练习题检验学生的掌握程度;b. 针对高阶问题和拓展思考,引导学生运用垂径定理解决更复杂的几何问题;c. 鼓励学生进行思考和讨论,培养他们的逻辑推理能力和创新思维。
四、教学评价:1. 在教学过程中,教师可以通过观察学生的参与度和回答问题的准确度,进行个别或整体评价;2. 在案例分析环节,教师可以根据学生的表现,评价他们的分析能力和解题思路;3. 练习题的考查结果可以用来评价学生对垂径定理掌握的程度。
五、教学反思:垂径定理是一个相对简单但重要的定理,通过教学设计和教学过程的安排,可以提高学生对该定理的理解和应用能力。
在教学中,要注意引导学生进行思辨和探究,并关注学生的自主学习能力的培养。
此外,可增加一些趣味性的教学方法,如游戏、实验等,以激发学生的学习兴趣和主动性。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。
1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。
1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。
第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。
2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。
第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。
3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。
3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。
3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。
第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。
4.2 教学媒体:几何画板、实物模型、PPT等。
第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。
5.2 评价方式:课堂问答、练习题、小组讨论等。
第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。
6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。
第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。
7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。
7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。
7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。
7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。
第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。
8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。
初中垂径定理的应用教案教学目标:1. 理解并掌握垂径定理的内容及应用。
2. 能够运用垂径定理解决实际问题。
3. 培养学生的观察能力、推理能力和解决问题的能力。
教学重点:1. 垂径定理的理解和应用。
2. 培养学生的解决问题的能力。
教学难点:1. 如何正确运用垂径定理解决实际问题。
教学准备:1. 教师准备PPT或黑板,展示垂径定理的定义和图像。
2. 准备一些实际问题,用于引导学生应用垂径定理。
教学过程:一、导入(5分钟)1. 引导学生回顾圆的基本概念,如圆、半径、弦、直径等。
2. 提问:你们认为圆有什么特殊的性质吗?二、新课讲解(15分钟)1. 介绍垂径定理的定义和图像,解释垂径定理的意义。
2. 通过示例,演示如何应用垂径定理解决实际问题。
三、课堂练习(15分钟)1. 让学生独立完成一些应用垂径定理的实际问题。
2. 引导学生分组讨论,互相解答疑问。
四、总结与拓展(10分钟)1. 让学生总结垂径定理的应用方法和步骤。
2. 提问:你们还能想到其他的应用垂径定理的问题吗?五、课后作业(5分钟)1. 布置一些应用垂径定理的实际问题,让学生回家练习。
教学反思:本节课通过讲解垂径定理的定义和图像,引导学生理解并掌握垂径定理的应用方法。
通过课堂练习和分组讨论,培养学生的观察能力、推理能力和解决问题的能力。
在教学过程中,要注意引导学生正确应用垂径定理,解决实际问题,提高学生的解决问题的能力。
同时,教师应根据学生的实际情况,适当调整教学内容和教学方法,以提高教学效果。
高中数学垂径定理教案一、教学目标:1. 知识与能力:掌握垂径定理的概念,能够应用垂径定理解决相关问题。
2. 过程与方法:运用几何知识和推理方法,探究垂径定理的原理和应用。
3. 情感态度与价值观:培养学生的观察和推理能力,增强学生对几何学习的兴趣和自信心。
二、教学重难点:1. 掌握垂径定理的内容和概念。
2. 能够灵活运用垂径定理解决相关问题。
三、教学内容及方法:1. 垂径定理的概念:通过展示示意图,引导学生理解垂径定理的基本原理。
2. 垂径定理的证明:以几何推理为基础,让学生自行探究垂径定理的证明过程。
3. 垂径定理的应用:通过具体案例演练,让学生掌握灵活运用垂径定理解决相关问题的方法。
四、教学过程:1. 导入:通过展示一个圆和其直径的示意图,引出垂径定理的概念。
2. 学习:讲解垂径定理的内容和原理,引导学生思考垂线与半径的关系。
3. 实践:学生自行探究垂径定理的证明过程,进行思维导图整理。
4. 演练:通过案例分析和问题讨论,让学生灵活运用垂径定理,解决相关问题。
5. 总结:总结本节课的学习内容,强化垂径定理的重点和难点。
五、作业布置:1. 完成课堂练习,加深对垂径定理的理解。
2. 预习下节课内容,做好相关准备。
六、教学评价:1. 课堂表现:学生能够积极参与讨论,表达自己的观点和想法。
2. 作业质量:学生能够独立完成作业,运用垂径定理解决实际问题。
3. 考试成绩:学生在考试中能够准确运用垂径定理,获得理想的成绩。
七、教学反思:1. 教学方法:适当运用案例分析和问题讨论,提高学生对垂径定理的应用能力。
2. 教学内容:加强垂径定理的相关练习,巩固学生对垂径定理的理解和掌握。
以上是本次垂径定理教学范本,欢迎老师们根据实际情况进行调整和完善。
祝教学顺利!。
初中垂径定理教案教学目标:1. 理解垂径定理的概念及其实际应用。
2. 学会运用垂径定理解决相关几何问题。
3. 培养学生的逻辑思维能力和探索精神。
教学内容:1. 垂径定理的定义及证明。
2. 垂径定理的应用。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学习过的等腰三角形的性质,如等腰三角形的底角相等、中线垂直于底边等。
2. 提问:圆是否有类似的性质?二、新课讲解(15分钟)1. 介绍垂径定理的定义:圆中,如果一条直线垂直于一条弦,那么这条直线必过圆心。
2. 证明垂径定理:a. 画出圆和一条垂直于弦的直线。
b. 连接圆心和直线上的点。
c. 利用等腰三角形的性质和全等三角形的性质,得出结论。
3. 讲解垂径定理的逆定理:如果一条直线过圆心,那么这条直线必垂直于某条弦。
三、例题解析(15分钟)1. 给出例题,让学生尝试运用垂径定理解决问题。
2. 引导学生分析题目,画出图形,并逐步解题。
3. 讲解解题思路和技巧。
四、课堂练习(10分钟)1. 给出几道练习题,让学生独立完成。
2. 挑选部分学生的作业进行讲解和评价。
五、总结与拓展(5分钟)1. 总结垂径定理的重点和难点。
2. 提问:垂径定理在实际应用中还有哪些作用?3. 引导学生思考和探索垂径定理在其他领域的应用。
教学评价:1. 课后作业:检查学生对垂径定理的理解和应用能力。
2. 课堂练习:观察学生在课堂练习中的表现,了解其掌握程度。
3. 学生反馈:听取学生的意见和建议,不断改进教学方法。
教学反思:本节课通过讲解垂径定理的定义、证明和应用,使学生掌握了垂径定理的基本知识。
在课堂练习环节,学生能够独立解决问题,对垂径定理有一定的掌握。
但在拓展环节,学生对垂径定理在其他领域的应用思考不够深入,需要在今后的教学中加强引导和培养。
总体来说,本节课达到了预期的教学目标。
垂径定理优秀教学设计(教案)一、教学内容本节课为人教版数学四年级下册第七单元《几何图形》中的“垂径定理”。
教材通过生活中的实例,引导学生探究圆的性质,掌握垂径定理,并运用该定理解决实际问题。
二、教学目标1. 让学生通过观察、操作、探究,掌握垂径定理,提高空间想象能力。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:掌握垂径定理及运用。
难点:理解并证明垂径定理。
四、教具与学具准备教具:PPT、黑板、粉笔。
学具:圆、直尺、三角板、圆规。
五、教学过程1. 情境引入:利用PPT展示生活中的圆形物体,如地球、篮球等,引导学生关注圆的性质。
提问:“你们知道圆有哪些性质吗?”2. 自主探究:3. 小组交流:4. 例题讲解:利用PPT展示例题,如:“在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
”让学生独立思考,然后讲解解题思路,引导学生运用垂径定理解决问题。
5. 随堂练习:出示随堂练习题,如:“已知圆的直径为10cm,求证:垂直于直径的线段也是10cm。
”学生独立完成练习,教师巡回指导,及时纠正错误。
6. 巩固提高:出示拓展题目,如:“在圆中,已知一条弦长为8cm,求证:垂直于该弦的线段也是8cm。
”学生分组讨论,运用垂径定理解决问题。
7. 课堂小结:六、板书设计板书垂径定理板书内容:1. 圆的性质:圆中心到圆上任意一点的距离相等。
2. 垂径定理:垂直于直径的线段也是直径。
七、作业设计1. 请用文字和图形描述垂径定理。
答案:垂径定理:垂直于直径的线段也是直径。
在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
答案:略。
八、课后反思及拓展延伸本节课通过生活中的实例,引导学生探究圆的性质,掌握垂径定理。
在教学过程中,注重培养学生的动手操作能力、观察能力和空间想象能力。
课堂练习和拓展延伸环节,让学生运用所学知识解决实际问题,提高学生的数学应用能力。
教学设计课程基本信息学科数学年级九年级学期秋季课题 3.3垂径定理(第一课时)教科书书名:《义务教育教科书数学(九年级上册)》出版社:浙江教育出版社教学目标1. 经历探索垂径定理的过程.2. 探索并掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.3. 会运用垂径定理解决一些简单的几何问题.教学内容教学重点:垂径定理教学难点:垂径定理的推导过程以及垂径定理的灵活运用教学过程一:创设情境引入新课问题1:如图,剪一个圆形纸片,沿着它的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?我们发现在折叠的过程中,直径两侧的部分会完全重合,因此我们得到结论:圆是轴对称图形任何一条直径所在直线都是它的对称轴.问题2:如图,在⊙O中任意作一条弦AB,观察下面的图形,它还是轴对称图形吗,若是,你能作出它的对称轴吗?二:师生互动共创新知已知:如图,CD是⊙O的直径,CD⊥AB,求证:AE=BE,AĈ=BĈ,AD̂=BD̂.分析:利用半径来构造等腰三角形来证明AE=BE;弧等可以利用同圆或等圆中两弧的端点重合来证明.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.几何语言:∵CD是直径,CD⊥AB,∴AE=BE,AĈ=BĈ,AD̂=BD̂. 三:应用新知层层深入B OACD下列图形是否适合用垂径定理呢?例1 已知AB̂,用直尺和圆规作这条弧的中点 分析:要平分弧,找到这条弧的中点,让我们联想到了垂径定理的 基本图形,所以第一步我们先连结AB ,然后再画出垂直弦AB 的过圆心的一条直线即可,所以第二步,作AB 的垂直平分线CD , 交弧AB 于点E.例2 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,求截面圆心O 到水面的距离.分析:为求O 到AB 的距离,我们先过点O 作OC ⊥AB ,即求OC的长度,观察图形发现OC 在直角三角形OBC 中,其中半径 OB=10,由于OC ⊥AB ,由垂径定理可得BC 等于AB 的一半等于8, 那么根据勾股定理即可得到OC 的长度.变式:一条排水管的截面如图所示。
《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。
2. 引导学生通过实际问题发现垂径定理。
教学内容:1. 引导学生回顾圆的性质和基本概念。
2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。
2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。
教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。
第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。
2. 培养学生通过几何推理解决问题的能力。
教学内容:1. 引导学生通过几何推理,探索垂径定理。
2. 引导学生验证垂径定理的正确性。
教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。
2. 组织学生进行小组讨论,分享各自的解题思路和方法。
教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。
第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 引导学生学习和掌握垂径定理的应用方法。
2. 引导学生运用垂径定理解决实际问题。
教学活动:1. 引导学生学习和掌握垂径定理的应用方法。
2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。
教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。
第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。
2. 提高学生解决实际问题的能力。
教学内容:1. 引导学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学活动:1. 组织学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。
2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。
第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能:让学生掌握垂径定理的内容及其应用。
培养学生运用几何知识解决实际问题的能力。
1.2 过程与方法:通过观察、猜想、证明的过程,让学生体验数学的探究过程。
运用图形计算器或信息技术工具,帮助学生更好地理解垂径定理。
1.3 情感态度与价值观:培养学生对数学的兴趣和自信心。
培养学生合作交流的能力,提高学生的团队协作能力。
第二章:教学内容2.1 教材分析:分析教材中关于垂径定理的定义、证明和应用。
理解垂径定理在圆的性质和几何图形中的应用。
2.2 学情分析:了解学生对圆的基本知识和垂线的概念。
了解学生对几何证明的掌握程度,为学生提供必要的支持。
第三章:教学重难点3.1 教学重点:让学生掌握垂径定理的证明过程和定理的内容。
能够运用垂径定理解决相关的几何问题。
3.2 教学难点:理解并证明垂径定理。
灵活运用垂径定理解决实际问题。
第四章:教学方法与手段4.1 教学方法:采用问题驱动的教学方法,引导学生观察、猜想、证明。
运用小组合作学习,鼓励学生互相交流、讨论。
4.2 教学手段:使用图形计算器或信息技术工具,展示几何图形,帮助学生更好地理解垂径定理。
提供相关的练习题和案例,供学生实践和应用垂径定理。
第五章:教学过程5.1 导入:通过引入实际问题或情境,激发学生的兴趣和好奇心。
引导学生观察和猜想垂径定理的内容。
5.2 探究与证明:引导学生进行小组合作学习,共同探究垂径定理的证明过程。
引导学生运用几何知识和证明方法,进行逻辑推理和证明。
5.3 应用与练习:提供相关的练习题和案例,让学生运用垂径定理解决问题。
引导学生进行自主学习和合作交流,解答练习题和案例。
鼓励学生反思自己的学习过程,提出问题和建议,为后续学习做好准备。
1. 导入新课通过展示实际问题,引入垂径定理的概念和意义。
提供具体的垂径定理案例,让学生观察和分析,引导学生猜想垂径定理的内容。
第五章:垂径定理的证明通过引导学生运用已有知识,尝试证明垂径定理。
垂径定理公开课优秀教案一、教学目标1. 知识与技能:(1)让学生掌握垂径定理的内容及应用;(2)培养学生运用几何知识解决实际问题的能力。
2. 过程与方法:(1)通过观察、实验、证明等环节,引导学生发现并证明垂径定理;(2)运用垂径定理解决一些相关的几何问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:(1)垂径定理的内容及其应用;(2)运用垂径定理解决一些相关的几何问题。
2. 教学难点:(1)垂径定理的证明;(2)在实际问题中灵活运用垂径定理。
三、教学方法1. 采用问题驱动法,引导学生发现并证明垂径定理;2. 运用几何画板软件,直观展示垂径定理的应用;3. 设计具有梯度的练习题,巩固学生对垂径定理的理解。
四、教学准备1. 教师准备:垂径定理的相关知识、课件、练习题;2. 学生准备:笔记本、几何画板软件。
五、教学过程1. 导入新课(1)复习相关知识:圆的基本概念、圆的性质;(2)提问:如何判断一条直线是否垂直于一条弦?2. 探究与发现(1)学生分组讨论,尝试发现垂径定理;(2)各组汇报讨论成果,师生共同总结垂径定理;(3)教师利用几何画板软件,演示垂径定理的应用。
3. 证明垂径定理(1)学生根据已知的圆的性质,尝试证明垂径定理;(2)教师引导学生归纳总结,给出垂径定理的证明过程。
4. 应用垂径定理(1)设计一组练习题,让学生运用垂径定理解决问题;(2)学生独立解答,教师点评并指导。
5. 课堂小结(1)学生总结本节课所学内容;(2)教师补充,强调垂径定理在几何中的应用。
6. 作业布置(1)请学生运用垂径定理解决一些实际问题;(2)复习本节课所学知识,为下一节课做准备。
六、教学拓展1. 引导学生思考:垂径定理在实际生活中的应用有哪些?2. 举例说明:如在建筑设计中,如何利用垂径定理确定圆形的建筑物的垂直结构。
七、课堂互动1. 学生之间互相提问关于垂径定理的问题,加深对知识的理解;2. 教师参与互动,解答学生提出的问题,及时纠正学生的错误。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标理解垂径定理的概念和意义。
学会运用垂径定理解决实际问题。
1.2 过程与方法目标通过观察和实验,发现垂径定理的规律。
学会运用几何画图工具,准确地画出垂直平分线。
1.3 情感态度与价值观目标培养学生的观察能力和思维能力。
培养学生的合作意识和解决问题的能力。
第二章:教学内容2.1 教材分析介绍垂径定理的内容和证明过程。
通过实际例题,展示垂径定理的应用。
2.2 学情分析学生已经掌握了直线、圆的基本概念和性质。
学生具备一定观察和实验的能力。
第三章:教学过程3.1 导入新课通过一个实际问题,引发学生对垂径定理的思考。
引导学生观察和实验,发现垂径定理的规律。
3.2 探究与发现学生分组进行实验,观察垂直平分线与弦的关系。
引导学生总结垂径定理的表述。
3.3 知识讲解讲解垂径定理的证明过程。
通过示例,解释垂径定理的应用。
3.4 练习与巩固学生独立完成一些练习题,巩固对垂径定理的理解。
教师引导学生互相讨论和解答问题。
第四章:教学评价4.1 课堂评价教师通过观察学生的实验和练习情况,评价学生对垂径定理的理解和应用能力。
学生之间互相评价,分享解题经验和思路。
4.2 课后评价教师布置一些相关的课后作业,检验学生对垂径定理的掌握程度。
学生通过完成作业,进一步巩固和提高垂径定理的应用能力。
第五章:教学资源5.1 教材教师使用的教材,包括课本和相关教辅材料。
5.2 实验材料学生分组进行实验所需的材料,如几何画图工具、圆规、直尺等。
5.3 多媒体教学资源利用多媒体课件和教学视频,帮助学生更好地理解和掌握垂径定理。
第六章:教学策略6.1 讲授法教师通过讲解垂径定理的证明过程和应用实例,引导学生理解和掌握知识点。
6.2 实验法学生通过分组实验,观察和验证垂径定理,培养动手能力和观察能力。
6.3 讨论法教师组织学生进行小组讨论,分享解题经验和思路,促进互动交流。
第七章:教学难点与重点7.1 教学难点学生对垂径定理的证明过程的理解和应用。
垂径定理教学设计教学设计:垂径定理教学目标:1.理解垂径定理的定义和原理;2.掌握应用垂径定理解决问题的方法;3.培养学生的逻辑思维和证明能力。
教学步骤:一、导入(15分钟)1.通过提问的方式,引出垂径定理的概念和作用,激发学生对该定理的兴趣。
2.给学生展示一些实际生活中使用垂径定理的例子,如建筑设计、地理测量等,说明学习垂径定理的重要性。
二、理解垂径定理(30分钟)1.引导学生观察和发现:在一个圆内,以圆心为端点的半径与圆上条切线之间的关系。
2.引导学生总结并给出垂径定理的定义:在一个圆内,以圆心为端点的半径与圆上的切线垂直。
3.通过给出几个具体的案例,帮助学生理解垂径定理的意义和应用。
三、应用垂径定理解决问题(30分钟)1.给学生出示一些具体问题,引导他们应用垂径定理解决问题。
2.阐述解决问题的一般步骤:根据问题条件,确定圆心、半径和切线,应用垂径定理判断是否垂直。
3.给学生分组讨论解决问题的方法,并在黑板上进行总结和讨论。
四、拓展练习(30分钟)1.给学生分发一些练习题,让他们独立或小组完成,并在课堂上进行讲解和讨论。
2.引导学生思考问题的多个解法和证明的不同方法,培养他们的思考能力和证明能力。
3.鼓励学生提出疑问和讨论,引导他们思考如何应用垂径定理解决更复杂的问题。
五、总结(15分钟)1.综合学生的讨论和解答,总结垂径定理的定义、应用和解决问题的方法。
2.提出作业:让学生写一篇500字以上的短文,总结垂径定理的原理和应用,并分析具体案例。
3.回顾整个课堂内容,引导学生思考学习垂径定理的感受和收获。
教学资源:1.教师准备的课件,包括垂径定理的定义、案例和应用;2.练习题,用于课堂练习和讨论;3.学生课本和笔记本,用于记录课堂内容和思考问题。
教学评价:1.在课堂上观察学生的参与情况,检查他们对垂径定理的理解和应用;2.根据学生的讨论和解答,评价他们的思考能力和证明能力;3.根据学生的作业,评价他们对垂径定理的理解和总结能力。
垂径定理公开课优秀教案第一章:教学目标1.1 知识与技能:理解垂径定理的概念和含义。
学会运用垂径定理解决实际问题。
1.2 过程与方法:通过观察和实验,发现垂径定理的规律。
学会使用直尺和圆规进行几何图形的绘制。
1.3 情感态度价值观:培养学生的观察能力和思维能力。
培养学生的合作意识和解决问题的能力。
第二章:教学内容2.1 教材内容:介绍垂径定理的定义和公理。
解释垂径定理的证明过程。
2.2 教学重点与难点:垂径定理的理解和运用。
垂径定理的证明过程的理解。
第三章:教学过程3.1 导入:通过引入实际问题,引发学生对垂径定理的兴趣。
引导学生思考垂径定理的应用场景。
3.2 探究与发现:分组讨论和实验,让学生发现垂径定理的规律。
引导学生通过观察和实验,总结垂径定理的定义。
3.3 讲解与示范:讲解垂径定理的定义和证明过程。
示范如何运用垂径定理解决实际问题。
3.4 练习与巩固:提供一些练习题,让学生巩固对垂径定理的理解。
引导学生运用垂径定理解决实际问题。
第四章:教学评价4.1 评价标准:学生对垂径定理的理解程度。
学生运用垂径定理解决实际问题的能力。
4.2 评价方法:课堂提问和回答。
练习题的完成情况。
学生的小组讨论和实验报告。
第五章:教学资源5.1 教材:采用《几何》教材,提供垂径定理的相关内容。
5.2 教具:直尺、圆规、几何模型等。
5.3 教学多媒体:使用PPT或教学视频,展示垂径定理的证明过程和实际应用。
第六章:教学步骤6.1 步骤一:导入新课通过展示实际问题,引发学生对垂径定理的兴趣。
引导学生思考垂径定理的应用场景。
6.2 步骤二:探究与发现分组讨论和实验,让学生发现垂径定理的规律。
引导学生通过观察和实验,总结垂径定理的定义。
6.3 步骤三:讲解与示范讲解垂径定理的定义和证明过程。
示范如何运用垂径定理解决实际问题。
6.4 步骤四:练习与巩固提供一些练习题,让学生巩固对垂径定理的理解。
引导学生运用垂径定理解决实际问题。
课题*3 垂径定理课时1课时上课时间45教学目标1.知识与技能(1)利用圆的轴对称性研究垂径定理及其逆定理.(2)运用垂径定理及其逆定理解决问题.2.过程与方法经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法.3.情感、态度与价值观(1)培养学生类比分析,猜想探索的能力.(2)通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.教学重难点重点:利用圆的轴对称性研究垂径定理及其逆定理.难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.教学活动设计二次设计课堂导入提出问题,引入新课:1.等腰三角形是轴对称图形吗?2.如果将一等腰三角形沿底边上的高对折,可以发现什么结论?3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?探索新知合作探究自学指导如图,AB是☉O的一条弦,作直径CD,使CD⊥AB,垂足为M.(1)该图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?(3)你能给出几何证明吗?(写出已知、求证并证明)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.合作探究1.小组讨论自学指导中出现疑问的地方.2.如图,AB是☉O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)图中有哪些等量关系?说一说你的理由.(3)你能模仿垂径定理的证明过程,自行证明逆定理吗?续表探索新知合作探究(4)你能正确表述逆定理的内容吗?(5)“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.”如果该定理少了“不是直径”,是否也能成立?点拨:条件:①CD是直径;②AM=BM.结论(等量关系):③CD⊥AB;④;⑤.垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.学以致用思考如下问题:(1)如何利用所学定理添加辅助线?(2)这样添加辅助线的目的是什么?(3)你想利用直角三角形的什么知识来解决问题?(4)大家能合作完成求解过程吗?点拨(1)垂径定理中的两个条件缺一不可——直径(半径),垂直于弦.(2)垂径定理的逆定理中“不是直径”不可或缺,否则错误.尝试应用:1. (毕节中考)如图,在⊙O中,弦AB的长为8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径为( )A.5 B.10 C.8 D.61题 2题2. 如图,在⊙O中,直径AB=4,弦CD⊥AB于P,OP=3,则弦CD的长为____________.3. 1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径.(结果精确到0.1米).盘点提升1.学了本节课,你还有什么疑问?2.你的收获?知识:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.(2)垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.方法规律:解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定理创造条件.当堂达标1. 如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是()A.4 B.6 C.8 D.101题 2题 3题 4题2. 如图,圆O过点A、B,圆心O在正△ABC的内部,AB=2,OC=1,则圆O的半径为()A.B.2 C.D.3.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<54.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,则AB= cm.5.如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C在⊙O 上,若⊙O的半径为5,AB=4,则AD边的长为.5题 6题6. 如图所示,⊙O内有折线OABC,其中OA=2,AB=4,∠A=∠B=60°,则BC的长为.7.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.智者加速8. 如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.9.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),求该光盘的直径是多少?10.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).板书设计垂径定理1.垂径定理 3.例题2.垂径定理的逆定理。
垂径定理教案范文一、教学目标1.知识目标:掌握垂径定理的概念和基本性质,理解垂径定理的证明方法。
2.技能目标:能够灵活应用垂径定理解决几何问题。
3.情感目标:培养学生对几何学习的兴趣和好奇心,激发学生的创造思维和解决问题能力。
二、教学重难点1.教学重点:掌握垂径定理的概念和性质,理解垂径定理的证明方法。
2.教学难点:能够运用垂径定理解决几何问题。
三、教学准备1.教具准备:黑板、彩色粉笔、直尺、圆规等。
2.教材准备:教科书、练习册。
四、教学过程步骤一:导入问题1.教师出示一张图片,上面有一个圆,让学生思考并回答:如何确定一个圆上其中一点的切线?2.引导学生思考,如果有一个点在圆上的直径上,这个点与圆上其他点的位置关系又如何呢?步骤二:引出垂径定理1.教师指导学生完成以下实验:在黑板上画一个圆,并选择一个点作为圆上的直径的一端点。
2.学生观察并进行推理,由实验现象引出垂径定理的概念。
3.教师从定义的角度向学生解释垂线与直径的关系,引出垂径定理的定义。
步骤三:垂径定理的性质分析1.教师让学生通过练习册中的一道题目,完成以下实验:在黑板上画一个圆,并选择一个点作为圆上的直径的一端点。
2.学生观察并进行推理,得出当直径上的点与圆上的其他点连接时,可以得到什么性质。
3.教师总结学生的推理过程,引导学生得出垂径定理的性质。
步骤四:垂径定理的证明方法1.教师给出垂径定理的证明过程,引导学生理解证明中每一步的推理过程。
2.学生在理解的基础上,尝试自己为垂径定理寻找其他的证明方法,并与同学进行交流和讨论。
步骤五:应用垂径定理解决问题1.教师给出一些实际问题,引导学生运用垂径定理解决问题。
2.学生在解决问题的过程中,可以结合学习到的知识和方法,提出自己的解决方案,并与同学进行交流和讨论。
3.教师在学生完成问题后,进行解题分析和总结,帮助学生理解和掌握垂径定理的应用方法。
五、课堂小结1.教师对本节课的教学内容进行总结,并鼓励学生提出问题和疑惑进行讨论。
垂径定理教案[教案]主题:垂径定理教学方案教学目标:1. 了解垂径定理的概念和相关性质;2. 掌握垂径定理在几何问题中的应用方法;3. 提高学生的思维逻辑能力和问题解决能力。
教学重点:1. 掌握垂径定理的基本原理;2. 熟练应用垂径定理解决几何问题。
教学难点:1. 理解垂径定理的证明过程;2. 运用垂径定理解决复杂几何问题。
教学准备:1. 教学课件;2. 相关绘图工具;3. 示例题和练习题。
教学过程:一、导入(5分钟)1. 引入垂径定理的概念,与学生分享一个相关的现实生活或几何问题,激发学生的兴趣;2. 提出问题,让学生思考并尝试解决,引入垂径定理。
二、理论讲解(15分钟)1. 通过课件或黑板,讲解垂径定理的定义和基本原理;2. 结合示意图,解释垂径定理的证明过程;3. 鼓励学生提问和互动,确保学生理解垂径定理的内涵。
三、例题演练(20分钟)1. 给出一个简单的几何问题,引导学生运用垂径定理解决;2. 逐步展示解题过程,引导学生思考和讨论;3. 鼓励学生展示自己的解题思路,培养合作学习和表达能力。
四、拓展练习(25分钟)1. 提供一些具有一定难度的练习题,要求学生独立解答;2. 学生在解答过程中可以相互交流和讨论,学习不同的解题方法;3. 教师及时给予指导和解答,引导学生更好地掌握垂径定理的应用。
五、归纳总结(10分钟)1. 教师帮助学生总结垂径定理的关键点和应用方法;2. 学生通过讨论和归纳,进一步理解和掌握垂径定理的本质;3. 教师给予肯定和激励,鼓励学生继续努力提高几何问题解决能力。
六、作业布置(5分钟)1. 布置一些相关的作业题目,要求学生独立完成;2. 鼓励学生自主思考和探索,加深对垂径定理的理解;3. 提醒学生按时提交作业,及时纠正错误。
教学反思:本节课通过引入实际问题、理论讲解、例题演练和拓展练习等环节,旨在帮助学生理解和应用垂径定理。
教学内容紧密结合实例,注重培养学生的思维逻辑能力和问题解决能力。
§24.1.2 《 垂直于弦的直径》教案
教学目标:
1、经历利用圆的轴对称性对垂径定理的探索和证明过程,掌握垂径定理及其推论;并能初步运用垂径定理解决有关的计算和证明问题;
2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法;
3、让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现。
教学重点:使学生掌握垂径定理及其推论、记住垂径定理的题设和结论。
教学难点:对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明。
教学过程: 一、复习引入
1、我们已经学习了圆怎样的对称性质?(中心对称和轴对称)
2、圆还有什么对称性质?作为轴对称图形,其对称轴是什么特殊位置?(直径所在的直线)
3、观察并回答:
(1)在含有一条直径AB 的圆上再增加一条直径CD ,两条直径的位置关系?
(相交,而且两条直径始终是互相平分的)
(2)把直径AB 向下平移,变成非直径的弦,弦AB 是否一定被直径CD 平分?
二、新课
(一)猜想,证明,形成垂径定理
1、猜想:弦AB 在怎样情况下会被直径CD 平分?(当C D ⊥AB 时)(用课件观察翻折验证)
2、得出猜想:在圆⊙O 中,CD 是直径,AB 是弦,当C D ⊥AB 时,弦AB 会被直径CD 平分。
3、提问:如何证明该命题是真命题?根据命题,写出已知、求证:
如图,已知CD是⊙O的直径,AB是⊙O的弦,且AB⊥CD,垂足为M。
求证:AE=BE。
4、思考:直径CD两侧相邻的两条弧是否也相等?如何证明?(参照数本P81)
5、我们给这条特殊的直径命名——垂直于弦的直径。
并给出垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧。
(二)分析垂径定理的条件和结论以及探讨垂径定理的推论
1、引导学生说出定理的几何语言表达形式
① CD是直径、AB是弦
① AE=BE
②C D⊥②
2、利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的本质了解。
例1 看下列图形,是否能直接使用垂径定理?
3、引申定理:定理中的垂径可以是直径、半径、弦心距等过圆心的直线或线段。
从而得到垂径定理的变式:
①经过圆心得到(结论)①平分弦
一条直线具有(条件):
AC=BC
AD=BD
② 垂直于弦 ② 平分弦所对的劣(优)弧
4、思考:平分弦(不是直径)的直径有什么性质?(得出推论)
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(通过课件展示) (三)例题
例1 如图,已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的
距离为3厘米,求⊙O 的半径
在例1图形的基础上:
变式(1) 已知:如图,若以O 为圆心作一个⊙O 的同心圆,交大圆的弦AB 于C ,D 两点。
求证:AC =BD 。
(图1) (图2) 变式(2)再添加一个同心圆,得(图2)则AC BD 变式(3)隐去(图1)中的大圆,得(图3)连接OA ,OB ,设OA=OB ,
求证:AC =BD 。
(图3) (四)生活实际应用
另例 赵州桥是我国隋代建造的石拱桥,距今约有1400 年的历史,是我国古代人民勤劳和智慧的结晶。
它的主桥拱是圆弧形,它的跨度(弧所对的弦长)为37米,拱高(弧的中点到弦的距离,也叫拱形高)为7.23米,求桥拱的半径(精确到0.1米)
解:如图,用AB 表示主桥拱,设AB 所在的圆的圆心为O ,半径为r. 经过圆心O 作弦AB 的垂线OC 垂足为D ,与AB 交于点C ,则D 是AB 的中点,C 是AB 的
D
C
O
A
B
N M
D
C
O
A
B
D
C
O
A
B
E O
A
B
A
B
O
D。